mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 01:14:41 +00:00
1876 lines
64 KiB
Nim
1876 lines
64 KiB
Nim
#
|
|
#
|
|
# The Nim Compiler
|
|
# (c) Copyright 2013 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
## This module implements the signature matching for resolving
|
|
## the call to overloaded procs, generic procs and operators.
|
|
|
|
import
|
|
intsets, ast, astalgo, semdata, types, msgs, renderer, lookups, semtypinst,
|
|
magicsys, condsyms, idents, lexer, options, parampatterns, strutils, trees,
|
|
nimfix.pretty
|
|
|
|
when not defined(noDocgen):
|
|
import docgen
|
|
|
|
type
|
|
TCandidateState* = enum
|
|
csEmpty, csMatch, csNoMatch
|
|
|
|
CandidateErrors* = seq[PSym]
|
|
TCandidate* = object
|
|
c*: PContext
|
|
exactMatches*: int # also misused to prefer iters over procs
|
|
genericMatches: int # also misused to prefer constraints
|
|
subtypeMatches: int
|
|
intConvMatches: int # conversions to int are not as expensive
|
|
convMatches: int
|
|
state*: TCandidateState
|
|
callee*: PType # may not be nil!
|
|
calleeSym*: PSym # may be nil
|
|
calleeScope*: int # scope depth:
|
|
# is this a top-level symbol or a nested proc?
|
|
call*: PNode # modified call
|
|
bindings*: TIdTable # maps types to types
|
|
baseTypeMatch: bool # needed for conversions from T to openarray[T]
|
|
# for example
|
|
fauxMatch*: TTypeKind # the match was successful only due to the use
|
|
# of error or wildcard (unknown) types.
|
|
# this is used to prevent instantiations.
|
|
genericConverter*: bool # true if a generic converter needs to
|
|
# be instantiated
|
|
coerceDistincts*: bool # this is an explicit coercion that can strip away
|
|
# a distrinct type
|
|
typedescMatched*: bool
|
|
isNoCall*: bool # misused for generic type instantiations C[T]
|
|
inheritancePenalty: int # to prefer closest father object type
|
|
errors*: CandidateErrors # additional clarifications to be displayed to the
|
|
# user if overload resolution fails
|
|
|
|
TTypeRelation* = enum # order is important!
|
|
isNone, isConvertible,
|
|
isIntConv,
|
|
isSubtype,
|
|
isSubrange, # subrange of the wanted type; no type conversion
|
|
# but apart from that counts as ``isSubtype``
|
|
isBothMetaConvertible # generic proc parameter was matched against
|
|
# generic type, e.g., map(mySeq, x=>x+1),
|
|
# maybe recoverable by rerun if the parameter is
|
|
# the proc's return value
|
|
isInferred, # generic proc was matched against a concrete type
|
|
isInferredConvertible, # same as above, but requiring proc CC conversion
|
|
isGeneric,
|
|
isFromIntLit, # conversion *from* int literal; proven safe
|
|
isEqual
|
|
|
|
const
|
|
isNilConversion = isConvertible # maybe 'isIntConv' fits better?
