mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-28 17:04:41 +00:00
2364 lines
86 KiB
Nim
2364 lines
86 KiB
Nim
#
|
|
#
|
|
# The Nim Compiler
|
|
# (c) Copyright 2013 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
# this module does the semantic checking for expressions
|
|
# included from sem.nim
|
|
|
|
proc semTemplateExpr(c: PContext, n: PNode, s: PSym,
|
|
flags: TExprFlags = {}): PNode =
|
|
markUsed(n.info, s)
|
|
styleCheckUse(n.info, s)
|
|
pushInfoContext(n.info)
|
|
result = evalTemplate(n, s, getCurrOwner())
|
|
if efNoSemCheck notin flags: result = semAfterMacroCall(c, result, s, flags)
|
|
popInfoContext()
|
|
|
|
proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags = {}): PNode
|
|
|
|
proc semOperand(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
|
|
# same as 'semExprWithType' but doesn't check for proc vars
|
|
result = semExpr(c, n, flags + {efOperand})
|
|
if result.kind == nkEmpty and result.typ.isNil:
|
|
# do not produce another redundant error message:
|
|
#raiseRecoverableError("")
|
|
result = errorNode(c, n)
|
|
if result.typ != nil:
|
|
# XXX tyGenericInst here?
|
|
if result.typ.kind == tyVar: result = newDeref(result)
|
|
elif {efWantStmt, efAllowStmt} * flags != {}:
|
|
result.typ = newTypeS(tyEmpty, c)
|
|
result.typ.flags.incl tfVoid
|
|
else:
|
|
localError(n.info, errExprXHasNoType,
|
|
renderTree(result, {renderNoComments}))
|
|
result.typ = errorType(c)
|
|
|
|
proc semExprWithType(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
|
|
result = semExpr(c, n, flags+{efWantValue})
|
|
if result.isNil or result.kind == nkEmpty:
|
|
# do not produce another redundant error message:
|
|
#raiseRecoverableError("")
|
|
result = errorNode(c, n)
|
|
if result.typ == nil or result.typ == enforceVoidContext:
|
|
# we cannot check for 'void' in macros ...
|
|
localError(n.info, errExprXHasNoType,
|
|
renderTree(result, {renderNoComments}))
|
|
result.typ = errorType(c)
|
|
else:
|
|
# XXX tyGenericInst here?
|
|
if efNoProcvarCheck notin flags: semProcvarCheck(c, result)
|
|
if result.typ.kind == tyVar: result = newDeref(result)
|
|
semDestructorCheck(c, result, flags)
|
|
|
|
proc semExprNoDeref(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
|
|
result = semExpr(c, n, flags)
|
|
if result.kind == nkEmpty:
|
|
# do not produce another redundant error message:
|
|
result = errorNode(c, n)
|
|
if result.typ == nil:
|
|
localError(n.info, errExprXHasNoType,
|
|
renderTree(result, {renderNoComments}))
|
|
result.typ = errorType(c)
|
|
else:
|
|
semProcvarCheck(c, result)
|
|
semDestructorCheck(c, result, flags)
|
|
|
|
proc semSymGenericInstantiation(c: PContext, n: PNode, s: PSym): PNode =
|
|
result = symChoice(c, n, s, scClosed)
|
|
|
|
proc inlineConst(n: PNode, s: PSym): PNode {.inline.} =
|
|
result = copyTree(s.ast)
|
|
if result.isNil:
|
|
localError(n.info, "constant of type '" & typeToString(s.typ) & "' has no value")
|
|
result = newSymNode(s)
|
|
else:
|
|
result.typ = s.typ
|
|
result.info = n.info
|
|
|
|
type
|
|
TConvStatus = enum
|
|
convOK,
|
|
convNotNeedeed,
|
|
convNotLegal
|
|
|
|
proc checkConversionBetweenObjects(castDest, src: PType; pointers: int): TConvStatus =
|
|
let diff = inheritanceDiff(castDest, src)
|
|
return if diff == high(int) or (pointers > 1 and diff != 0):
|
|
convNotLegal
|
|
else:
|
|
convOK
|
|
|
|
const
|
|
IntegralTypes = {tyBool, tyEnum, tyChar, tyInt..tyUInt64}
|
|
|
|
proc checkConvertible(c: PContext, castDest, src: PType): TConvStatus =
|
|
result = convOK
|
|
if sameType(castDest, src) and castDest.sym == src.sym:
|
|
# don't annoy conversions that may be needed on another processor:
|
|
if castDest.kind notin IntegralTypes+{tyRange}:
|
|
result = convNotNeedeed
|
|
return
|
|
var d = skipTypes(castDest, abstractVar)
|
|
var s = skipTypes(src, abstractVar-{tyTypeDesc})
|
|
var pointers = 0
|
|
while (d != nil) and (d.kind in {tyPtr, tyRef}) and (d.kind == s.kind):
|
|
d = d.lastSon
|
|
s = s.lastSon
|
|
inc pointers
|
|
if d == nil:
|
|
result = convNotLegal
|
|
elif d.kind == tyObject and s.kind == tyObject:
|
|
result = checkConversionBetweenObjects(d, s, pointers)
|
|
elif (skipTypes(castDest, abstractVarRange).kind in IntegralTypes) and
|
|
(skipTypes(src, abstractVarRange-{tyTypeDesc}).kind in IntegralTypes):
|
|
# accept conversion between integral types
|
|
discard
|
|
else:
|
|
# we use d, s here to speed up that operation a bit:
|
|
case cmpTypes(c, d, s)
|
|
of isNone, isGeneric:
|
|
if not compareTypes(castDest, src, dcEqIgnoreDistinct):
|
|
result = convNotLegal
|
|
else:
|
|
discard
|
|
|
|
proc isCastable(dst, src: PType): bool =
|
|
## Checks whether the source type can be casted to the destination type.
|
|
## Casting is very unrestrictive; casts are allowed as long as
|
|
## castDest.size >= src.size, and typeAllowed(dst, skParam)
|
|
#const
|
|
# castableTypeKinds = {tyInt, tyPtr, tyRef, tyCstring, tyString,
|
|
# tySequence, tyPointer, tyNil, tyOpenArray,
|
|
# tyProc, tySet, tyEnum, tyBool, tyChar}
|
|
if skipTypes(dst, abstractInst-{tyOpenArray}).kind == tyOpenArray:
|
|
return false
|
|
var dstSize, srcSize: BiggestInt
|
|
|
|
dstSize = computeSize(dst)
|
|
srcSize = computeSize(src)
|
|
if dstSize < 0:
|
|
result = false
|
|
elif srcSize < 0:
|
|
result = false
|
|
elif typeAllowed(dst, skParam) != nil:
|
|
result = false
|
|
else:
|
|
result = (dstSize >= srcSize) or
|
|
(skipTypes(dst, abstractInst).kind in IntegralTypes) or
|
|
(skipTypes(src, abstractInst-{tyTypeDesc}).kind in IntegralTypes)
|
|
if result and src.kind == tyNil:
|
|
result = dst.size <= platform.ptrSize
|
|
|
|
proc isSymChoice(n: PNode): bool {.inline.} =
|
|
result = n.kind in nkSymChoices
|
|
|
|
proc maybeLiftType(t: var PType, c: PContext, info: TLineInfo) =
|
|
# XXX: liftParamType started to perform addDecl
|
|
# we could do that instead in semTypeNode by snooping for added
|
|
# gnrc. params, then it won't be necessary to open a new scope here
|
|
openScope(c)
|
|
var lifted = liftParamType(c, skType, newNodeI(nkArgList, info),
|
|
t, ":anon", info)
|
|
closeScope(c)
|
|
if lifted != nil: t = lifted
|
|
|
|
proc semConv(c: PContext, n: PNode): PNode =
|
|
if sonsLen(n) != 2:
|
|
localError(n.info, errConvNeedsOneArg)
|
|
return n
|
|
|
|
result = newNodeI(nkConv, n.info)
|
|
var targetType = semTypeNode(c, n.sons[0], nil).skipTypes({tyTypeDesc})
|
|
maybeLiftType(targetType, c, n[0].info)
|
|
result.addSon copyTree(n.sons[0])
|
|
var op = semExprWithType(c, n.sons[1])
|
|
|
|
if targetType.isMetaType:
|
|
let final = inferWithMetatype(c, targetType, op, true)
|
|
result.addSon final
|
|
result.typ = final.typ
|
|
return
|
|
|
|
result.typ = targetType
|
|
addSon(result, op)
|
|
|
|
if not isSymChoice(op):
|
|
let status = checkConvertible(c, result.typ, op.typ)
|
|
case status
|
|
of convOK:
|
|
# handle SomeProcType(SomeGenericProc)
|
|
# XXX: This needs fixing. checkConvertible uses typeRel internally, but
|
|
# doesn't bother to perform the work done in paramTypeMatchAux/fitNode
|
|
# so we are redoing the typeRel work here. Why does semConv exist as a
|
|
# separate proc from fitNode?
|
|
if op.kind == nkSym and op.sym.isGenericRoutine:
|
|
result.sons[1] = fitNode(c, result.typ, result.sons[1])
|
|
of convNotNeedeed:
|
|
message(n.info, hintConvFromXtoItselfNotNeeded, result.typ.typeToString)
|
|
of convNotLegal:
|
|
localError(n.info, errGenerated, msgKindToString(errIllegalConvFromXtoY)%
|
|
[op.typ.typeToString, result.typ.typeToString])
|
|
else:
|
|
for i in countup(0, sonsLen(op) - 1):
|
|
let it = op.sons[i]
|
|
let status = checkConvertible(c, result.typ, it.typ)
|
|
if status in {convOK, convNotNeedeed}:
|
|
markUsed(n.info, it.sym)
|
|
styleCheckUse(n.info, it.sym)
|
|
markIndirect(c, it.sym)
|
|
return it
|
|
errorUseQualifier(c, n.info, op.sons[0].sym)
|
|
|
|
proc semCast(c: PContext, n: PNode): PNode =
|
|
## Semantically analyze a casting ("cast[type](param)")
|
|
checkSonsLen(n, 2)
|
|
result = newNodeI(nkCast, n.info)
|
|
result.typ = semTypeNode(c, n.sons[0], nil)
|
|
addSon(result, copyTree(n.sons[0]))
|
|
addSon(result, semExprWithType(c, n.sons[1]))
|
|
if not isCastable(result.typ, result.sons[1].typ):
|
|
localError(result.info, errExprCannotBeCastedToX,
|
|
typeToString(result.typ))
|
|
|
|
proc semLowHigh(c: PContext, n: PNode, m: TMagic): PNode =
|
|
const
|
|
opToStr: array[mLow..mHigh, string] = ["low", "high"]
|
|
if sonsLen(n) != 2:
|
|
localError(n.info, errXExpectsTypeOrValue, opToStr[m])
|
|
else:
|
|
n.sons[1] = semExprWithType(c, n.sons[1], {efDetermineType})
|
|
var typ = skipTypes(n.sons[1].typ, abstractVarRange +
|
|
{tyTypeDesc, tyFieldAccessor})
|
|
case typ.kind
|
|
of tySequence, tyString, tyCString, tyOpenArray, tyVarargs:
|
|
n.typ = getSysType(tyInt)
|
|
of tyArrayConstr, tyArray:
|
|
n.typ = typ.sons[0] # indextype
|
|
of tyInt..tyInt64, tyChar, tyBool, tyEnum, tyUInt8, tyUInt16, tyUInt32:
