mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 09:24:36 +00:00
* Improve documentation for math Support empty input for cumsummed Use runnableExamples Move some examples to tests Add more tests * Update tests/stdlib/tmath.nim Move some tests to trandom.nim Move tests into main template where possible Add test for #17017 * Add more tests for gamma & lgamma Remove gamma(-1.0) example Small fixes/changes * Move more tests into template main() * Fix typos * Add edge case examples for copySign
167 lines
4.4 KiB
Nim
167 lines
4.4 KiB
Nim
discard """
|
|
joinable: false
|
|
targets: "c js"
|
|
"""
|
|
|
|
import std/[random, math, os, stats, sets, tables]
|
|
|
|
randomize(233)
|
|
|
|
proc main() =
|
|
var occur: array[1000, int]
|
|
|
|
for i in 0..100_000:
|
|
let x = rand(high(occur))
|
|
inc occur[x]
|
|
|
|
doAssert max(occur) <= 140 and min(occur) >= 60 # gives some slack
|
|
|
|
var a = [0, 1]
|
|
shuffle(a)
|
|
doAssert a in [[0,1], [1,0]]
|
|
|
|
doAssert rand(0) == 0
|
|
doAssert sample("a") == 'a'
|
|
|
|
when compileOption("rangeChecks"):
|
|
doAssertRaises(RangeDefect):
|
|
discard rand(-1)
|
|
|
|
doAssertRaises(RangeDefect):
|
|
discard rand(-1.0)
|
|
|
|
# don't use causes integer overflow
|
|
doAssert compiles(rand[int](low(int) .. high(int)))
|
|
|
|
main()
|
|
|
|
block:
|
|
when not defined(js):
|
|
doAssert almostEqual(rand(12.5), 4.012897747078944)
|
|
doAssert almostEqual(rand(2233.3322), 879.702755321298)
|
|
|
|
type DiceRoll = range[0..6]
|
|
doAssert rand(DiceRoll).int == 4
|
|
|
|
var rs: RunningStat
|
|
for j in 1..5:
|
|
for i in 1 .. 100_000:
|
|
rs.push(gauss())
|
|
doAssert abs(rs.mean-0) < 0.08, $rs.mean
|
|
doAssert abs(rs.standardDeviation()-1.0) < 0.1
|
|
let bounds = [3.5, 5.0]
|
|
for a in [rs.max, -rs.min]:
|
|
doAssert a >= bounds[0] and a <= bounds[1]
|
|
rs.clear()
|
|
|
|
block:
|
|
type DiceRoll = range[3..6]
|
|
var flag = false
|
|
for i in 0..<100:
|
|
if rand(5.DiceRoll) < 3:
|
|
flag = true
|
|
doAssert flag # because of: rand(max: int): int
|
|
|
|
|
|
block: # random int
|
|
block: # there might be some randomness
|
|
var set = initHashSet[int](128)
|
|
|
|
for i in 1..1000:
|
|
incl(set, rand(high(int)))
|
|
doAssert len(set) == 1000
|
|
|
|
block: # single number bounds work
|
|
var rand: int
|
|
for i in 1..1000:
|
|
rand = rand(1000)
|
|
doAssert rand <= 1000
|
|
doAssert rand >= 0
|
|
|
|
block: # slice bounds work
|
|
var rand: int
|
|
for i in 1..1000:
|
|
rand = rand(100..1000)
|
|
doAssert rand <= 1000
|
|
doAssert rand >= 100
|
|
|
|
block: # again gives new numbers
|
|
var rand1 = rand(1000000)
|
|
when not defined(js):
|
|
os.sleep(200)
|
|
|
|
var rand2 = rand(1000000)
|
|
doAssert rand1 != rand2
|
|
|
|
block: # random float
|
|
block: # there might be some randomness
|
|
var set = initHashSet[float](128)
|
|
|
|
for i in 1..100:
|
|
incl(set, rand(1.0))
|
|
doAssert len(set) == 100
|
|
|
|
block: # single number bounds work
|
|
var rand: float
|
|
for i in 1..1000:
|
|
rand = rand(1000.0)
|
|
doAssert rand <= 1000.0
|
|
doAssert rand >= 0.0
|
|
|
|
block: # slice bounds work
|
|
var rand: float
|
|
for i in 1..1000:
|
|
rand = rand(100.0..1000.0)
|
|
doAssert rand <= 1000.0
|
|
doAssert rand >= 100.0
|
|
|
|
block: # again gives new numbers
|
|
var rand1: float = rand(1000000.0)
|
|
when not defined(js):
|
|
os.sleep(200)
|
|
|
|
var rand2: float = rand(1000000.0)
|
|
doAssert rand1 != rand2
|
|
|
|
block: # random sample
|
|
block: # "non-uniform array sample unnormalized int CDF
|
|
let values = [10, 20, 30, 40, 50] # values
|
|
let counts = [4, 3, 2, 1, 0] # weights aka unnormalized probabilities
|
|
var histo = initCountTable[int]()
|
|
let cdf = counts.cumsummed # unnormalized CDF
|
|
for i in 0 ..< 5000:
|
|
histo.inc(sample(values, cdf))
|
|
doAssert histo.len == 4 # number of non-zero in `counts`
|
|
# Any one bin is a binomial random var for n samples, each with prob p of
|
|
# adding a count to k; E[k]=p*n, Var k=p*(1-p)*n, approximately Normal for
|
|
# big n. So, P(abs(k - p*n)/sqrt(p*(1-p)*n))>3.0) =~ 0.0027, while
|
|
# P(wholeTestFails) =~ 1 - P(binPasses)^4 =~ 1 - (1-0.0027)^4 =~ 0.01.
|
|
for i, c in counts:
|
|
if c == 0:
|
|
doAssert values[i] notin histo
|
|
continue
|
|
let p = float(c) / float(cdf[^1])
|
|
let n = 5000.0
|
|
let expected = p * n
|
|
let stdDev = sqrt(n * p * (1.0 - p))
|
|
doAssert abs(float(histo[values[i]]) - expected) <= 3.0 * stdDev
|
|
|
|
block: # non-uniform array sample normalized float CDF
|
|
let values = [10, 20, 30, 40, 50] # values
|
|
let counts = [0.4, 0.3, 0.2, 0.1, 0] # probabilities
|
|
var histo = initCountTable[int]()
|
|
let cdf = counts.cumsummed # normalized CDF
|
|
for i in 0 ..< 5000:
|
|
histo.inc(sample(values, cdf))
|
|
doAssert histo.len == 4 # number of non-zero in ``counts``
|
|
for i, c in counts:
|
|
if c == 0:
|
|
doAssert values[i] notin histo
|
|
continue
|
|
let p = float(c) / float(cdf[^1])
|
|
let n = 5000.0
|
|
let expected = p * n
|
|
let stdDev = sqrt(n * p * (1.0 - p))
|
|
# NOTE: like unnormalized int CDF test, P(wholeTestFails) =~ 0.01.
|
|
doAssert abs(float(histo[values[i]]) - expected) <= 3.0 * stdDev
|