|
|
|
|
proc markUsed*(info: TLineInfo, s: PSym)
|
|
|
|
template hasFauxMatch*(c: TCandidate): bool = c.fauxMatch != tyNone
|
|
|
|
proc initCandidateAux(ctx: PContext,
|
|
c: var TCandidate, callee: PType) {.inline.} =
|
|
c.c = ctx
|
|
c.exactMatches = 0
|
|
c.subtypeMatches = 0
|
|
c.convMatches = 0
|
|
c.intConvMatches = 0
|
|
c.genericMatches = 0
|
|
c.state = csEmpty
|
|
c.callee = callee
|
|
c.call = nil
|
|
c.baseTypeMatch = false
|
|
c.genericConverter = false
|
|
c.inheritancePenalty = 0
|
|
|
|
proc initCandidate*(ctx: PContext, c: var TCandidate, callee: PType) =
|
|
initCandidateAux(ctx, c, callee)
|
|
c.calleeSym = nil
|
|
initIdTable(c.bindings)
|
|
|
|
proc put(t: var TIdTable, key, val: PType) {.inline.} =
|
|
idTablePut(t, key, val.skipIntLit)
|
|
|
|
proc initCandidate*(ctx: PContext, c: var TCandidate, callee: PSym,
|
|
binding: PNode, calleeScope = -1) =
|
|
initCandidateAux(ctx, c, callee.typ)
|
|
c.calleeSym = callee
|
|
if callee.kind in skProcKinds and calleeScope == -1:
|
|
if callee.originatingModule == ctx.module:
|
|
c.calleeScope = 2
|
|
var owner = callee
|
|
while true:
|
|
owner = owner.skipGenericOwner
|
|
if owner.kind == skModule: break
|
|
inc c.calleeScope
|
|
else:
|
|
c.calleeScope = 1
|
|
else:
|
|
c.calleeScope = calleeScope
|
|
initIdTable(c.bindings)
|
|
c.errors = nil
|
|
if binding != nil and callee.kind in routineKinds:
|
|
var typeParams = callee.ast[genericParamsPos]
|
|
for i in 1..min(sonsLen(typeParams), sonsLen(binding)-1):
|
|
var formalTypeParam = typeParams.sons[i-1].typ
|
|
var bound = binding[i].typ
|
|
internalAssert bound != nil
|
|
if formalTypeParam.kind == tyTypeDesc:
|
|
if bound.kind != tyTypeDesc:
|
|
bound = makeTypeDesc(ctx, bound)
|
|
else:
|
|
bound = bound.skipTypes({tyTypeDesc})
|
|
put(c.bindings, formalTypeParam, bound)
|
|
|
|
proc newCandidate*(ctx: PContext, callee: PSym,
|
|
binding: PNode, calleeScope = -1): TCandidate =
|
|
initCandidate(ctx, result, callee, binding, calleeScope)
|
|
|
|
proc newCandidate*(ctx: PContext, callee: PType): TCandidate =
|
|
initCandidate(ctx, result, callee)
|
|
|
|
proc copyCandidate(a: var TCandidate, b: TCandidate) =
|
|
a.c = b.c
|
|
a.exactMatches = b.exactMatches
|
|
a.subtypeMatches = b.subtypeMatches
|
|
a.convMatches = b.convMatches
|
|
a.intConvMatches = b.intConvMatches
|
|
a.genericMatches = b.genericMatches
|
|
a.state = b.state
|
|
a.callee = b.callee
|
|
a.calleeSym = b.calleeSym
|
|
a.call = copyTree(b.call)
|
|
a.baseTypeMatch = b.baseTypeMatch
|
|
copyIdTable(a.bindings, b.bindings)
|
|
|
|
proc sumGeneric(t: PType): int =
|
|
var t = t
|
|
var isvar = 1
|
|
while true:
|
|
case t.kind
|
|
of tyGenericInst, tyArray, tyRef, tyPtr, tyDistinct, tyArrayConstr,
|
|
tyOpenArray, tyVarargs, tySet, tyRange, tySequence, tyGenericBody:
|
|
t = t.lastSon
|
|
inc result
|
|
of tyVar:
|
|
t = t.sons[0]
|
|
inc result
|
|
inc isvar
|
|
of tyTypeDesc:
|
|
t = t.lastSon
|
|
if t.kind == tyEmpty: break
|
|
inc result
|
|
of tyGenericInvocation, tyTuple:
|
|
result += ord(t.kind == tyGenericInvocation)
|
|
for i in 0 .. <t.len: result += t.sons[i].sumGeneric
|
|
break
|
|
of tyGenericParam, tyExpr, tyStatic, tyStmt: break
|
|
of tyBool, tyChar, tyEnum, tyObject, tyProc, tyPointer,
|
|
tyString, tyCString, tyInt..tyInt64, tyFloat..tyFloat128,
|
|
tyUInt..tyUInt64:
|
|
return isvar
|
|
else:
|
|
return 0
|
|
|
|
#var ggDebug: bool
|
|
|
|
proc complexDisambiguation(a, b: PType): int =
|
|
# 'a' matches better if *every* argument matches better or equal than 'b'.
|
|
var winner = 0
|
|
for i in 1 .. <min(a.len, b.len):
|
|
let x = a.sons[i].sumGeneric
|
|
let y = b.sons[i].sumGeneric
|
|
#if ggDebug:
|
|
# echo "came her ", typeToString(a.sons[i]), " ", typeToString(b.sons[i])
|
|
if x != y:
|
|
if winner == 0:
|
|
if x > y: winner = 1
|
|
else: winner = -1
|
|
elif x > y:
|
|
if winner != 1:
|
|
# contradiction
|
|
return 0
|
|
else:
|
|
if winner != -1:
|
|
return 0
|
|
result = winner
|
|
when false:
|
|
var x, y: int
|
|
for i in 1 .. <a.len: x += a.sons[i].sumGeneric
|
|
for i in 1 .. <b.len: y += b.sons[i].sumGeneric
|
|
result = x - y
|
|
|
|
proc cmpCandidates*(a, b: TCandidate): int =
|
|
result = a.exactMatches - b.exactMatches
|
|
if result != 0: return
|
|
result = a.genericMatches - b.genericMatches
|
|
if result != 0: return
|
|
result = a.subtypeMatches - b.subtypeMatches
|
|
if result != 0: return
|
|
result = a.intConvMatches - b.intConvMatches
|
|
if result != 0: return
|
|
result = a.convMatches - b.convMatches
|
|
if result != 0: return
|
|
result = a.calleeScope - b.calleeScope
|
|
if result != 0: return
|
|
# the other way round because of other semantics:
|
|
result = b.inheritancePenalty - a.inheritancePenalty
|
|
if result != 0: return
|
|
# prefer more specialized generic over more general generic:
|
|
result = complexDisambiguation(a.callee, b.callee)
|
|
|
|
proc writeMatches*(c: TCandidate) =
|
|
writeLine(stdout, "exact matches: " & $c.exactMatches)
|
|
writeLine(stdout, "generic matches: " & $c.genericMatches)
|
|
writeLine(stdout, "subtype matches: " & $c.subtypeMatches)
|
|
writeLine(stdout, "intconv matches: " & $c.intConvMatches)
|
|
writeLine(stdout, "conv matches: " & $c.convMatches)
|
|
writeLine(stdout, "inheritance: " & $c.inheritancePenalty)
|
|
|
|
proc argTypeToString(arg: PNode; prefer: TPreferedDesc): string =
|
|
if arg.kind in nkSymChoices:
|
|
result = typeToString(arg[0].typ, prefer)
|
|
for i in 1 .. <arg.len:
|
|
result.add(" | ")
|
|
result.add typeToString(arg[i].typ, prefer)
|
|
else:
|
|
result = arg.typ.typeToString(prefer)
|
|
|
|
proc describeArgs*(c: PContext, n: PNode, startIdx = 1;
|
|
prefer: TPreferedDesc = preferName): string =
|
|
result = ""
|
|
for i in countup(startIdx, n.len - 1):
|
|
var arg = n.sons[i]
|
|
if n.sons[i].kind == nkExprEqExpr:
|
|
add(result, renderTree(n.sons[i].sons[0]))
|
|
add(result, ": ")
|
|
if arg.typ.isNil:
|
|
arg = c.semOperand(c, n.sons[i].sons[1])
|
|
n.sons[i].typ = arg.typ
|
|
n.sons[i].sons[1] = arg
|
|
else:
|
|
if arg.typ.isNil:
|
|
arg = c.semOperand(c, n.sons[i])
|
|
n.sons[i] = arg
|
|
if arg.typ.kind == tyError: return
|
|
add(result, argTypeToString(arg, prefer))
|
|
if i != sonsLen(n) - 1: add(result, ", ")
|
|
|
|
proc typeRel*(c: var TCandidate, f, aOrig: PType, doBind = true): TTypeRelation
|
|
proc concreteType(c: TCandidate, t: PType): PType =
|
|
case t.kind
|
|
of tyArrayConstr:
|
|
# make it an array
|
|
result = newType(tyArray, t.owner)
|
|
addSonSkipIntLit(result, t.sons[0]) # XXX: t.owner is wrong for ID!