|
|
# do not skip the range!
|
|
n.typ = n.sons[1].typ.skipTypes(abstractVar + {tyFieldAccessor})
|
|
of tyGenericParam:
|
|
# prepare this for resolving in semtypinst:
|
|
# we must use copyTree here in order to avoid creating a cycle
|
|
# that could easily turn into an infinite recursion in semtypinst
|
|
n.typ = makeTypeFromExpr(c, n.copyTree)
|
|
else:
|
|
localError(n.info, errInvalidArgForX, opToStr[m])
|
|
result = n
|
|
|
|
proc semSizeof(c: PContext, n: PNode): PNode =
|
|
if sonsLen(n) != 2:
|
|
localError(n.info, errXExpectsTypeOrValue, "sizeof")
|
|
else:
|
|
n.sons[1] = semExprWithType(c, n.sons[1], {efDetermineType})
|
|
#restoreOldStyleType(n.sons[1])
|
|
n.typ = getSysType(tyInt)
|
|
result = n
|
|
|
|
proc semOf(c: PContext, n: PNode): PNode =
|
|
if sonsLen(n) == 3:
|
|
n.sons[1] = semExprWithType(c, n.sons[1])
|
|
n.sons[2] = semExprWithType(c, n.sons[2], {efDetermineType})
|
|
#restoreOldStyleType(n.sons[1])
|
|
#restoreOldStyleType(n.sons[2])
|
|
let a = skipTypes(n.sons[1].typ, abstractPtrs)
|
|
let b = skipTypes(n.sons[2].typ, abstractPtrs)
|
|
let x = skipTypes(n.sons[1].typ, abstractPtrs-{tyTypeDesc})
|
|
let y = skipTypes(n.sons[2].typ, abstractPtrs-{tyTypeDesc})
|
|
|
|
if x.kind == tyTypeDesc or y.kind != tyTypeDesc:
|
|
localError(n.info, errXExpectsObjectTypes, "of")
|
|
elif b.kind != tyObject or a.kind != tyObject:
|
|
localError(n.info, errXExpectsObjectTypes, "of")
|
|
else:
|
|
let diff = inheritanceDiff(a, b)
|
|
# | returns: 0 iff `a` == `b`
|
|
# | returns: -x iff `a` is the x'th direct superclass of `b`
|
|
# | returns: +x iff `a` is the x'th direct subclass of `b`
|
|
# | returns: `maxint` iff `a` and `b` are not compatible at all
|
|
if diff <= 0:
|
|
# optimize to true:
|
|
message(n.info, hintConditionAlwaysTrue, renderTree(n))
|
|
result = newIntNode(nkIntLit, 1)
|
|
result.info = n.info
|
|
result.typ = getSysType(tyBool)
|
|
return result
|
|
elif diff == high(int):
|
|
localError(n.info, errXcanNeverBeOfThisSubtype, typeToString(a))
|
|
else:
|
|
localError(n.info, errXExpectsTwoArguments, "of")
|
|
n.typ = getSysType(tyBool)
|
|
result = n
|
|
|
|
proc isOpImpl(c: PContext, n: PNode): PNode =
|
|
internalAssert n.sonsLen == 3 and
|
|
n[1].typ != nil and n[1].typ.kind == tyTypeDesc and
|
|
n[2].kind in {nkStrLit..nkTripleStrLit, nkType}
|
|
|
|
let t1 = n[1].typ.skipTypes({tyTypeDesc, tyFieldAccessor})
|
|
|
|
if n[2].kind in {nkStrLit..nkTripleStrLit}:
|
|
case n[2].strVal.normalize
|
|
of "closure":
|
|
let t = skipTypes(t1, abstractRange)
|
|
result = newIntNode(nkIntLit, ord(t.kind == tyProc and
|
|
t.callConv == ccClosure and
|
|
tfIterator notin t.flags))
|
|
else:
|
|
result = newIntNode(nkIntLit, 0)
|
|
else:
|
|
var t2 = n[2].typ.skipTypes({tyTypeDesc})
|
|
maybeLiftType(t2, c, n.info)
|
|
var m: TCandidate
|
|
initCandidate(c, m, t2)
|
|
let match = typeRel(m, t2, t1) >= isSubtype # isNone
|
|
result = newIntNode(nkIntLit, ord(match))
|
|
|
|
result.typ = n.typ
|
|
|
|
proc semIs(c: PContext, n: PNode): PNode =
|
|
if sonsLen(n) != 3:
|
|
localError(n.info, errXExpectsTwoArguments, "is")
|
|
|
|
result = n
|
|
n.typ = getSysType(tyBool)
|
|
|
|
n.sons[1] = semExprWithType(c, n[1], {efDetermineType, efWantIterator})
|
|
if n[2].kind notin {nkStrLit..nkTripleStrLit}:
|
|
let t2 = semTypeNode(c, n[2], nil)
|
|
n.sons[2] = newNodeIT(nkType, n[2].info, t2)
|
|
|
|
let lhsType = n[1].typ
|
|
if lhsType.kind != tyTypeDesc:
|
|
n.sons[1] = makeTypeSymNode(c, lhsType, n[1].info)
|
|
elif lhsType.base.kind == tyNone:
|
|
# this is a typedesc variable, leave for evals
|
|
return
|
|
|
|
# BUGFIX: don't evaluate this too early: ``T is void``
|
|
if not n[1].typ.base.containsGenericType: result = isOpImpl(c, n)
|
|
|
|
proc semOpAux(c: PContext, n: PNode) =
|
|
const flags = {efDetermineType}
|
|
for i in countup(1, n.sonsLen-1):
|
|
var a = n.sons[i]
|
|
if a.kind == nkExprEqExpr and sonsLen(a) == 2:
|
|
var info = a.sons[0].info
|
|
a.sons[0] = newIdentNode(considerQuotedIdent(a.sons[0]), info)
|
|
a.sons[1] = semExprWithType(c, a.sons[1], flags)
|
|
a.typ = a.sons[1].typ
|
|
else:
|
|
n.sons[i] = semExprWithType(c, a, flags)
|
|
|
|
proc overloadedCallOpr(c: PContext, n: PNode): PNode =
|
|
# quick check if there is *any* () operator overloaded:
|
|
var par = getIdent("()")
|
|
if searchInScopes(c, par) == nil:
|
|
result = nil
|
|
else:
|
|
result = newNodeI(nkCall, n.info)
|
|
addSon(result, newIdentNode(par, n.info))
|
|
for i in countup(0, sonsLen(n) - 1): addSon(result, n.sons[i])
|
|
result = semExpr(c, result)
|
|
|
|
proc changeType(n: PNode, newType: PType, check: bool) =
|
|
case n.kind
|
|
of nkCurly, nkBracket:
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
changeType(n.sons[i], elemType(newType), check)
|
|
of nkPar:
|
|
let tup = newType.skipTypes({tyGenericInst})
|
|
if tup.kind != tyTuple:
|
|
if tup.kind == tyObject: return
|
|
globalError(n.info, "no tuple type for constructor")
|
|
elif sonsLen(n) > 0 and n.sons[0].kind == nkExprColonExpr:
|
|
# named tuple?
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
var m = n.sons[i].sons[0]
|
|
if m.kind != nkSym:
|
|
globalError(m.info, "invalid tuple constructor")
|
|
return
|
|
if tup.n != nil:
|
|
var f = getSymFromList(tup.n, m.sym.name)
|
|
if f == nil:
|
|
globalError(m.info, "unknown identifier: " & m.sym.name.s)
|
|
return
|
|
changeType(n.sons[i].sons[1], f.typ, check)
|
|
else:
|
|
changeType(n.sons[i].sons[1], tup.sons[i], check)
|
|
else:
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
changeType(n.sons[i], tup.sons[i], check)
|
|
when false:
|
|
var m = n.sons[i]
|
|
var a = newNodeIT(nkExprColonExpr, m.info, newType.sons[i])
|
|
addSon(a, newSymNode(newType.n.sons[i].sym))
|
|
addSon(a, m)
|
|
changeType(m, tup.sons[i], check)
|
|
of nkCharLit..nkUInt64Lit:
|
|
if check and n.kind != nkUInt64Lit:
|
|
let value = n.intVal
|
|
if value < firstOrd(newType) or value > lastOrd(newType):
|
|
localError(n.info, errGenerated, "cannot convert " & $value &
|
|
" to " & typeToString(newType))
|
|
else: discard
|
|
n.typ = newType
|
|
|
|
proc arrayConstrType(c: PContext, n: PNode): PType =
|
|
var typ = newTypeS(tyArrayConstr, c)
|
|
rawAddSon(typ, nil) # index type
|
|
if sonsLen(n) == 0:
|
|
rawAddSon(typ, newTypeS(tyEmpty, c)) # needs an empty basetype!
|
|
else:
|
|
var x = n.sons[0]
|
|
var lastIndex: BiggestInt = sonsLen(n) - 1
|
|
var t = skipTypes(n.sons[0].typ, {tyGenericInst, tyVar, tyOrdinal})
|
|
addSonSkipIntLit(typ, t)
|
|
typ.sons[0] = makeRangeType(c, 0, sonsLen(n) - 1, n.info)
|
|
result = typ
|
|
|
|
proc semArrayConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
result = newNodeI(nkBracket, n.info)
|
|
result.typ = newTypeS(tyArrayConstr, c)
|
|
rawAddSon(result.typ, nil) # index type
|
|
if sonsLen(n) == 0:
|
|
rawAddSon(result.typ, newTypeS(tyEmpty, c)) # needs an empty basetype!
|
|
else:
|
|
var x = n.sons[0]
|
|
var lastIndex: BiggestInt = 0
|
|
var indexType = getSysType(tyInt)
|
|
if x.kind == nkExprColonExpr and sonsLen(x) == 2:
|
|
var idx = semConstExpr(c, x.sons[0])
|
|
lastIndex = getOrdValue(idx)
|
|
indexType = idx.typ
|
|
x = x.sons[1]
|
|
|
|
let yy = semExprWithType(c, x)
|
|
var typ = yy.typ
|
|
addSon(result, yy)
|
|
#var typ = skipTypes(result.sons[0].typ, {tyGenericInst, tyVar, tyOrdinal})
|
|
for i in countup(1, sonsLen(n) - 1):
|
|
x = n.sons[i]
|
|
if x.kind == nkExprColonExpr and sonsLen(x) == 2:
|
|
var idx = semConstExpr(c, x.sons[0])
|
|
idx = fitNode(c, indexType, idx)
|
|
if lastIndex+1 != getOrdValue(idx):
|
|
localError(x.info, errInvalidOrderInArrayConstructor)
|
|
x = x.sons[1]
|
|
|
|
let xx = semExprWithType(c, x, flags*{efAllowDestructor})
|
|
result.add xx
|
|
typ = commonType(typ, xx.typ)
|
|
#n.sons[i] = semExprWithType(c, x, flags*{efAllowDestructor})
|
|
#addSon(result, fitNode(c, typ, n.sons[i]))
|
|
inc(lastIndex)
|
|
addSonSkipIntLit(result.typ, typ)
|
|
for i in 0 .. <result.len:
|
|
result.sons[i] = fitNode(c, typ, result.sons[i])
|
|
result.typ.sons[0] = makeRangeType(c, 0, sonsLen(result) - 1, n.info)
|
|
|
|
proc fixAbstractType(c: PContext, n: PNode) =
|
|
for i in 1 .. < n.len:
|
|
let it = n.sons[i]
|
|
# do not get rid of nkHiddenSubConv for OpenArrays, the codegen needs it:
|
|
if it.kind == nkHiddenSubConv and
|
|
skipTypes(it.typ, abstractVar).kind notin {tyOpenArray, tyVarargs}:
|
|
if skipTypes(it.sons[1].typ, abstractVar).kind in
|
|
{tyNil, tyArrayConstr, tyTuple, tySet}:
|
|
var s = skipTypes(it.typ, abstractVar)
|
|
if s.kind != tyExpr:
|
|
changeType(it.sons[1], s, check=true)
|
|
n.sons[i] = it.sons[1]
|
|
when false:
|
|
# XXX finally rewrite that crap!
|
|
for i in countup(1, sonsLen(n) - 1):
|
|
var it = n.sons[i]
|
|
case it.kind
|
|
of nkHiddenStdConv, nkHiddenSubConv:
|
|
if it.sons[1].kind == nkBracket:
|
|
it.sons[1].typ = arrayConstrType(c, it.sons[1])
|
|
#it.sons[1] = semArrayConstr(c, it.sons[1])
|
|
if skipTypes(it.typ, abstractVar).kind in {tyOpenArray, tyVarargs}:
|
|
#if n.sons[0].kind == nkSym and IdentEq(n.sons[0].sym.name, "[]="):
|
|
# debug(n)
|
|
|
|
var s = skipTypes(it.sons[1].typ, abstractVar)
|
|
if s.kind == tyArrayConstr and s.sons[1].kind == tyEmpty:
|
|
s = copyType(s, getCurrOwner(), false)
|
|
skipTypes(s, abstractVar).sons[1] = elemType(
|
|
skipTypes(it.typ, abstractVar))
|
|
it.sons[1].typ = s
|
|
elif s.kind == tySequence and s.sons[0].kind == tyEmpty:
|
|
s = copyType(s, getCurrOwner(), false)
|
|
skipTypes(s, abstractVar).sons[0] = elemType(
|
|
skipTypes(it.typ, abstractVar))
|
|
it.sons[1].typ = s
|
|
|
|
elif skipTypes(it.sons[1].typ, abstractVar).kind in
|
|
{tyNil, tyArrayConstr, tyTuple, tySet}:
|
|
var s = skipTypes(it.typ, abstractVar)
|
|
if s.kind != tyExpr:
|
|
changeType(it.sons[1], s, check=true)
|
|
n.sons[i] = it.sons[1]
|
|
of nkBracket:
|
|
# an implicitly constructed array (passed to an open array):
|
|
n.sons[i] = semArrayConstr(c, it, {})
|
|
else:
|
|
discard
|
|
#if (it.typ == nil):
|
|
# InternalError(it.info, "fixAbstractType: " & renderTree(it))
|
|
|
|
proc skipObjConv(n: PNode): PNode =
|
|
case n.kind
|
|
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
|
|
if skipTypes(n.sons[1].typ, abstractPtrs).kind in {tyTuple, tyObject}:
|
|
result = n.sons[1]
|
|
else:
|
|
result = n
|
|
of nkObjUpConv, nkObjDownConv: result = n.sons[0]
|
|
else: result = n
|
|
|
|
proc isAssignable(c: PContext, n: PNode; isUnsafeAddr=false): TAssignableResult =
|
|
result = parampatterns.isAssignable(c.p.owner, n, isUnsafeAddr)
|
|
|
|
proc newHiddenAddrTaken(c: PContext, n: PNode): PNode =
|
|
if n.kind == nkHiddenDeref and not (gCmd == cmdCompileToCpp or
|
|
sfCompileToCpp in c.module.flags):
|
|
checkSonsLen(n, 1)
|
|
result = n.sons[0]
|
|
else:
|
|
result = newNodeIT(nkHiddenAddr, n.info, makeVarType(c, n.typ))
|
|
addSon(result, n)
|
|
if isAssignable(c, n) notin {arLValue, arLocalLValue}:
|
|
localError(n.info, errVarForOutParamNeeded)
|
|
|
|
proc analyseIfAddressTaken(c: PContext, n: PNode): PNode =
|
|
result = n
|
|
case n.kind
|
|
of nkSym:
|
|
# n.sym.typ can be nil in 'check' mode ...
|
|
if n.sym.typ != nil and
|
|
skipTypes(n.sym.typ, abstractInst-{tyTypeDesc}).kind != tyVar:
|
|
incl(n.sym.flags, sfAddrTaken)
|
|
result = newHiddenAddrTaken(c, n)
|
|
of nkDotExpr:
|
|
checkSonsLen(n, 2)
|
|
if n.sons[1].kind != nkSym:
|
|
internalError(n.info, "analyseIfAddressTaken")
|
|
return
|
|
if skipTypes(n.sons[1].sym.typ, abstractInst-{tyTypeDesc}).kind != tyVar:
|
|
incl(n.sons[1].sym.flags, sfAddrTaken)
|
|
result = newHiddenAddrTaken(c, n)
|
|
of nkBracketExpr:
|
|
checkMinSonsLen(n, 1)
|
|
if skipTypes(n.sons[0].typ, abstractInst-{tyTypeDesc}).kind != tyVar:
|
|
if n.sons[0].kind == nkSym: incl(n.sons[0].sym.flags, sfAddrTaken)
|
|
result = newHiddenAddrTaken(c, n)
|
|
else:
|
|
result = newHiddenAddrTaken(c, n)
|
|
|
|
proc analyseIfAddressTakenInCall(c: PContext, n: PNode) =
|
|
checkMinSonsLen(n, 1)
|
|
const
|
|
FakeVarParams = {mNew, mNewFinalize, mInc, ast.mDec, mIncl, mExcl,
|
|
mSetLengthStr, mSetLengthSeq, mAppendStrCh, mAppendStrStr, mSwap,
|
|
mAppendSeqElem, mNewSeq, mReset, mShallowCopy, mDeepCopy}
|
|
|
|
# get the real type of the callee
|
|
# it may be a proc var with a generic alias type, so we skip over them
|
|
var t = n.sons[0].typ.skipTypes({tyGenericInst})
|
|
|
|
if n.sons[0].kind == nkSym and n.sons[0].sym.magic in FakeVarParams:
|
|
# BUGFIX: check for L-Value still needs to be done for the arguments!
|
|
# note sometimes this is eval'ed twice so we check for nkHiddenAddr here:
|
|
for i in countup(1, sonsLen(n) - 1):
|
|
if i < sonsLen(t) and t.sons[i] != nil and
|
|
skipTypes(t.sons[i], abstractInst-{tyTypeDesc}).kind == tyVar:
|
|
if isAssignable(c, n.sons[i]) notin {arLValue, arLocalLValue}:
|
|
if n.sons[i].kind != nkHiddenAddr:
|
|
localError(n.sons[i].info, errVarForOutParamNeeded)
|
|
return
|
|
for i in countup(1, sonsLen(n) - 1):
|
|
if n.sons[i].kind == nkHiddenCallConv:
|
|
# we need to recurse explicitly here as converters can create nested
|
|
# calls and then they wouldn't be analysed otherwise
|
|
analyseIfAddressTakenInCall(c, n.sons[i])
|
|
semProcvarCheck(c, n.sons[i])
|
|
if i < sonsLen(t) and
|
|
skipTypes(t.sons[i], abstractInst-{tyTypeDesc}).kind == tyVar:
|
|
if n.sons[i].kind != nkHiddenAddr:
|
|
n.sons[i] = analyseIfAddressTaken(c, n.sons[i])
|
|
|
|
include semmagic
|
|
|
|
proc evalAtCompileTime(c: PContext, n: PNode): PNode =
|
|
result = n
|
|
if n.kind notin nkCallKinds or n.sons[0].kind != nkSym: return
|
|
var callee = n.sons[0].sym
|
|
|
|
# constant folding that is necessary for correctness of semantic pass:
|
|
if callee.magic != mNone and callee.magic in ctfeWhitelist and n.typ != nil:
|
|
var call = newNodeIT(nkCall, n.info, n.typ)
|
|
call.add(n.sons[0])
|
|
var allConst = true
|
|
for i in 1 .. < n.len:
|
|
var a = getConstExpr(c.module, n.sons[i])
|
|
if a == nil:
|
|
allConst = false
|
|
a = n.sons[i]
|
|
if a.kind == nkHiddenStdConv: a = a.sons[1]
|
|
call.add(a)
|
|
if allConst:
|
|
result = semfold.getConstExpr(c.module, call)
|
|
if result.isNil: result = n
|
|
else: return result
|
|
result.typ = semfold.getIntervalType(callee.magic, call)
|
|
|
|
block maybeLabelAsStatic:
|
|
# XXX: temporary work-around needed for tlateboundstatic.
|
|
# This is certainly not correct, but it will get the job
|
|
# done until we have a more robust infrastructure for
|
|
# implicit statics.
|
|
if n.len > 1:
|
|
for i in 1 .. <n.len:
|
|
# see bug #2113, it's possible that n[i].typ for errornous code:
|
|
if n[i].typ.isNil or n[i].typ.kind != tyStatic or
|
|
tfUnresolved notin n[i].typ.flags:
|
|
break maybeLabelAsStatic
|
|
n.typ = newTypeWithSons(c, tyStatic, @[n.typ])
|
|
n.typ.flags.incl tfUnresolved
|
|
|
|
# optimization pass: not necessary for correctness of the semantic pass
|
|
if {sfNoSideEffect, sfCompileTime} * callee.flags != {} and
|
|
{sfForward, sfImportc} * callee.flags == {} and n.typ != nil:
|
|
if sfCompileTime notin callee.flags and
|
|
optImplicitStatic notin gOptions: return
|
|
|
|
if callee.magic notin ctfeWhitelist: return
|
|
if callee.kind notin {skProc, skConverter} or callee.isGenericRoutine:
|
|
return
|
|
|
|
if n.typ != nil and typeAllowed(n.typ, skConst) != nil: return
|
|
|
|
var call = newNodeIT(nkCall, n.info, n.typ)
|
|
call.add(n.sons[0])
|
|
for i in 1 .. < n.len:
|
|
let a = getConstExpr(c.module, n.sons[i])
|
|
if a == nil: return n
|
|
call.add(a)
|
|
#echo "NOW evaluating at compile time: ", call.renderTree
|
|
if sfCompileTime in callee.flags:
|
|
result = evalStaticExpr(c.module, call, c.p.owner)
|
|
if result.isNil:
|
|
localError(n.info, errCannotInterpretNodeX, renderTree(call))
|
|
else: result = fixupTypeAfterEval(c, result, n)
|
|
else:
|
|
result = evalConstExpr(c.module, call)
|
|
if result.isNil: result = n
|
|
else: result = fixupTypeAfterEval(c, result, n)
|
|
#if result != n:
|
|
# echo "SUCCESS evaluated at compile time: ", call.renderTree
|
|
|
|
proc semStaticExpr(c: PContext, n: PNode): PNode =
|
|
let a = semExpr(c, n.sons[0])
|
|
result = evalStaticExpr(c.module, a, c.p.owner)
|
|
if result.isNil:
|
|
localError(n.info, errCannotInterpretNodeX, renderTree(n))
|
|
result = emptyNode
|
|
else:
|
|
result = fixupTypeAfterEval(c, result, a)
|
|
|
|
proc semOverloadedCallAnalyseEffects(c: PContext, n: PNode, nOrig: PNode,
|
|
flags: TExprFlags): PNode =
|
|
if flags*{efInTypeof, efWantIterator} != {}:
|
|
# consider: 'for x in pReturningArray()' --> we don't want the restriction
|
|
# to 'skIterator' anymore; skIterator is preferred in sigmatch already
|
|
# for typeof support.
|
|
# for ``type(countup(1,3))``, see ``tests/ttoseq``.
|
|
result = semOverloadedCall(c, n, nOrig,
|
|
{skProc, skMethod, skConverter, skMacro, skTemplate, skIterator})
|
|
else:
|
|
result = semOverloadedCall(c, n, nOrig,
|
|
{skProc, skMethod, skConverter, skMacro, skTemplate})
|
|
|
|
if result != nil:
|
|
if result.sons[0].kind != nkSym:
|
|
internalError("semOverloadedCallAnalyseEffects")
|
|
return
|
|
let callee = result.sons[0].sym
|
|
case callee.kind
|
|
of skMacro, skTemplate: discard
|
|
else:
|
|
if callee.kind == skIterator and callee.id == c.p.owner.id:
|
|
localError(n.info, errRecursiveDependencyX, callee.name.s)
|
|
# error correction, prevents endless for loop elimination in transf.
|
|
# See bug #2051:
|
|
result.sons[0] = newSymNode(errorSym(c, n))
|
|
if sfNoSideEffect notin callee.flags:
|
|
if {sfImportc, sfSideEffect} * callee.flags != {}:
|
|
incl(c.p.owner.flags, sfSideEffect)
|
|
|
|
proc semObjConstr(c: PContext, n: PNode, flags: TExprFlags): PNode
|
|
|
|
proc resolveIndirectCall(c: PContext; n, nOrig: PNode;
|
|
t: PType): TCandidate =
|
|
initCandidate(c, result, t)
|
|
matches(c, n, nOrig, result)
|
|
if result.state != csMatch:
|
|
# try to deref the first argument:
|
|
if experimentalMode(c) and canDeref(n):
|
|
n.sons[1] = n.sons[1].tryDeref
|
|
initCandidate(c, result, t)
|
|
matches(c, n, nOrig, result)
|
|
|
|
proc semIndirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
result = nil
|
|
checkMinSonsLen(n, 1)
|
|
var prc = n.sons[0]
|
|
if n.sons[0].kind == nkDotExpr:
|
|
checkSonsLen(n.sons[0], 2)
|
|
n.sons[0] = semFieldAccess(c, n.sons[0])
|
|
if n.sons[0].kind == nkDotCall:
|
|
# it is a static call!
|
|
result = n.sons[0]
|
|
result.kind = nkCall
|
|
result.flags.incl nfExplicitCall
|
|
for i in countup(1, sonsLen(n) - 1): addSon(result, n.sons[i])
|
|
return semExpr(c, result, flags)
|
|
else:
|
|
n.sons[0] = semExpr(c, n.sons[0])
|
|
let t = n.sons[0].typ
|
|
if t != nil and t.kind == tyVar:
|
|
n.sons[0] = newDeref(n.sons[0])
|
|
let nOrig = n.copyTree
|
|
semOpAux(c, n)
|
|
var t: PType = nil
|
|
if n.sons[0].typ != nil:
|
|
t = skipTypes(n.sons[0].typ, abstractInst-{tyTypeDesc})
|
|
if t != nil and t.kind == tyProc:
|
|
# This is a proc variable, apply normal overload resolution
|
|
let m = resolveIndirectCall(c, n, nOrig, t)
|
|
if m.state != csMatch:
|
|
if c.compilesContextId > 0:
|
|
# speed up error generation:
|
|
globalError(n.info, errTypeMismatch, "")
|
|
return emptyNode
|
|
else:
|
|
var hasErrorType = false
|
|
var msg = msgKindToString(errTypeMismatch)
|
|
for i in countup(1, sonsLen(n) - 1):
|
|
if i > 1: add(msg, ", ")
|
|
let nt = n.sons[i].typ
|
|
add(msg, typeToString(nt))
|
|
if nt.kind == tyError:
|
|
hasErrorType = true
|
|
break
|
|
if not hasErrorType:
|
|
add(msg, ")\n" & msgKindToString(errButExpected) & "\n" &
|
|
typeToString(n.sons[0].typ))
|
|
localError(n.info, errGenerated, msg)
|
|
return errorNode(c, n)
|
|
result = nil
|
|
else:
|
|
result = m.call
|
|
instGenericConvertersSons(c, result, m)
|
|
# we assume that a procedure that calls something indirectly
|
|
# has side-effects:
|
|
if tfNoSideEffect notin t.flags: incl(c.p.owner.flags, sfSideEffect)
|
|
elif t != nil and t.kind == tyTypeDesc:
|
|
if n.len == 1: return semObjConstr(c, n, flags)
|
|
return semConv(c, n)
|
|
else:
|
|
result = overloadedCallOpr(c, n)
|
|
# Now that nkSym does not imply an iteration over the proc/iterator space,
|
|
# the old ``prc`` (which is likely an nkIdent) has to be restored:
|
|
if result == nil:
|
|
# XXX: hmm, what kind of symbols will end up here?
|
|
# do we really need to try the overload resolution?
|
|
n.sons[0] = prc
|
|
nOrig.sons[0] = prc
|
|
n.flags.incl nfExprCall
|
|
result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
|
|
if result == nil: return errorNode(c, n)
|
|
elif result.kind notin nkCallKinds:
|
|
# the semExpr() in overloadedCallOpr can even break this condition!
|
|
# See bug #904 of how to trigger it:
|
|
return result
|
|
#result = afterCallActions(c, result, nOrig, flags)
|
|
fixAbstractType(c, result)
|
|
analyseIfAddressTakenInCall(c, result)
|
|
if result.sons[0].kind == nkSym and result.sons[0].sym.magic != mNone:
|
|
result = magicsAfterOverloadResolution(c, result, flags)
|
|
result = evalAtCompileTime(c, result)
|
|
|
|
proc afterCallActions(c: PContext; n, orig: PNode, flags: TExprFlags): PNode =
|
|
result = n
|
|
let callee = result.sons[0].sym
|
|
case callee.kind
|
|
of skMacro: result = semMacroExpr(c, result, orig, callee, flags)
|
|
of skTemplate: result = semTemplateExpr(c, result, callee, flags)
|
|
else:
|
|
semFinishOperands(c, result)
|
|
activate(c, result)
|
|
fixAbstractType(c, result)
|
|
analyseIfAddressTakenInCall(c, result)
|
|
if callee.magic != mNone:
|
|
result = magicsAfterOverloadResolution(c, result, flags)
|
|
if c.inTypeClass == 0:
|
|
result = evalAtCompileTime(c, result)
|
|
|
|
proc semDirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
# this seems to be a hotspot in the compiler!
|
|
let nOrig = n.copyTree
|
|
#semLazyOpAux(c, n)
|
|
result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
|
|
if result != nil: result = afterCallActions(c, result, nOrig, flags)
|
|
else: result = errorNode(c, n)
|
|
|
|
proc buildEchoStmt(c: PContext, n: PNode): PNode =
|
|
# we MUST not check 'n' for semantics again here! But for now we give up:
|
|
result = newNodeI(nkCall, n.info)
|
|
var e = strTableGet(magicsys.systemModule.tab, getIdent"echo")
|
|
if e != nil:
|
|
add(result, newSymNode(e))
|
|
else:
|
|
localError(n.info, errSystemNeeds, "echo")
|
|
add(result, errorNode(c, n))
|
|
add(result, n)
|
|
result = semExpr(c, result)
|
|
|
|
proc semExprNoType(c: PContext, n: PNode): PNode =
|
|
result = semExpr(c, n, {efWantStmt})
|
|
discardCheck(c, result)
|
|
|
|
proc isTypeExpr(n: PNode): bool =
|
|
case n.kind
|
|
of nkType, nkTypeOfExpr: result = true
|
|
of nkSym: result = n.sym.kind == skType
|
|
else: result = false
|
|
|
|
proc createSetType(c: PContext; baseType: PType): PType =
|
|
assert baseType != nil
|
|
result = newTypeS(tySet, c)
|
|
rawAddSon(result, baseType)