|
|
addSonSkipIntLit(result, t.sons[1]) # XXX: semantic checking for the type?
|
|
of tyNil:
|
|
result = nil # what should it be?
|
|
of tyTypeDesc:
|
|
if c.isNoCall: result = t
|
|
else: result = nil
|
|
of tySequence, tySet:
|
|
if t.sons[0].kind == tyEmpty: result = nil
|
|
else: result = t
|
|
of tyGenericParam, tyAnything:
|
|
result = t
|
|
while true:
|
|
result = PType(idTableGet(c.bindings, t))
|
|
if result == nil:
|
|
break # it's ok, no match
|
|
# example code that triggers it:
|
|
# proc sort[T](cmp: proc(a, b: T): int = cmp)
|
|
if result.kind != tyGenericParam: break
|
|
of tyGenericInvocation:
|
|
internalError("cannot resolve type: " & typeToString(t))
|
|
result = t
|
|
else:
|
|
result = t # Note: empty is valid here
|
|
|
|
proc handleRange(f, a: PType, min, max: TTypeKind): TTypeRelation =
|
|
if a.kind == f.kind:
|
|
result = isEqual
|
|
else:
|
|
let ab = skipTypes(a, {tyRange})
|
|
let k = ab.kind
|
|
if k == f.kind: result = isSubrange
|
|
elif k == tyInt and f.kind in {tyRange, tyInt8..tyInt64,
|
|
tyUInt..tyUInt64} and
|
|
isIntLit(ab) and ab.n.intVal >= firstOrd(f) and
|
|
ab.n.intVal <= lastOrd(f):
|
|
# integer literal in the proper range; we want ``i16 + 4`` to stay an
|
|
# ``int16`` operation so we declare the ``4`` pseudo-equal to int16
|
|
result = isFromIntLit
|
|
elif f.kind == tyInt and k in {tyInt8..tyInt32}:
|
|
result = isIntConv
|
|
elif k >= min and k <= max:
|
|
result = isConvertible
|
|
elif a.kind == tyRange and a.sons[0].kind in {tyInt..tyInt64,
|
|
tyUInt8..tyUInt32} and
|
|
a.n[0].intVal >= firstOrd(f) and
|
|
a.n[1].intVal <= lastOrd(f):
|
|
result = isConvertible
|
|
else: result = isNone
|
|
#elif f.kind == tyInt and k in {tyInt..tyInt32}: result = isIntConv
|
|
#elif f.kind == tyUInt and k in {tyUInt..tyUInt32}: result = isIntConv
|
|
|
|
proc isConvertibleToRange(f, a: PType): bool =
|
|
# be less picky for tyRange, as that it is used for array indexing:
|
|
if f.kind in {tyInt..tyInt64, tyUInt..tyUInt64} and
|
|
a.kind in {tyInt..tyInt64, tyUInt..tyUInt64}:
|
|
result = true
|
|
elif f.kind in {tyFloat..tyFloat128} and
|
|
a.kind in {tyFloat..tyFloat128}:
|
|
result = true
|
|
|
|
proc handleFloatRange(f, a: PType): TTypeRelation =
|
|
if a.kind == f.kind:
|
|
result = isEqual
|
|
else:
|
|
let ab = skipTypes(a, {tyRange})
|
|
var k = ab.kind
|
|
if k == f.kind: result = isSubrange
|
|
elif isFloatLit(ab): result = isFromIntLit
|
|
elif isIntLit(ab): result = isConvertible
|
|
elif k >= tyFloat and k <= tyFloat128:
|
|
# conversion to "float32" is not as good:
|
|
if f.kind == tyFloat32: result = isConvertible
|
|
else: result = isIntConv
|
|
else: result = isNone
|
|
|
|
proc isObjectSubtype(a, f: PType): int =
|
|
var t = a
|
|
assert t.kind == tyObject
|
|
var depth = 0
|
|
while t != nil and not sameObjectTypes(f, t):
|
|
assert t.kind == tyObject
|
|
t = t.sons[0]
|
|
if t == nil: break
|
|
t = skipTypes(t, {tyGenericInst})
|
|
inc depth
|
|
if t != nil:
|
|
result = depth
|
|
|
|
proc minRel(a, b: TTypeRelation): TTypeRelation =
|
|
if a <= b: result = a
|
|
else: result = b
|
|
|
|
proc recordRel(c: var TCandidate, f, a: PType): TTypeRelation =
|
|
result = isNone
|
|
if sameType(f, a):
|
|
result = isEqual
|
|
elif sonsLen(a) == sonsLen(f):
|
|
result = isEqual
|
|
let firstField = if f.kind == tyTuple: 0
|
|
else: 1
|
|
for i in countup(firstField, sonsLen(f) - 1):
|
|
var m = typeRel(c, f.sons[i], a.sons[i])
|
|
if m < isSubtype: return isNone
|
|
result = minRel(result, m)
|
|
if f.n != nil and a.n != nil:
|
|
for i in countup(0, sonsLen(f.n) - 1):
|
|
# check field names:
|
|
if f.n.sons[i].kind != nkSym: internalError(f.n.info, "recordRel")
|
|
elif a.n.sons[i].kind != nkSym: internalError(a.n.info, "recordRel")
|
|
else:
|
|
var x = f.n.sons[i].sym
|
|
var y = a.n.sons[i].sym
|
|
if f.kind == tyObject and typeRel(c, x.typ, y.typ) < isSubtype:
|
|
return isNone
|
|
if x.name.id != y.name.id: return isNone
|
|
|
|
proc allowsNil(f: PType): TTypeRelation {.inline.} =
|
|
result = if tfNotNil notin f.flags: isSubtype else: isNone
|
|
|
|
proc inconsistentVarTypes(f, a: PType): bool {.inline.} =
|
|
result = f.kind != a.kind and (f.kind == tyVar or a.kind == tyVar)