|
|
|
|
proc lookupInRecordAndBuildCheck(c: PContext, n, r: PNode, field: PIdent,
|
|
check: var PNode): PSym =
|
|
# transform in a node that contains the runtime check for the
|
|
# field, if it is in a case-part...
|
|
result = nil
|
|
case r.kind
|
|
of nkRecList:
|
|
for i in countup(0, sonsLen(r) - 1):
|
|
result = lookupInRecordAndBuildCheck(c, n, r.sons[i], field, check)
|
|
if result != nil: return
|
|
of nkRecCase:
|
|
checkMinSonsLen(r, 2)
|
|
if (r.sons[0].kind != nkSym): illFormedAst(r)
|
|
result = lookupInRecordAndBuildCheck(c, n, r.sons[0], field, check)
|
|
if result != nil: return
|
|
let setType = createSetType(c, r.sons[0].typ)
|
|
var s = newNodeIT(nkCurly, r.info, setType)
|
|
for i in countup(1, sonsLen(r) - 1):
|
|
var it = r.sons[i]
|
|
case it.kind
|
|
of nkOfBranch:
|
|
result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
|
|
if result == nil:
|
|
for j in 0..sonsLen(it)-2: addSon(s, copyTree(it.sons[j]))
|
|
else:
|
|
if check == nil:
|
|
check = newNodeI(nkCheckedFieldExpr, n.info)
|
|
addSon(check, ast.emptyNode) # make space for access node
|
|
s = newNodeIT(nkCurly, n.info, setType)
|
|
for j in countup(0, sonsLen(it) - 2): addSon(s, copyTree(it.sons[j]))
|
|
var inExpr = newNodeIT(nkCall, n.info, getSysType(tyBool))
|
|
addSon(inExpr, newSymNode(ast.opContains, n.info))
|
|
addSon(inExpr, s)
|
|
addSon(inExpr, copyTree(r.sons[0]))
|
|
addSon(check, inExpr)
|
|
#addSon(check, semExpr(c, inExpr))
|
|
return
|
|
of nkElse:
|
|
result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
|
|
if result != nil:
|
|
if check == nil:
|
|
check = newNodeI(nkCheckedFieldExpr, n.info)
|
|
addSon(check, ast.emptyNode) # make space for access node
|
|
var inExpr = newNodeIT(nkCall, n.info, getSysType(tyBool))
|
|
addSon(inExpr, newSymNode(ast.opContains, n.info))
|
|
addSon(inExpr, s)
|
|
addSon(inExpr, copyTree(r.sons[0]))
|
|
var notExpr = newNodeIT(nkCall, n.info, getSysType(tyBool))
|
|
addSon(notExpr, newSymNode(ast.opNot, n.info))
|
|
addSon(notExpr, inExpr)
|
|
addSon(check, notExpr)
|
|
return
|
|
else: illFormedAst(it)
|
|
of nkSym:
|
|
if r.sym.name.id == field.id: result = r.sym
|
|
else: illFormedAst(n)
|
|
|
|
proc makeDeref(n: PNode): PNode =
|
|
var t = skipTypes(n.typ, {tyGenericInst})
|
|
result = n
|
|
if t.kind == tyVar:
|
|
result = newNodeIT(nkHiddenDeref, n.info, t.sons[0])
|
|
addSon(result, n)
|
|
t = skipTypes(t.sons[0], {tyGenericInst})
|
|
while t.kind in {tyPtr, tyRef}:
|
|
var a = result
|
|
let baseTyp = t.lastSon
|
|
result = newNodeIT(nkHiddenDeref, n.info, baseTyp)
|
|
addSon(result, a)
|
|
t = skipTypes(baseTyp, {tyGenericInst})
|
|
|
|
const
|
|
tyTypeParamsHolders = {tyGenericInst, tyCompositeTypeClass}
|
|
tyDotOpTransparent = {tyVar, tyPtr, tyRef}
|
|
|
|
proc readTypeParameter(c: PContext, typ: PType,
|
|
paramName: PIdent, info: TLineInfo): PNode =
|
|
let ty = if typ.kind == tyGenericInst: typ.skipGenericAlias
|
|
else: (internalAssert(typ.kind == tyCompositeTypeClass);
|
|
typ.sons[1].skipGenericAlias)
|
|
let tbody = ty.sons[0]
|
|
for s in countup(0, tbody.len-2):
|
|
let tParam = tbody.sons[s]
|
|
if tParam.sym.name.id == paramName.id:
|
|
let rawTyp = ty.sons[s + 1]
|
|
if rawTyp.kind == tyStatic:
|
|
return rawTyp.n
|
|
else:
|
|
let foundTyp = makeTypeDesc(c, rawTyp)
|
|
return newSymNode(copySym(tParam.sym).linkTo(foundTyp), info)
|
|
#echo "came here: returned nil"
|
|
|
|
proc semSym(c: PContext, n: PNode, s: PSym, flags: TExprFlags): PNode =
|
|
case s.kind
|
|
of skConst:
|
|
markUsed(n.info, s)
|
|
styleCheckUse(n.info, s)
|
|
case skipTypes(s.typ, abstractInst-{tyTypeDesc}).kind
|
|
of tyNil, tyChar, tyInt..tyInt64, tyFloat..tyFloat128,
|
|
tyTuple, tySet, tyUInt..tyUInt64:
|
|
if s.magic == mNone: result = inlineConst(n, s)
|
|
else: result = newSymNode(s, n.info)
|
|
of tyArrayConstr, tySequence:
|
|
# Consider::
|
|
# const x = []
|
|
# proc p(a: openarray[int])
|
|
# proc q(a: openarray[char])
|
|
# p(x)
|
|
# q(x)
|
|
#
|
|
# It is clear that ``[]`` means two totally different things. Thus, we
|
|
# copy `x`'s AST into each context, so that the type fixup phase can
|
|
# deal with two different ``[]``.
|
|
if s.ast.len == 0: result = inlineConst(n, s)
|
|
else: result = newSymNode(s, n.info)
|
|
else:
|
|
result = newSymNode(s, n.info)
|
|
of skMacro: result = semMacroExpr(c, n, n, s, flags)
|
|
of skTemplate: result = semTemplateExpr(c, n, s, flags)
|
|
of skParam:
|
|
markUsed(n.info, s)
|
|
styleCheckUse(n.info, s)
|
|
if s.typ.kind == tyStatic and s.typ.n != nil:
|
|
# XXX see the hack in sigmatch.nim ...
|
|
return s.typ.n
|
|
elif sfGenSym in s.flags:
|
|
if c.p.wasForwarded:
|
|
# gensym'ed parameters that nevertheless have been forward declared
|
|
# need a special fixup:
|
|
let realParam = c.p.owner.typ.n[s.position+1]
|
|
internalAssert realParam.kind == nkSym and realParam.sym.kind == skParam
|
|
return newSymNode(c.p.owner.typ.n[s.position+1].sym, n.info)
|
|
elif c.p.owner.kind == skMacro:
|
|
# gensym'ed macro parameters need a similar hack (see bug #1944):
|
|
var u = searchInScopes(c, s.name)
|
|
internalAssert u != nil and u.kind == skParam and u.owner == s.owner
|
|
return newSymNode(u, n.info)
|
|
result = newSymNode(s, n.info)
|
|
of skVar, skLet, skResult, skForVar:
|
|
if s.magic == mNimvm:
|
|
localError(n.info, "illegal context for 'nimvm' magic")
|
|
|
|
markUsed(n.info, s)
|
|
styleCheckUse(n.info, s)
|
|
# if a proc accesses a global variable, it is not side effect free:
|
|
if sfGlobal in s.flags:
|
|
incl(c.p.owner.flags, sfSideEffect)
|
|
result = newSymNode(s, n.info)
|
|
# We cannot check for access to outer vars for example because it's still
|
|
# not sure the symbol really ends up being used:
|
|
# var len = 0 # but won't be called
|
|
# genericThatUsesLen(x) # marked as taking a closure?
|
|
of skGenericParam:
|
|
styleCheckUse(n.info, s)
|
|
if s.typ.kind == tyStatic:
|
|
result = newSymNode(s, n.info)
|
|
result.typ = s.typ
|
|
elif s.ast != nil:
|
|
result = semExpr(c, s.ast)
|
|
else:
|
|
n.typ = s.typ
|
|
return n
|
|
of skType:
|
|
markUsed(n.info, s)
|
|
styleCheckUse(n.info, s)
|
|
if s.typ.kind == tyStatic and s.typ.n != nil:
|
|
return s.typ.n
|
|
result = newSymNode(s, n.info)
|
|
result.typ = makeTypeDesc(c, s.typ)
|
|
of skField:
|
|
if c.p != nil and c.p.selfSym != nil:
|
|
var ty = skipTypes(c.p.selfSym.typ, {tyGenericInst, tyVar, tyPtr, tyRef})
|
|
while tfBorrowDot in ty.flags: ty = ty.skipTypes({tyDistinct})
|
|
var check: PNode = nil
|
|
if ty.kind == tyObject:
|
|
while true:
|
|
check = nil
|
|
let f = lookupInRecordAndBuildCheck(c, n, ty.n, s.name, check)
|
|
if f != nil and fieldVisible(c, f):
|
|
# is the access to a public field or in the same module or in a friend?
|
|
doAssert f == s
|
|
markUsed(n.info, f)
|
|
styleCheckUse(n.info, f)
|
|
result = newNodeIT(nkDotExpr, n.info, f.typ)
|
|
result.add makeDeref(newSymNode(c.p.selfSym))
|
|
result.add newSymNode(f) # we now have the correct field
|
|
if check != nil:
|
|
check.sons[0] = result
|
|
check.typ = result.typ
|
|
result = check
|
|
return result
|
|
if ty.sons[0] == nil: break
|
|
ty = skipTypes(ty.sons[0], {tyGenericInst})
|
|
# old code, not sure if it's live code:
|
|
markUsed(n.info, s)
|
|
styleCheckUse(n.info, s)
|
|
result = newSymNode(s, n.info)
|
|
else:
|
|
markUsed(n.info, s)
|
|
styleCheckUse(n.info, s)
|
|
result = newSymNode(s, n.info)
|
|
|
|
proc builtinFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
## returns nil if it's not a built-in field access
|
|
checkSonsLen(n, 2)
|
|
# tests/bind/tbindoverload.nim wants an early exit here, but seems to
|
|
# work without now. template/tsymchoicefield doesn't like an early exit
|
|
# here at all!
|
|
#if isSymChoice(n.sons[1]): return
|
|
|
|
var s = qualifiedLookUp(c, n, {checkAmbiguity, checkUndeclared})
|
|
if s != nil:
|
|
if s.kind in OverloadableSyms:
|
|
result = symChoice(c, n, s, scClosed)
|
|
if result.kind == nkSym: result = semSym(c, n, s, flags)
|
|
else:
|
|
markUsed(n.sons[1].info, s)
|
|
result = semSym(c, n, s, flags)
|
|
styleCheckUse(n.sons[1].info, s)
|
|
return
|
|
|
|
n.sons[0] = semExprWithType(c, n.sons[0], flags+{efDetermineType})
|
|
#restoreOldStyleType(n.sons[0])
|
|
var i = considerQuotedIdent(n.sons[1])
|
|
var ty = n.sons[0].typ
|
|
var f: PSym = nil
|
|
result = nil
|
|
if isTypeExpr(n.sons[0]) or (ty.kind == tyTypeDesc and ty.base.kind != tyNone):
|
|
if ty.kind == tyTypeDesc: ty = ty.base
|
|
ty = ty.skipTypes(tyDotOpTransparent)
|
|
case ty.kind
|
|
of tyEnum:
|
|
# look up if the identifier belongs to the enum:
|
|
while ty != nil:
|
|
f = getSymFromList(ty.n, i)
|
|
if f != nil: break
|
|
ty = ty.sons[0] # enum inheritance
|
|
if f != nil:
|
|
result = newSymNode(f)
|
|
result.info = n.info
|
|
result.typ = ty
|
|
markUsed(n.info, f)
|
|
styleCheckUse(n.info, f)
|
|
return
|
|
of tyTypeParamsHolders:
|
|
return readTypeParameter(c, ty, i, n.info)
|
|
of tyObject, tyTuple:
|
|
if ty.n != nil and ty.n.kind == nkRecList:
|
|
for field in ty.n:
|
|
if field.sym.name == i:
|
|
n.typ = newTypeWithSons(c, tyFieldAccessor, @[ty, field.sym.typ])
|
|
n.typ.n = copyTree(n)
|
|
return n
|
|
else:
|
|
# echo "TYPE FIELD ACCESS"
|
|
# debug ty
|
|
return
|
|
# XXX: This is probably not relevant any more
|
|
# reset to prevent 'nil' bug: see "tests/reject/tenumitems.nim":
|
|
ty = n.sons[0].typ
|
|
return nil
|
|
ty = skipTypes(ty, {tyGenericInst, tyVar, tyPtr, tyRef})
|
|
while tfBorrowDot in ty.flags: ty = ty.skipTypes({tyDistinct})
|
|
var check: PNode = nil
|
|
if ty.kind == tyObject:
|
|
while true:
|
|
check = nil
|
|
f = lookupInRecordAndBuildCheck(c, n, ty.n, i, check)
|
|
if f != nil: break
|
|
if ty.sons[0] == nil: break
|
|
ty = skipTypes(ty.sons[0], {tyGenericInst})
|
|
if f != nil:
|
|
if fieldVisible(c, f):
|
|
# is the access to a public field or in the same module or in a friend?
|
|
markUsed(n.sons[1].info, f)
|
|
styleCheckUse(n.sons[1].info, f)
|
|
n.sons[0] = makeDeref(n.sons[0])
|
|
n.sons[1] = newSymNode(f) # we now have the correct field
|
|
n.typ = f.typ
|
|
if check == nil:
|
|
result = n
|
|
else:
|
|
check.sons[0] = n
|
|
check.typ = n.typ
|
|
result = check
|
|
elif ty.kind == tyTuple and ty.n != nil:
|
|
f = getSymFromList(ty.n, i)
|
|
if f != nil:
|
|
markUsed(n.sons[1].info, f)
|
|
styleCheckUse(n.sons[1].info, f)
|
|
n.sons[0] = makeDeref(n.sons[0])
|
|
n.sons[1] = newSymNode(f)
|
|
n.typ = f.typ
|
|
result = n
|
|
|
|
# we didn't find any field, let's look for a generic param
|
|
if result == nil:
|
|
let t = n.sons[0].typ.skipTypes(tyDotOpTransparent)
|
|
if t.kind in tyTypeParamsHolders:
|
|
result = readTypeParameter(c, t, i, n.info)
|
|
|
|
proc dotTransformation(c: PContext, n: PNode): PNode =
|
|
if isSymChoice(n.sons[1]):
|
|
result = newNodeI(nkDotCall, n.info)
|
|
addSon(result, n.sons[1])
|
|
addSon(result, copyTree(n[0]))
|
|
else:
|
|
var i = considerQuotedIdent(n.sons[1])
|
|
result = newNodeI(nkDotCall, n.info)
|
|
result.flags.incl nfDotField
|
|
addSon(result, newIdentNode(i, n[1].info))
|
|
addSon(result, copyTree(n[0]))
|
|
|
|
proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
# this is difficult, because the '.' is used in many different contexts
|
|
# in Nim. We first allow types in the semantic checking.
|
|
result = builtinFieldAccess(c, n, flags)
|
|
if result == nil:
|
|
result = dotTransformation(c, n)
|
|
|
|
proc buildOverloadedSubscripts(n: PNode, ident: PIdent): PNode =
|
|
result = newNodeI(nkCall, n.info)
|
|
result.add(newIdentNode(ident, n.info))
|
|
for i in 0 .. n.len-1: result.add(n[i])
|
|
|
|
proc semDeref(c: PContext, n: PNode): PNode =
|
|
checkSonsLen(n, 1)
|
|
n.sons[0] = semExprWithType(c, n.sons[0])
|
|
result = n
|
|
var t = skipTypes(n.sons[0].typ, {tyGenericInst, tyVar})
|
|
case t.kind
|
|
of tyRef, tyPtr: n.typ = t.lastSon
|
|
else: result = nil
|
|
#GlobalError(n.sons[0].info, errCircumNeedsPointer)
|
|
|
|
proc semSubscript(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
## returns nil if not a built-in subscript operator; also called for the
|
|
## checking of assignments
|
|
if sonsLen(n) == 1:
|
|
let x = semDeref(c, n)
|
|
if x == nil: return nil
|
|
result = newNodeIT(nkDerefExpr, x.info, x.typ)
|
|
result.add(x[0])
|
|
return
|
|
checkMinSonsLen(n, 2)
|
|
n.sons[0] = semExprWithType(c, n.sons[0], {efNoProcvarCheck})
|
|
let arr = skipTypes(n.sons[0].typ, {tyGenericInst, tyVar, tyPtr, tyRef})
|
|
case arr.kind
|
|
of tyArray, tyOpenArray, tyVarargs, tyArrayConstr, tySequence, tyString,
|
|
tyCString:
|
|
if n.len != 2: return nil
|
|
n.sons[0] = makeDeref(n.sons[0])
|
|
c.p.bracketExpr = n.sons[0]
|
|
for i in countup(1, sonsLen(n) - 1):
|
|
n.sons[i] = semExprWithType(c, n.sons[i],
|
|
flags*{efInTypeof, efDetermineType})
|
|
var indexType = if arr.kind == tyArray: arr.sons[0] else: getSysType(tyInt)
|
|
var arg = indexTypesMatch(c, indexType, n.sons[1].typ, n.sons[1])
|
|
if arg != nil:
|
|
n.sons[1] = arg
|
|
result = n
|
|
result.typ = elemType(arr)
|
|
#GlobalError(n.info, errIndexTypesDoNotMatch)
|
|
of tyTypeDesc:
|
|
# The result so far is a tyTypeDesc bound
|
|
# a tyGenericBody. The line below will substitute
|
|
# it with the instantiated type.
|
|
result = n
|
|
result.typ = makeTypeDesc(c, semTypeNode(c, n, nil))
|
|
#result = symNodeFromType(c, semTypeNode(c, n, nil), n.info)
|
|
of tyTuple:
|
|
checkSonsLen(n, 2)
|
|
n.sons[0] = makeDeref(n.sons[0])
|
|
c.p.bracketExpr = n.sons[0]
|
|
# [] operator for tuples requires constant expression:
|
|
n.sons[1] = semConstExpr(c, n.sons[1])
|
|
if skipTypes(n.sons[1].typ, {tyGenericInst, tyRange, tyOrdinal}).kind in
|
|
{tyInt..tyInt64}:
|
|
var idx = getOrdValue(n.sons[1])
|
|
if idx >= 0 and idx < sonsLen(arr): n.typ = arr.sons[int(idx)]
|
|
else: localError(n.info, errInvalidIndexValueForTuple)
|
|
else:
|
|
localError(n.info, errIndexTypesDoNotMatch)
|
|
result = n
|
|
else:
|
|
let s = if n.sons[0].kind == nkSym: n.sons[0].sym
|
|
elif n[0].kind in nkSymChoices: n.sons[0][0].sym
|
|
else: nil
|
|
if s != nil and s.kind in {skProc, skMethod, skConverter, skIterator}:
|
|
# type parameters: partial generic specialization
|
|
n.sons[0] = semSymGenericInstantiation(c, n.sons[0], s)
|
|
result = explicitGenericInstantiation(c, n, s)
|
|
elif s != nil and s.kind == skType:
|
|
result = symNodeFromType(c, semTypeNode(c, n, nil), n.info)
|
|
else:
|
|
c.p.bracketExpr = n.sons[0]
|
|
|
|
proc semArrayAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
let oldBracketExpr = c.p.bracketExpr
|
|
result = semSubscript(c, n, flags)
|
|
if result == nil:
|
|
# overloaded [] operator:
|
|
result = semExpr(c, buildOverloadedSubscripts(n, getIdent"[]"))
|
|
c.p.bracketExpr = oldBracketExpr
|
|
|
|
proc propertyWriteAccess(c: PContext, n, nOrig, a: PNode): PNode =
|
|
var id = considerQuotedIdent(a[1])
|
|
var setterId = newIdentNode(getIdent(id.s & '='), n.info)
|
|
# a[0] is already checked for semantics, that does ``builtinFieldAccess``
|
|
# this is ugly. XXX Semantic checking should use the ``nfSem`` flag for
|
|
# nodes?
|
|
let aOrig = nOrig[0]
|
|
result = newNode(nkCall, n.info, sons = @[setterId, a[0], semExpr(c, n[1])])
|
|
result.flags.incl nfDotSetter
|
|
let orig = newNode(nkCall, n.info, sons = @[setterId, aOrig[0], nOrig[1]])
|
|
result = semOverloadedCallAnalyseEffects(c, result, orig, {})
|
|
|
|
if result != nil:
|
|
result = afterCallActions(c, result, nOrig, {})
|
|
#fixAbstractType(c, result)
|
|
#analyseIfAddressTakenInCall(c, result)
|
|
|
|
proc takeImplicitAddr(c: PContext, n: PNode): PNode =
|
|
case n.kind
|
|
of nkHiddenAddr, nkAddr: return n
|
|
of nkHiddenDeref, nkDerefExpr: return n.sons[0]
|
|
of nkBracketExpr:
|
|
if len(n) == 1: return n.sons[0]
|
|
else: discard
|
|
var valid = isAssignable(c, n)
|
|
if valid != arLValue:
|
|
if valid == arLocalLValue:
|
|
localError(n.info, errXStackEscape, renderTree(n, {renderNoComments}))
|
|
else:
|
|
localError(n.info, errExprHasNoAddress)
|
|
result = newNodeIT(nkHiddenAddr, n.info, makePtrType(c, n.typ))
|
|
result.add(n)
|
|
|
|
proc asgnToResultVar(c: PContext, n, le, ri: PNode) {.inline.} =
|
|
if le.kind == nkHiddenDeref:
|
|
var x = le.sons[0]
|
|
if x.typ.kind == tyVar and x.kind == nkSym and x.sym.kind == skResult:
|
|
n.sons[0] = x # 'result[]' --> 'result'
|
|
n.sons[1] = takeImplicitAddr(c, ri)
|
|
x.typ.flags.incl tfVarIsPtr
|
|
|
|
template resultTypeIsInferrable(typ: PType): expr =
|
|
typ.isMetaType and typ.kind != tyTypeDesc
|
|
|
|
proc semAsgn(c: PContext, n: PNode; mode=asgnNormal): PNode =
|
|
checkSonsLen(n, 2)
|
|
var a = n.sons[0]
|
|
case a.kind
|
|
of nkDotExpr:
|
|
# r.f = x
|
|
# --> `f=` (r, x)
|
|
let nOrig = n.copyTree
|
|
a = builtinFieldAccess(c, a, {efLValue})
|
|
if a == nil:
|
|
a = propertyWriteAccess(c, n, nOrig, n[0])
|
|
if a != nil: return a
|
|
# we try without the '='; proc that return 'var' or macros are still
|
|
# possible:
|
|
a = dotTransformation(c, n[0])
|
|
if a.kind == nkDotCall:
|
|
a.kind = nkCall
|
|
a = semExprWithType(c, a, {efLValue})
|
|
of nkBracketExpr:
|
|
# a[i] = x
|
|
# --> `[]=`(a, i, x)
|
|
let oldBracketExpr = c.p.bracketExpr
|
|
a = semSubscript(c, a, {efLValue})
|
|
if a == nil and mode != noOverloadedSubscript:
|
|
result = buildOverloadedSubscripts(n.sons[0], getIdent"[]=")
|
|
add(result, n[1])
|
|
result = semExprNoType(c, result)
|
|
c.p.bracketExpr = oldBracketExpr
|
|
return result
|
|
elif a == nil:
|
|
localError(n.info, "could not resolve: " & $n[0])
|
|
return n
|
|
c.p.bracketExpr = oldBracketExpr
|
|
of nkCurlyExpr:
|
|
# a{i} = x --> `{}=`(a, i, x)
|
|
result = buildOverloadedSubscripts(n.sons[0], getIdent"{}=")
|
|
add(result, n[1])
|
|
return semExprNoType(c, result)
|
|
of nkPar:
|
|
if a.len >= 2:
|
|
# unfortunately we need to rewrite ``(x, y) = foo()`` already here so
|
|
# that overloading of the assignment operator still works. Usually we
|
|
# prefer to do these rewritings in transf.nim:
|
|
return semStmt(c, lowerTupleUnpackingForAsgn(n, c.p.owner))
|
|
else:
|
|
a = semExprWithType(c, a, {efLValue})
|
|
else:
|
|
a = semExprWithType(c, a, {efLValue})
|
|
n.sons[0] = a
|
|
# a = b # both are vars, means: a[] = b[]
|
|
# a = b # b no 'var T' means: a = addr(b)
|
|
var le = a.typ
|
|
if skipTypes(le, {tyGenericInst}).kind != tyVar and
|
|
isAssignable(c, a) == arNone:
|
|
# Direct assignment to a discriminant is allowed!
|
|
localError(a.info, errXCannotBeAssignedTo,
|
|
renderTree(a, {renderNoComments}))
|
|
else:
|
|
let
|
|
lhs = n.sons[0]
|
|
lhsIsResult = lhs.kind == nkSym and lhs.sym.kind == skResult
|
|
var
|
|
rhs = semExprWithType(c, n.sons[1],
|
|
if lhsIsResult: {efAllowDestructor} else: {})
|
|
if lhsIsResult:
|
|
n.typ = enforceVoidContext
|
|
if c.p.owner.kind != skMacro and resultTypeIsInferrable(lhs.sym.typ):
|
|
if cmpTypes(c, lhs.typ, rhs.typ) == isGeneric:
|
|
internalAssert c.p.resultSym != nil
|
|
lhs.typ = rhs.typ
|
|
c.p.resultSym.typ = rhs.typ
|
|
c.p.owner.typ.sons[0] = rhs.typ
|
|
else:
|
|
typeMismatch(n, lhs.typ, rhs.typ)
|
|
|
|
n.sons[1] = fitNode(c, le, rhs)
|
|
if tfHasAsgn in lhs.typ.flags and not lhsIsResult and
|
|
mode != noOverloadedAsgn:
|
|
return overloadedAsgn(c, lhs, n.sons[1])
|
|
|
|
fixAbstractType(c, n)
|
|
asgnToResultVar(c, n, n.sons[0], n.sons[1])
|
|
result = n
|
|
|
|
proc semReturn(c: PContext, n: PNode): PNode =
|
|
result = n
|
|
checkSonsLen(n, 1)
|
|
if c.p.owner.kind in {skConverter, skMethod, skProc, skMacro} or (
|
|
c.p.owner.kind == skIterator and c.p.owner.typ.callConv == ccClosure):
|
|
if n.sons[0].kind != nkEmpty:
|
|
# transform ``return expr`` to ``result = expr; return``
|
|
if c.p.resultSym != nil:
|
|
var a = newNodeI(nkAsgn, n.sons[0].info)
|
|
addSon(a, newSymNode(c.p.resultSym))
|
|
addSon(a, n.sons[0])
|
|
n.sons[0] = semAsgn(c, a)
|
|
# optimize away ``result = result``:
|
|
if n[0][1].kind == nkSym and n[0][1].sym == c.p.resultSym:
|
|
n.sons[0] = ast.emptyNode
|
|
else:
|
|
localError(n.info, errNoReturnTypeDeclared)
|
|
else:
|
|
localError(n.info, errXNotAllowedHere, "\'return\'")
|
|
|
|
proc semProcBody(c: PContext, n: PNode): PNode =
|
|
openScope(c)
|
|
|
|
result = semExpr(c, n)
|
|
if c.p.resultSym != nil and not isEmptyType(result.typ):
|
|
# transform ``expr`` to ``result = expr``, but not if the expr is already
|
|
# ``result``:
|
|
if result.kind == nkSym and result.sym == c.p.resultSym:
|
|
discard
|
|
elif result.kind == nkNilLit:
|
|
# or ImplicitlyDiscardable(result):
|
|
# new semantic: 'result = x' triggers the void context
|
|
result.typ = nil
|
|
elif result.kind == nkStmtListExpr and result.typ.kind == tyNil:
|
|
# to keep backwards compatibility bodies like:
|
|
# nil
|
|
# # comment
|
|
# are not expressions:
|
|
fixNilType(result)
|
|
else:
|
|
var a = newNodeI(nkAsgn, n.info, 2)
|
|
a.sons[0] = newSymNode(c.p.resultSym)
|
|
a.sons[1] = result
|
|
result = semAsgn(c, a)
|
|
else:
|
|
discardCheck(c, result)
|
|
|
|
if c.p.owner.kind notin {skMacro, skTemplate} and
|
|
c.p.resultSym != nil and c.p.resultSym.typ.isMetaType:
|
|
if isEmptyType(result.typ):
|
|
# we inferred a 'void' return type:
|
|
c.p.resultSym.typ = errorType(c)
|
|
c.p.owner.typ.sons[0] = nil
|
|
else:
|
|
localError(c.p.resultSym.info, errCannotInferReturnType)
|
|
|
|
closeScope(c)
|
|
|
|
proc semYieldVarResult(c: PContext, n: PNode, restype: PType) =
|
|
var t = skipTypes(restype, {tyGenericInst})
|
|
case t.kind
|
|
of tyVar:
|
|
n.sons[0] = takeImplicitAddr(c, n.sons[0])
|
|
of tyTuple:
|
|
for i in 0.. <t.sonsLen:
|
|
var e = skipTypes(t.sons[i], {tyGenericInst})
|
|
if e.kind == tyVar:
|
|
if n.sons[0].kind == nkPar:
|
|
n.sons[0].sons[i] = takeImplicitAddr(c, n.sons[0].sons[i])
|
|
elif n.sons[0].kind in {nkHiddenStdConv, nkHiddenSubConv} and
|
|
n.sons[0].sons[1].kind == nkPar:
|
|
var a = n.sons[0].sons[1]
|
|
a.sons[i] = takeImplicitAddr(c, a.sons[i])
|
|
else:
|
|
localError(n.sons[0].info, errXExpected, "tuple constructor")
|
|
else: discard
|
|
|
|
proc semYield(c: PContext, n: PNode): PNode =
|
|
result = n
|
|
checkSonsLen(n, 1)
|
|
if c.p.owner == nil or c.p.owner.kind != skIterator:
|
|
localError(n.info, errYieldNotAllowedHere)
|
|
elif c.p.inTryStmt > 0 and c.p.owner.typ.callConv != ccInline:
|
|
localError(n.info, errYieldNotAllowedInTryStmt)
|
|
elif n.sons[0].kind != nkEmpty:
|
|
n.sons[0] = semExprWithType(c, n.sons[0]) # check for type compatibility:
|
|
var iterType = c.p.owner.typ
|
|
let restype = iterType.sons[0]
|
|
if restype != nil:
|
|
if restype.kind != tyExpr:
|
|
n.sons[0] = fitNode(c, restype, n.sons[0])
|
|
if n.sons[0].typ == nil: internalError(n.info, "semYield")
|
|
|
|
if resultTypeIsInferrable(restype):
|
|
let inferred = n.sons[0].typ
|
|
iterType.sons[0] = inferred
|
|
|
|
semYieldVarResult(c, n, restype)
|
|
else:
|
|
localError(n.info, errCannotReturnExpr)
|
|
elif c.p.owner.typ.sons[0] != nil:
|
|
localError(n.info, errGenerated, "yield statement must yield a value")
|
|
|
|
proc lookUpForDefined(c: PContext, i: PIdent, onlyCurrentScope: bool): PSym =
|
|
if onlyCurrentScope:
|
|
result = localSearchInScope(c, i)
|
|
else:
|
|
result = searchInScopes(c, i) # no need for stub loading
|
|
|
|
proc lookUpForDefined(c: PContext, n: PNode, onlyCurrentScope: bool): PSym =
|
|
case n.kind
|
|
of nkIdent:
|
|
result = lookUpForDefined(c, n.ident, onlyCurrentScope)
|
|
of nkDotExpr:
|
|
result = nil
|
|
if onlyCurrentScope: return
|
|
checkSonsLen(n, 2)
|
|
var m = lookUpForDefined(c, n.sons[0], onlyCurrentScope)
|
|
if m != nil and m.kind == skModule:
|
|
let ident = considerQuotedIdent(n[1])
|
|
if m == c.module:
|
|
result = strTableGet(c.topLevelScope.symbols, ident)
|
|
else:
|
|
result = strTableGet(m.tab, ident)
|
|
of nkAccQuoted:
|
|
result = lookUpForDefined(c, considerQuotedIdent(n), onlyCurrentScope)
|
|
of nkSym:
|
|
result = n.sym
|
|
of nkOpenSymChoice, nkClosedSymChoice:
|
|
result = n.sons[0].sym
|
|
else:
|
|
localError(n.info, errIdentifierExpected, renderTree(n))
|
|
result = nil
|
|
|
|
proc semDefined(c: PContext, n: PNode, onlyCurrentScope: bool): PNode =
|
|
checkSonsLen(n, 2)
|
|
# we replace this node by a 'true' or 'false' node:
|
|
result = newIntNode(nkIntLit, 0)
|
|
if not onlyCurrentScope and considerQuotedIdent(n[0]).s == "defined":
|
|
if n.sons[1].kind != nkIdent:
|
|
localError(n.info, "obsolete usage of 'defined', use 'declared' instead")
|
|
elif condsyms.isDefined(n.sons[1].ident):
|
|
result.intVal = 1
|
|
elif lookUpForDefined(c, n.sons[1], onlyCurrentScope) != nil:
|
|
result.intVal = 1
|
|
result.info = n.info
|
|
result.typ = getSysType(tyBool)
|
|
|
|
proc expectMacroOrTemplateCall(c: PContext, n: PNode): PSym =
|
|
## The argument to the proc should be nkCall(...) or similar
|
|
## Returns the macro/template symbol
|
|
if isCallExpr(n):
|
|
var expandedSym = qualifiedLookUp(c, n[0], {checkUndeclared})
|
|
if expandedSym == nil:
|
|
localError(n.info, errUndeclaredIdentifier, n[0].renderTree)
|
|
return errorSym(c, n[0])
|
|
|
|
if expandedSym.kind notin {skMacro, skTemplate}:
|
|
localError(n.info, errXisNoMacroOrTemplate, expandedSym.name.s)
|
|
return errorSym(c, n[0])
|
|
|
|
result = expandedSym
|
|
else:
|
|
localError(n.info, errXisNoMacroOrTemplate, n.renderTree)
|
|
result = errorSym(c, n)
|
|
|
|
proc expectString(c: PContext, n: PNode): string =
|
|
var n = semConstExpr(c, n)
|
|
if n.kind in nkStrKinds:
|
|
return n.strVal
|
|
else:
|
|
localError(n.info, errStringLiteralExpected)
|
|
|
|
proc getMagicSym(magic: TMagic): PSym =
|
|
result = newSym(skProc, getIdent($magic), systemModule, gCodegenLineInfo)
|
|
result.magic = magic
|
|
|
|
proc newAnonSym(kind: TSymKind, info: TLineInfo,
|
|
owner = getCurrOwner()): PSym =
|
|
result = newSym(kind, idAnon, owner, info)
|
|
result.flags = {sfGenSym}
|
|
|
|
proc semExpandToAst(c: PContext, n: PNode): PNode =
|
|
var macroCall = n[1]
|
|
var expandedSym = expectMacroOrTemplateCall(c, macroCall)
|
|
if expandedSym.kind == skError: return n
|
|
|
|
macroCall.sons[0] = newSymNode(expandedSym, macroCall.info)
|
|
markUsed(n.info, expandedSym)
|
|
styleCheckUse(n.info, expandedSym)
|
|
|
|
for i in countup(1, macroCall.len-1):
|
|
macroCall.sons[i] = semExprWithType(c, macroCall[i], {})
|
|
|
|
# Preserve the magic symbol in order to be handled in evals.nim
|
|
internalAssert n.sons[0].sym.magic == mExpandToAst
|
|
#n.typ = getSysSym("PNimrodNode").typ # expandedSym.getReturnType
|
|
n.typ = if getCompilerProc("NimNode") != nil: sysTypeFromName"NimNode"
|
|
else: sysTypeFromName"PNimrodNode"
|
|
result = n
|
|
|
|
proc semExpandToAst(c: PContext, n: PNode, magicSym: PSym,
|
|
flags: TExprFlags = {}): PNode =
|
|
if sonsLen(n) == 2:
|
|
n.sons[0] = newSymNode(magicSym, n.info)
|
|
result = semExpandToAst(c, n)
|
|
else:
|
|
result = semDirectOp(c, n, flags)
|
|
|
|
proc processQuotations(n: var PNode, op: string,
|
|
quotes: var seq[PNode],
|
|
ids: var seq[PNode]) =
|
|
template returnQuote(q) =
|
|
quotes.add q
|
|
n = newIdentNode(getIdent($quotes.len), n.info)
|
|
ids.add n
|
|
return
|
|
|
|
if n.kind == nkPrefix:
|
|
checkSonsLen(n, 2)
|
|
if n[0].kind == nkIdent:
|
|
var examinedOp = n[0].ident.s
|
|
if examinedOp == op:
|
|
returnQuote n[1]
|
|
elif examinedOp.startsWith(op):
|
|
n.sons[0] = newIdentNode(getIdent(examinedOp.substr(op.len)), n.info)
|
|
elif n.kind == nkAccQuoted and op == "``":
|
|
returnQuote n[0]
|
|
|
|
for i in 0 .. <n.safeLen:
|
|
processQuotations(n.sons[i], op, quotes, ids)
|
|
|
|
proc semQuoteAst(c: PContext, n: PNode): PNode =
|
|
internalAssert n.len == 2 or n.len == 3
|
|
# We transform the do block into a template with a param for
|
|
# each interpolation. We'll pass this template to getAst.
|
|
var
|
|
doBlk = n{-1}
|
|
op = if n.len == 3: expectString(c, n[1]) else: "``"
|
|
quotes = newSeq[PNode](1)
|
|
# the quotes will be added to a nkCall statement
|
|
# leave some room for the callee symbol
|
|
ids = newSeq[PNode]()
|
|
# this will store the generated param names
|
|
|
|
if doBlk.kind != nkDo:
|
|
localError(n.info, errXExpected, "block")
|
|
|
|
processQuotations(doBlk.sons[bodyPos], op, quotes, ids)
|
|
|
|
doBlk.sons[namePos] = newAnonSym(skTemplate, n.info).newSymNode
|
|
if ids.len > 0:
|
|
doBlk.sons[paramsPos] = newNodeI(nkFormalParams, n.info)
|
|
doBlk[paramsPos].add getSysSym("stmt").newSymNode # return type
|
|
ids.add getSysSym("expr").newSymNode # params type
|
|
ids.add emptyNode # no default value
|
|
doBlk[paramsPos].add newNode(nkIdentDefs, n.info, ids)
|
|
|
|
var tmpl = semTemplateDef(c, doBlk)
|
|
quotes[0] = tmpl[namePos]
|
|
result = newNode(nkCall, n.info, @[
|
|
getMagicSym(mExpandToAst).newSymNode,
|
|
newNode(nkCall, n.info, quotes)])
|
|
result = semExpandToAst(c, result)
|
|
|
|
proc tryExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
|
|
# watch out, hacks ahead:
|
|
let oldErrorCount = msgs.gErrorCounter
|
|
let oldErrorMax = msgs.gErrorMax
|
|
let oldCompilesId = c.compilesContextId
|
|
inc c.compilesContextIdGenerator
|
|
c.compilesContextId = c.compilesContextIdGenerator
|
|
# do not halt after first error:
|
|
msgs.gErrorMax = high(int)
|
|
|
|
# open a scope for temporary symbol inclusions:
|
|
let oldScope = c.currentScope
|
|
openScope(c)
|
|
let oldOwnerLen = len(gOwners)
|
|
let oldGenerics = c.generics
|
|
let oldErrorOutputs = errorOutputs
|
|
errorOutputs = {}
|
|
let oldContextLen = msgs.getInfoContextLen()
|
|
|
|
let oldInGenericContext = c.inGenericContext
|
|
let oldInUnrolledContext = c.inUnrolledContext
|
|
let oldInGenericInst = c.inGenericInst
|
|
let oldProcCon = c.p
|
|
c.generics = @[]
|
|
var err: string
|
|
try:
|
|
result = semExpr(c, n, flags)
|
|
if msgs.gErrorCounter != oldErrorCount: result = nil
|
|
except ERecoverableError:
|
|
if optReportConceptFailures in gGlobalOptions:
|
|
err = getCurrentExceptionMsg()
|
|
# undo symbol table changes (as far as it's possible):
|
|
c.compilesContextId = oldCompilesId
|
|
c.generics = oldGenerics
|
|
c.inGenericContext = oldInGenericContext
|
|
c.inUnrolledContext = oldInUnrolledContext
|
|
c.inGenericInst = oldInGenericInst
|
|
c.p = oldProcCon
|
|
msgs.setInfoContextLen(oldContextLen)
|
|
setLen(gOwners, oldOwnerLen)
|
|
c.currentScope = oldScope
|
|
errorOutputs = oldErrorOutputs
|
|
msgs.gErrorCounter = oldErrorCount
|
|
msgs.gErrorMax = oldErrorMax
|
|
if optReportConceptFailures in gGlobalOptions and not err.isNil:
|
|
localError(n.info, err)
|
|
|
|
proc semCompiles(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
# we replace this node by a 'true' or 'false' node:
|
|
if sonsLen(n) != 2: return semDirectOp(c, n, flags)
|
|
|
|
result = newIntNode(nkIntLit, ord(tryExpr(c, n[1], flags) != nil))
|
|
result.info = n.info
|
|
result.typ = getSysType(tyBool)
|
|
|
|
proc semShallowCopy(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
if sonsLen(n) == 3:
|
|
# XXX ugh this is really a hack: shallowCopy() can be overloaded only
|
|
# with procs that take not 2 parameters:
|
|
result = newNodeI(nkFastAsgn, n.info)
|
|
result.add(n[1])
|
|
result.add(n[2])
|
|
result = semAsgn(c, result)
|
|
else:
|
|
result = semDirectOp(c, n, flags)
|
|
|
|
proc createFlowVar(c: PContext; t: PType; info: TLineInfo): PType =
|
|
result = newType(tyGenericInvocation, c.module)
|
|
addSonSkipIntLit(result, magicsys.getCompilerProc("FlowVar").typ)
|
|
addSonSkipIntLit(result, t)
|
|
result = instGenericContainer(c, info, result, allowMetaTypes = false)
|
|
|
|
proc instantiateCreateFlowVarCall(c: PContext; t: PType;
|
|
info: TLineInfo): PSym =
|
|
let sym = magicsys.getCompilerProc("nimCreateFlowVar")
|
|
if sym == nil:
|
|
localError(info, errSystemNeeds, "nimCreateFlowVar")
|
|
var bindings: TIdTable
|
|
initIdTable(bindings)
|
|
bindings.idTablePut(sym.ast[genericParamsPos].sons[0].typ, t)
|
|
result = c.semGenerateInstance(c, sym, bindings, info)
|
|
# since it's an instantiation, we unmark it as a compilerproc. Otherwise
|
|
# codegen would fail:
|
|
if sfCompilerProc in result.flags:
|
|
result.flags = result.flags - {sfCompilerProc, sfExportC, sfImportC}
|
|
result.loc.r = nil
|
|
|
|
proc setMs(n: PNode, s: PSym): PNode =
|
|
result = n
|
|
n.sons[0] = newSymNode(s)
|
|
n.sons[0].info = n.info
|
|
|
|
proc semMagic(c: PContext, n: PNode, s: PSym, flags: TExprFlags): PNode =
|
|
# this is a hotspot in the compiler!
|
|
# DON'T forget to update ast.SpecialSemMagics if you add a magic here!
|
|
result = n
|
|
case s.magic # magics that need special treatment
|
|
of mAddr:
|
|
checkSonsLen(n, 2)
|
|
result = semAddr(c, n.sons[1], s.name.s == "unsafeAddr")
|
|
of mTypeOf:
|
|
checkSonsLen(n, 2)
|
|
result = semTypeOf(c, n.sons[1])
|
|
#of mArrGet: result = semArrGet(c, n, flags)
|
|
#of mArrPut: result = semArrPut(c, n, flags)
|
|
#of mAsgn: result = semAsgnOpr(c, n)
|
|
of mDefined: result = semDefined(c, setMs(n, s), false)
|
|
of mDefinedInScope: result = semDefined(c, setMs(n, s), true)
|
|
of mCompiles: result = semCompiles(c, setMs(n, s), flags)
|
|
of mLow: result = semLowHigh(c, setMs(n, s), mLow)
|
|
of mHigh: result = semLowHigh(c, setMs(n, s), mHigh)
|
|
of mSizeOf: result = semSizeof(c, setMs(n, s))
|
|
of mIs: result = semIs(c, setMs(n, s))
|
|
of mOf: result = semOf(c, setMs(n, s))
|
|
of mShallowCopy: result = semShallowCopy(c, n, flags)
|
|
of mExpandToAst: result = semExpandToAst(c, n, s, flags)
|
|
of mQuoteAst: result = semQuoteAst(c, n)
|
|
of mAstToStr:
|
|
checkSonsLen(n, 2)
|
|
result = newStrNodeT(renderTree(n[1], {renderNoComments}), n)
|
|
result.typ = getSysType(tyString)
|
|
of mParallel:
|
|
if not experimentalMode(c):
|
|
localError(n.info, "use the {.experimental.} pragma to enable 'parallel'")
|
|
result = setMs(n, s)
|
|
var x = n.lastSon
|
|
if x.kind == nkDo: x = x.sons[bodyPos]
|
|
inc c.inParallelStmt
|
|
result.sons[1] = semStmt(c, x)
|
|
dec c.inParallelStmt
|
|
of mSpawn:
|
|
result = setMs(n, s)
|
|
for i in 1 .. <n.len:
|
|
result.sons[i] = semExpr(c, n.sons[i])
|
|
let typ = result[^1].typ
|
|
if not typ.isEmptyType:
|
|
if spawnResult(typ, c.inParallelStmt > 0) == srFlowVar:
|
|
result.typ = createFlowVar(c, typ, n.info)
|
|
else:
|
|
result.typ = typ
|
|
result.add instantiateCreateFlowVarCall(c, typ, n.info).newSymNode
|
|
else:
|
|
result.add emptyNode
|
|
of mProcCall:
|
|
result = setMs(n, s)
|
|
result.sons[1] = semExpr(c, n.sons[1])
|
|
result.typ = n[1].typ
|
|
of mPlugin:
|
|
# semDirectOp with conditional 'afterCallActions':
|
|
let nOrig = n.copyTree
|
|
#semLazyOpAux(c, n)
|
|
result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
|
|
if result == nil:
|
|
result = errorNode(c, n)
|
|
else:
|
|
let callee = result.sons[0].sym
|
|
if callee.magic == mNone:
|
|
semFinishOperands(c, result)
|
|
activate(c, result)
|
|
fixAbstractType(c, result)
|
|
analyseIfAddressTakenInCall(c, result)
|
|
if callee.magic != mNone:
|
|
result = magicsAfterOverloadResolution(c, result, flags)
|
|
else:
|
|
result = semDirectOp(c, n, flags)
|
|
|
|
proc semWhen(c: PContext, n: PNode, semCheck = true): PNode =
|
|
# If semCheck is set to false, ``when`` will return the verbatim AST of
|
|
# the correct branch. Otherwise the AST will be passed through semStmt.
|
|
result = nil
|
|
|
|
template setResult(e: expr) =
|
|
if semCheck: result = semStmt(c, e) # do not open a new scope!
|
|
else: result = e
|
|
|
|
# Check if the node is "when nimvm"
|
|
# when nimvm:
|
|
# ...
|
|
# else:
|
|
# ...
|
|
var whenNimvm = false
|
|
if n.sons.len == 2 and n.sons[0].kind == nkElifBranch and
|
|
n.sons[1].kind == nkElse:
|
|
let exprNode = n.sons[0].sons[0]
|
|
if exprNode.kind == nkIdent:
|
|
whenNimvm = lookUp(c, exprNode).magic == mNimvm
|
|
elif exprNode.kind == nkSym:
|
|
whenNimvm = exprNode.sym.magic == mNimvm
|
|
if whenNimvm: n.flags.incl nfLL
|
|
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
var it = n.sons[i]
|
|
case it.kind
|
|
of nkElifBranch, nkElifExpr:
|
|
checkSonsLen(it, 2)
|
|
if whenNimvm:
|
|
if semCheck:
|
|
it.sons[1] = semStmt(c, it.sons[1])
|
|
result = n # when nimvm is not elimited until codegen
|
|
else:
|
|
var e = semConstExpr(c, it.sons[0])
|
|
if e.kind != nkIntLit:
|
|
# can happen for cascading errors, assume false
|
|
# InternalError(n.info, "semWhen")
|
|
discard
|
|
elif e.intVal != 0 and result == nil:
|
|
setResult(it.sons[1])
|
|
of nkElse, nkElseExpr:
|
|
checkSonsLen(it, 1)
|
|
if result == nil or whenNimvm:
|
|
if semCheck:
|
|
it.sons[0] = semStmt(c, it.sons[0])
|
|
if result == nil:
|
|
result = it.sons[0]
|
|
else: illFormedAst(n)
|
|
if result == nil:
|
|
result = newNodeI(nkEmpty, n.info)
|
|
# The ``when`` statement implements the mechanism for platform dependent
|
|
# code. Thus we try to ensure here consistent ID allocation after the
|
|
# ``when`` statement.
|
|
idSynchronizationPoint(200)
|
|
|
|
proc semSetConstr(c: PContext, n: PNode): PNode =
|
|
result = newNodeI(nkCurly, n.info)
|
|
result.typ = newTypeS(tySet, c)
|
|
if sonsLen(n) == 0:
|
|
rawAddSon(result.typ, newTypeS(tyEmpty, c))
|
|
else:
|
|
# only semantic checking for all elements, later type checking:
|
|
var typ: PType = nil
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
if isRange(n.sons[i]):
|
|
checkSonsLen(n.sons[i], 3)
|
|
n.sons[i].sons[1] = semExprWithType(c, n.sons[i].sons[1])
|
|
n.sons[i].sons[2] = semExprWithType(c, n.sons[i].sons[2])
|
|
if typ == nil:
|
|
typ = skipTypes(n.sons[i].sons[1].typ,
|
|
{tyGenericInst, tyVar, tyOrdinal})
|
|
n.sons[i].typ = n.sons[i].sons[2].typ # range node needs type too
|
|
elif n.sons[i].kind == nkRange:
|
|
# already semchecked
|
|
if typ == nil:
|
|
typ = skipTypes(n.sons[i].sons[0].typ,
|
|
{tyGenericInst, tyVar, tyOrdinal})
|
|
else:
|
|
n.sons[i] = semExprWithType(c, n.sons[i])
|
|
if typ == nil:
|
|
typ = skipTypes(n.sons[i].typ, {tyGenericInst, tyVar, tyOrdinal})
|
|
if not isOrdinalType(typ):
|
|
localError(n.info, errOrdinalTypeExpected)
|
|
typ = makeRangeType(c, 0, MaxSetElements-1, n.info)
|
|
elif lengthOrd(typ) > MaxSetElements:
|
|
typ = makeRangeType(c, 0, MaxSetElements-1, n.info)
|
|
addSonSkipIntLit(result.typ, typ)
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
var m: PNode
|
|
if isRange(n.sons[i]):
|
|
m = newNodeI(nkRange, n.sons[i].info)
|
|
addSon(m, fitNode(c, typ, n.sons[i].sons[1]))
|
|
addSon(m, fitNode(c, typ, n.sons[i].sons[2]))
|
|
elif n.sons[i].kind == nkRange: m = n.sons[i] # already semchecked
|
|
else:
|
|
m = fitNode(c, typ, n.sons[i])
|
|
addSon(result, m)
|
|
|
|
proc semTableConstr(c: PContext, n: PNode): PNode =
|
|
# we simply transform ``{key: value, key2, key3: value}`` to
|
|
# ``[(key, value), (key2, value2), (key3, value2)]``
|
|
result = newNodeI(nkBracket, n.info)
|
|
var lastKey = 0
|
|
for i in 0..n.len-1:
|
|
var x = n.sons[i]
|
|
if x.kind == nkExprColonExpr and sonsLen(x) == 2:
|
|
for j in countup(lastKey, i-1):
|
|
var pair = newNodeI(nkPar, x.info)
|
|
pair.add(n.sons[j])
|
|
pair.add(x[1])
|
|
result.add(pair)
|
|
|
|
var pair = newNodeI(nkPar, x.info)
|
|
pair.add(x[0])
|
|
pair.add(x[1])
|
|
result.add(pair)
|
|
|
|
lastKey = i+1
|
|
|
|
if lastKey != n.len: illFormedAst(n)
|
|
result = semExpr(c, result)
|
|
|
|
type
|
|
TParKind = enum
|
|
paNone, paSingle, paTupleFields, paTuplePositions
|
|
|
|
proc checkPar(n: PNode): TParKind =
|
|
var length = sonsLen(n)
|
|
if length == 0:
|
|
result = paTuplePositions # ()
|
|
elif length == 1:
|
|
if n.sons[0].kind == nkExprColonExpr: result = paTupleFields
|
|
else: result = paSingle # (expr)
|
|
else:
|
|
if n.sons[0].kind == nkExprColonExpr: result = paTupleFields
|
|
else: result = paTuplePositions
|
|
for i in countup(0, length - 1):
|
|
if result == paTupleFields:
|
|
if (n.sons[i].kind != nkExprColonExpr) or
|
|
not (n.sons[i].sons[0].kind in {nkSym, nkIdent}):
|
|
localError(n.sons[i].info, errNamedExprExpected)
|
|
return paNone
|
|
else:
|
|
if n.sons[i].kind == nkExprColonExpr:
|
|
localError(n.sons[i].info, errNamedExprNotAllowed)
|
|
return paNone
|
|
|
|
proc semTupleFieldsConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
result = newNodeI(nkPar, n.info)
|
|
var typ = newTypeS(tyTuple, c)
|
|
typ.n = newNodeI(nkRecList, n.info) # nkIdentDefs
|
|
var ids = initIntSet()
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
if n[i].kind != nkExprColonExpr or n[i][0].kind notin {nkSym, nkIdent}:
|
|
illFormedAst(n.sons[i])
|
|
var id: PIdent
|
|
if n.sons[i].sons[0].kind == nkIdent: id = n.sons[i].sons[0].ident
|
|
else: id = n.sons[i].sons[0].sym.name
|
|
if containsOrIncl(ids, id.id):
|
|
localError(n.sons[i].info, errFieldInitTwice, id.s)
|
|
n.sons[i].sons[1] = semExprWithType(c, n.sons[i].sons[1],
|
|
flags*{efAllowDestructor})
|
|
var f = newSymS(skField, n.sons[i].sons[0], c)
|
|
f.typ = skipIntLit(n.sons[i].sons[1].typ)
|
|
f.position = i
|
|
rawAddSon(typ, f.typ)
|
|
addSon(typ.n, newSymNode(f))
|
|
n.sons[i].sons[0] = newSymNode(f)
|
|
addSon(result, n.sons[i])
|
|
result.typ = typ
|
|
|
|
proc semTuplePositionsConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
result = n # we don't modify n, but compute the type:
|
|
var typ = newTypeS(tyTuple, c) # leave typ.n nil!
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
n.sons[i] = semExprWithType(c, n.sons[i], flags*{efAllowDestructor})
|
|
addSonSkipIntLit(typ, n.sons[i].typ)
|
|
result.typ = typ
|
|
|
|
proc isTupleType(n: PNode): bool =
|
|
if n.len == 0:
|
|
return false # don't interpret () as type
|
|
for i in countup(0, n.len - 1):
|
|
if n[i].typ == nil or n[i].typ.kind != tyTypeDesc:
|
|
return false
|
|
return true
|
|
|
|
proc checkInitialized(n: PNode, ids: IntSet, info: TLineInfo) =
|
|
case n.kind
|
|
of nkRecList:
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
checkInitialized(n.sons[i], ids, info)
|
|
of nkRecCase:
|
|
if (n.sons[0].kind != nkSym): internalError(info, "checkInitialized")
|
|
checkInitialized(n.sons[0], ids, info)
|
|
when false:
|
|
# XXX we cannot check here, as we don't know the branch!
|
|
for i in countup(1, sonsLen(n) - 1):
|
|
case n.sons[i].kind
|
|
of nkOfBranch, nkElse: checkInitialized(lastSon(n.sons[i]), ids, info)
|
|
else: internalError(info, "checkInitialized")
|
|
of nkSym:
|
|
if {tfNotNil, tfNeedsInit} * n.sym.typ.flags != {} and
|
|
n.sym.name.id notin ids:
|
|
message(info, errGenerated, "field not initialized: " & n.sym.name.s)
|
|
else: internalError(info, "checkInitialized")
|
|
|
|
proc semObjConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
var t = semTypeNode(c, n.sons[0], nil)
|
|
result = n
|
|
result.typ = t
|
|
result.kind = nkObjConstr
|
|
t = skipTypes(t, {tyGenericInst})
|
|
if t.kind == tyRef: t = skipTypes(t.sons[0], {tyGenericInst})
|
|
if t.kind != tyObject:
|
|
localError(n.info, errGenerated, "object constructor needs an object type")
|
|
return
|
|
var objType = t
|
|
var ids = initIntSet()
|
|
for i in 1.. <n.len:
|
|
let it = n.sons[i]
|
|
if it.kind != nkExprColonExpr:
|
|
localError(n.info, errNamedExprExpected)
|
|
break
|
|
let id = considerQuotedIdent(it.sons[0])
|
|
|
|
if containsOrIncl(ids, id.id):
|
|
localError(it.info, errFieldInitTwice, id.s)
|
|
var e = semExprWithType(c, it.sons[1], flags*{efAllowDestructor})
|
|
var
|
|
check: PNode = nil
|
|
f: PSym
|
|
t = objType
|
|
while true:
|
|
check = nil
|
|
f = lookupInRecordAndBuildCheck(c, it, t.n, id, check)
|
|
if f != nil: break
|
|
if t.sons[0] == nil: break
|
|
t = skipTypes(t.sons[0], {tyGenericInst})
|
|
if f != nil and fieldVisible(c, f):
|
|
it.sons[0] = newSymNode(f)
|
|
e = fitNode(c, f.typ, e)
|
|
# small hack here in a nkObjConstr the ``nkExprColonExpr`` node can have
|
|
# 3 children the last being the field check
|
|
if check != nil:
|
|
check.sons[0] = it.sons[0]
|
|
it.add(check)
|
|
else:
|
|
localError(it.info, errUndeclaredFieldX, id.s)
|
|
it.sons[1] = e
|
|
# XXX object field name check for 'case objects' if the kind is static?
|
|
if tfNeedsInit in objType.flags:
|
|
while true:
|
|
checkInitialized(objType.n, ids, n.info)
|
|
if objType.sons[0] == nil: break
|
|
objType = skipTypes(objType.sons[0], {tyGenericInst})
|
|
|
|
proc semBlock(c: PContext, n: PNode): PNode =
|
|
result = n
|
|
inc(c.p.nestedBlockCounter)
|
|
checkSonsLen(n, 2)
|
|
openScope(c) # BUGFIX: label is in the scope of block!
|
|
if n.sons[0].kind != nkEmpty:
|
|
var labl = newSymG(skLabel, n.sons[0], c)
|
|
if sfGenSym notin labl.flags:
|
|
addDecl(c, labl)
|
|
n.sons[0] = newSymNode(labl, n.sons[0].info)
|
|
suggestSym(n.sons[0].info, labl)
|
|
styleCheckDef(labl)
|
|
n.sons[1] = semExpr(c, n.sons[1])
|
|
n.typ = n.sons[1].typ
|
|
if isEmptyType(n.typ): n.kind = nkBlockStmt
|
|
else: n.kind = nkBlockExpr
|
|
closeScope(c)
|
|
dec(c.p.nestedBlockCounter)
|
|
|
|
proc semExport(c: PContext, n: PNode): PNode =
|
|
var x = newNodeI(n.kind, n.info)
|
|
#let L = if n.kind == nkExportExceptStmt: L = 1 else: n.len
|
|
for i in 0.. <n.len:
|
|
let a = n.sons[i]
|
|
var o: TOverloadIter
|
|
var s = initOverloadIter(o, c, a)
|
|
if s == nil:
|
|
localError(a.info, errGenerated, "cannot export: " & renderTree(a))
|
|
elif s.kind == skModule:
|
|
# forward everything from that module:
|
|
strTableAdd(c.module.tab, s)
|
|
x.add(newSymNode(s, a.info))
|
|
var ti: TTabIter
|
|
var it = initTabIter(ti, s.tab)
|
|
while it != nil:
|
|
if it.kind in ExportableSymKinds+{skModule}:
|
|
strTableAdd(c.module.tab, it)
|
|
it = nextIter(ti, s.tab)
|
|
else:
|
|
while s != nil:
|
|
if s.kind in ExportableSymKinds+{skModule}:
|
|
x.add(newSymNode(s, a.info))
|
|
strTableAdd(c.module.tab, s)
|
|
s = nextOverloadIter(o, c, a)
|
|
result = n
|
|
|
|
proc shouldBeBracketExpr(n: PNode): bool =
|
|
assert n.kind in nkCallKinds
|
|
let a = n.sons[0]
|
|
if a.kind in nkCallKinds:
|
|
let b = a[0]
|
|
if b.kind in nkSymChoices:
|
|
for i in 0..<b.len:
|
|
if b[i].sym.magic == mArrGet:
|
|
let be = newNodeI(nkBracketExpr, n.info)
|
|
for i in 1..<a.len: be.add(a[i])
|
|
n.sons[0] = be
|
|
return true
|
|
|
|
proc setGenericParams(c: PContext, n: PNode) =
|
|
for i in 1 .. <n.len:
|
|
n[i].typ = semTypeNode(c, n[i], nil)
|
|
|
|
proc semExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
|
|
result = n
|
|
if gCmd == cmdIdeTools: suggestExpr(c, n)
|
|
if nfSem in n.flags: return
|
|
case n.kind
|
|
of nkIdent, nkAccQuoted:
|
|
var s = lookUp(c, n)
|
|
if c.inTypeClass == 0: semCaptureSym(s, c.p.owner)
|
|
result = semSym(c, n, s, flags)
|
|
if s.kind in {skProc, skMethod, skConverter, skIterator}:
|
|
#performProcvarCheck(c, n, s)
|
|
result = symChoice(c, n, s, scClosed)
|
|
if result.kind == nkSym:
|
|
markIndirect(c, result.sym)
|
|
# if isGenericRoutine(result.sym):
|
|
# localError(n.info, errInstantiateXExplicitly, s.name.s)
|
|
of nkSym:
|
|
# because of the changed symbol binding, this does not mean that we
|
|
# don't have to check the symbol for semantics here again!
|
|
result = semSym(c, n, n.sym, flags)
|
|
of nkEmpty, nkNone, nkCommentStmt:
|
|
discard
|
|
of nkNilLit:
|
|
if result.typ == nil: result.typ = getSysType(tyNil)
|
|
of nkIntLit:
|
|
if result.typ == nil: setIntLitType(result)
|
|
of nkInt8Lit:
|
|
if result.typ == nil: result.typ = getSysType(tyInt8)
|
|
of nkInt16Lit:
|
|
if result.typ == nil: result.typ = getSysType(tyInt16)
|
|
of nkInt32Lit:
|
|
if result.typ == nil: result.typ = getSysType(tyInt32)
|
|
of nkInt64Lit:
|
|
if result.typ == nil: result.typ = getSysType(tyInt64)
|
|
of nkUIntLit:
|
|
if result.typ == nil: result.typ = getSysType(tyUInt)
|
|
of nkUInt8Lit:
|
|
if result.typ == nil: result.typ = getSysType(tyUInt8)
|
|
of nkUInt16Lit:
|
|
if result.typ == nil: result.typ = getSysType(tyUInt16)
|
|
of nkUInt32Lit:
|
|
if result.typ == nil: result.typ = getSysType(tyUInt32)
|
|
of nkUInt64Lit:
|
|
if result.typ == nil: result.typ = getSysType(tyUInt64)
|
|
of nkFloatLit:
|
|
if result.typ == nil: result.typ = getFloatLitType(result)
|
|
of nkFloat32Lit:
|
|
if result.typ == nil: result.typ = getSysType(tyFloat32)
|
|
of nkFloat64Lit:
|
|
if result.typ == nil: result.typ = getSysType(tyFloat64)
|
|
of nkFloat128Lit:
|
|
if result.typ == nil: result.typ = getSysType(tyFloat128)
|
|
of nkStrLit..nkTripleStrLit:
|
|
if result.typ == nil: result.typ = getSysType(tyString)
|
|
of nkCharLit:
|
|
if result.typ == nil: result.typ = getSysType(tyChar)
|
|
of nkDotExpr:
|
|
result = semFieldAccess(c, n, flags)
|
|
if result.kind == nkDotCall:
|
|
result.kind = nkCall
|
|
result = semExpr(c, result, flags)
|
|
of nkBind:
|
|
message(n.info, warnDeprecated, "bind")
|
|
result = semExpr(c, n.sons[0], flags)
|
|
of nkTypeOfExpr, nkTupleTy, nkTupleClassTy, nkRefTy..nkEnumTy, nkStaticTy:
|
|
var typ = semTypeNode(c, n, nil).skipTypes({tyTypeDesc})
|
|
result.typ = makeTypeDesc(c, typ)
|
|
#result = symNodeFromType(c, typ, n.info)
|
|
of nkCall, nkInfix, nkPrefix, nkPostfix, nkCommand, nkCallStrLit:
|
|
# check if it is an expression macro:
|
|
checkMinSonsLen(n, 1)
|
|
let mode = if nfDotField in n.flags: {} else: {checkUndeclared}
|
|
var s = qualifiedLookUp(c, n.sons[0], mode)
|
|
if s != nil:
|
|
#if gCmd == cmdPretty and n.sons[0].kind == nkDotExpr:
|
|
# pretty.checkUse(n.sons[0].sons[1].info, s)
|
|
case s.kind
|
|
of skMacro:
|
|
if sfImmediate notin s.flags:
|
|
result = semDirectOp(c, n, flags)
|
|
else:
|
|
result = semMacroExpr(c, n, n, s, flags)
|
|
of skTemplate:
|
|
if sfImmediate notin s.flags:
|
|
result = semDirectOp(c, n, flags)
|
|
else:
|
|
result = semTemplateExpr(c, n, s, flags)
|
|
of skType:
|
|
# XXX think about this more (``set`` procs)
|
|
if n.len == 2:
|
|
result = semConv(c, n)
|
|
elif n.len == 1:
|
|
result = semObjConstr(c, n, flags)
|
|
elif contains(c.ambiguousSymbols, s.id):
|
|
errorUseQualifier(c, n.info, s)
|
|
elif s.magic == mNone: result = semDirectOp(c, n, flags)
|
|
else: result = semMagic(c, n, s, flags)
|
|
of skProc, skMethod, skConverter, skIterator:
|
|
if s.magic == mNone: result = semDirectOp(c, n, flags)
|
|
else: result = semMagic(c, n, s, flags)
|
|
else:
|
|
#liMessage(n.info, warnUser, renderTree(n));
|
|
result = semIndirectOp(c, n, flags)
|
|
elif (n[0].kind == nkBracketExpr or shouldBeBracketExpr(n)) and
|
|
isSymChoice(n[0][0]):
|
|
# indirectOp can deal with explicit instantiations; the fixes
|
|
# the 'newSeq[T](x)' bug
|
|
setGenericParams(c, n.sons[0])
|
|
result = semDirectOp(c, n, flags)
|
|
elif isSymChoice(n.sons[0]) or nfDotField in n.flags:
|
|
result = semDirectOp(c, n, flags)
|
|
else:
|
|
result = semIndirectOp(c, n, flags)
|
|
of nkWhen:
|
|
if efWantStmt in flags:
|
|
result = semWhen(c, n, true)
|
|
else:
|
|
result = semWhen(c, n, false)
|
|
if result == n:
|
|
# This is a "when nimvm" stmt.
|
|
result = semWhen(c, n, true)
|
|
else:
|
|
result = semExpr(c, result, flags)
|
|
of nkBracketExpr:
|
|
checkMinSonsLen(n, 1)
|
|
result = semArrayAccess(c, n, flags)
|
|
of nkCurlyExpr:
|
|
result = semExpr(c, buildOverloadedSubscripts(n, getIdent"{}"), flags)
|
|
of nkPragmaExpr:
|
|
# which pragmas are allowed for expressions? `likely`, `unlikely`
|
|
internalError(n.info, "semExpr() to implement") # XXX: to implement
|
|
of nkPar:
|
|
case checkPar(n)
|
|
of paNone: result = errorNode(c, n)
|
|
of paTuplePositions:
|
|
var tupexp = semTuplePositionsConstr(c, n, flags)
|
|
if isTupleType(tupexp):
|
|
# reinterpret as type
|
|
var typ = semTypeNode(c, n, nil).skipTypes({tyTypeDesc})
|
|
result.typ = makeTypeDesc(c, typ)
|
|
else:
|
|
result = tupexp
|
|
of paTupleFields: result = semTupleFieldsConstr(c, n, flags)
|
|
of paSingle: result = semExpr(c, n.sons[0], flags)
|
|
of nkCurly: result = semSetConstr(c, n)
|
|
of nkBracket: result = semArrayConstr(c, n, flags)
|
|
of nkObjConstr: result = semObjConstr(c, n, flags)
|
|
of nkLambda: result = semLambda(c, n, flags)
|
|
of nkDo: result = semDo(c, n, flags)
|
|
of nkDerefExpr: result = semDeref(c, n)
|
|
of nkAddr:
|
|
result = n
|
|
checkSonsLen(n, 1)
|
|
result = semAddr(c, n.sons[0])
|
|
of nkHiddenAddr, nkHiddenDeref:
|
|
checkSonsLen(n, 1)
|
|
n.sons[0] = semExpr(c, n.sons[0], flags)
|
|
of nkCast: result = semCast(c, n)
|
|
of nkIfExpr, nkIfStmt: result = semIf(c, n)
|
|
of nkHiddenStdConv, nkHiddenSubConv, nkConv, nkHiddenCallConv:
|
|
checkSonsLen(n, 2)
|
|
of nkStringToCString, nkCStringToString, nkObjDownConv, nkObjUpConv:
|
|
checkSonsLen(n, 1)
|
|
of nkChckRangeF, nkChckRange64, nkChckRange:
|
|
checkSonsLen(n, 3)
|
|
of nkCheckedFieldExpr:
|
|
checkMinSonsLen(n, 2)
|
|
of nkTableConstr:
|
|
result = semTableConstr(c, n)
|
|
of nkClosedSymChoice, nkOpenSymChoice:
|
|
# handling of sym choices is context dependent
|
|
# the node is left intact for now
|
|
discard
|
|
of nkStaticExpr:
|
|
result = semStaticExpr(c, n)
|
|
of nkAsgn: result = semAsgn(c, n)
|
|
of nkBlockStmt, nkBlockExpr: result = semBlock(c, n)
|
|
of nkStmtList, nkStmtListExpr: result = semStmtList(c, n, flags)
|
|
of nkRaiseStmt: result = semRaise(c, n)
|
|
of nkVarSection: result = semVarOrLet(c, n, skVar)
|
|
of nkLetSection: result = semVarOrLet(c, n, skLet)
|
|
of nkConstSection: result = semConst(c, n)
|
|
of nkTypeSection: result = semTypeSection(c, n)
|
|
of nkDiscardStmt: result = semDiscard(c, n)
|
|
of nkWhileStmt: result = semWhile(c, n)
|
|
of nkTryStmt: result = semTry(c, n)
|
|
of nkBreakStmt, nkContinueStmt: result = semBreakOrContinue(c, n)
|
|
of nkForStmt, nkParForStmt: result = semFor(c, n)
|
|
of nkCaseStmt: result = semCase(c, n)
|
|
of nkReturnStmt: result = semReturn(c, n)
|
|
of nkUsingStmt: result = semUsing(c, n)
|
|
of nkAsmStmt: result = semAsm(c, n)
|
|
of nkYieldStmt: result = semYield(c, n)
|
|
of nkPragma: pragma(c, c.p.owner, n, stmtPragmas)
|
|
of nkIteratorDef: result = semIterator(c, n)
|
|
of nkProcDef: result = semProc(c, n)
|
|
of nkMethodDef: result = semMethod(c, n)
|
|
of nkConverterDef: result = semConverterDef(c, n)
|
|
of nkMacroDef: result = semMacroDef(c, n)
|
|
of nkTemplateDef: result = semTemplateDef(c, n)
|
|
of nkImportStmt:
|
|
if not isTopLevel(c): localError(n.info, errXOnlyAtModuleScope, "import")
|
|
result = evalImport(c, n)
|
|
of nkImportExceptStmt:
|
|
if not isTopLevel(c): localError(n.info, errXOnlyAtModuleScope, "import")
|
|
result = evalImportExcept(c, n)
|
|
of nkFromStmt:
|
|
if not isTopLevel(c): localError(n.info, errXOnlyAtModuleScope, "from")
|
|
result = evalFrom(c, n)
|
|
of nkIncludeStmt:
|
|
#if not isTopLevel(c): localError(n.info, errXOnlyAtModuleScope, "include")
|
|
result = evalInclude(c, n)
|
|
of nkExportStmt, nkExportExceptStmt:
|
|
if not isTopLevel(c): localError(n.info, errXOnlyAtModuleScope, "export")
|
|
result = semExport(c, n)
|
|
of nkPragmaBlock:
|
|
result = semPragmaBlock(c, n)
|
|
of nkStaticStmt:
|
|
result = semStaticStmt(c, n)
|
|
of nkDefer:
|
|
n.sons[0] = semExpr(c, n.sons[0])
|
|
if not n.sons[0].typ.isEmptyType and not implicitlyDiscardable(n.sons[0]):
|
|
localError(n.info, errGenerated, "'defer' takes a 'void' expression")
|
|
#localError(n.info, errGenerated, "'defer' not allowed in this context")
|
|
else:
|
|
localError(n.info, errInvalidExpressionX,
|
|
renderTree(n, {renderNoComments}))
|
|
if result != nil: incl(result.flags, nfSem)
|