|
|
|
|
proc procParamTypeRel(c: var TCandidate, f, a: PType): TTypeRelation =
|
|
## For example we have:
|
|
## .. code-block:: nim
|
|
## proc myMap[T,S](sIn: seq[T], f: proc(x: T): S): seq[S] = ...
|
|
## proc innerProc[Q,W](q: Q): W = ...
|
|
## And we want to match: myMap(@[1,2,3], innerProc)
|
|
## This proc (procParamTypeRel) will do the following steps in
|
|
## three different calls:
|
|
## - matches f=T to a=Q. Since f is metatype, we resolve it
|
|
## to int (which is already known at this point). So in this case
|
|
## Q=int mapping will be saved to c.bindings.
|
|
## - matches f=S to a=W. Both of these metatypes are unknown, so we
|
|
## return with isBothMetaConvertible to ask for rerun.
|
|
## - matches f=S to a=W. At this point the return type of innerProc
|
|
## is known (we get it from c.bindings). We can use that value
|
|
## to match with f, and save back to c.bindings.
|
|
var
|
|
f = f
|
|
a = a
|
|
|
|
if a.isMetaType:
|
|
let aResolved = PType(idTableGet(c.bindings, a))
|
|
if aResolved != nil:
|
|
a = aResolved
|
|
if a.isMetaType:
|
|
if f.isMetaType:
|
|
# We are matching a generic proc (as proc param)
|
|
# to another generic type appearing in the proc
|
|
# signature. There is a change that the target
|
|
# type is already fully-determined, so we are
|
|
# going to try resolve it
|
|
f = generateTypeInstance(c.c, c.bindings, c.call.info, f)
|
|
if f == nil or f.isMetaType:
|
|
# no luck resolving the type, so the inference fails
|
|
return isBothMetaConvertible
|
|
# Note that this typeRel call will save a's resolved type into c.bindings
|
|
let reverseRel = typeRel(c, a, f)
|
|
if reverseRel >= isGeneric:
|
|
result = isInferred
|
|
#inc c.genericMatches
|
|
else:
|
|
# Note that this typeRel call will save f's resolved type into c.bindings
|
|
# if f is metatype.
|
|
result = typeRel(c, f, a)
|
|
|
|
if result <= isSubtype or inconsistentVarTypes(f, a):
|
|
result = isNone
|
|
|
|
#if result == isEqual:
|
|
# inc c.exactMatches
|
|
|
|
proc procTypeRel(c: var TCandidate, f, a: PType): TTypeRelation =
|
|
case a.kind
|
|
of tyProc:
|
|
if sonsLen(f) != sonsLen(a): return
|
|
result = isEqual # start with maximum; also correct for no
|
|
# params at all
|
|
|
|
template checkParam(f, a) =
|
|
result = minRel(result, procParamTypeRel(c, f, a))
|
|
if result == isNone: return
|
|
|
|
# Note: We have to do unification for the parameters before the
|
|
# return type!
|
|
for i in 1 .. <f.sonsLen:
|
|
checkParam(f.sons[i], a.sons[i])
|
|
|
|
if f.sons[0] != nil:
|
|
if a.sons[0] != nil:
|
|
checkParam(f.sons[0], a.sons[0])
|
|
else:
|
|
return isNone
|
|
elif a.sons[0] != nil:
|
|
return isNone
|
|
|
|
if tfNoSideEffect in f.flags and tfNoSideEffect notin a.flags:
|
|
return isNone
|
|
elif tfThread in f.flags and a.flags * {tfThread, tfNoSideEffect} == {} and
|
|
optThreadAnalysis in gGlobalOptions:
|
|
# noSideEffect implies ``tfThread``!
|
|
return isNone
|
|
elif f.flags * {tfIterator} != a.flags * {tfIterator}:
|
|
return isNone
|
|
elif f.callConv != a.callConv:
|
|
# valid to pass a 'nimcall' thingie to 'closure':
|
|
if f.callConv == ccClosure and a.callConv == ccDefault:
|
|
result = if result == isInferred: isInferredConvertible
|
|
elif result == isBothMetaConvertible: isBothMetaConvertible
|
|
else: isConvertible
|
|
else:
|
|
return isNone
|
|
when useEffectSystem:
|
|
if not compatibleEffects(f, a): return isNone
|
|
|
|
of tyNil:
|
|
result = f.allowsNil
|
|
of tyIter:
|
|
if tfIterator in f.flags: result = typeRel(c, f.base, a.base)
|
|
else: discard
|
|
|
|
proc typeRangeRel(f, a: PType): TTypeRelation {.noinline.} =
|
|
let
|
|
a0 = firstOrd(a)
|
|
a1 = lastOrd(a)
|
|
f0 = firstOrd(f)
|
|
f1 = lastOrd(f)
|
|
if a0 == f0 and a1 == f1:
|
|
result = isEqual
|
|
elif a0 >= f0 and a1 <= f1:
|
|
result = isConvertible
|
|
elif a0 <= f1 and f0 <= a1:
|
|
# X..Y and C..D overlap iff (X <= D and C <= Y)
|
|
result = isConvertible
|
|
else:
|
|
result = isNone
|
|
|
|
proc matchUserTypeClass*(c: PContext, m: var TCandidate,
|
|
ff, a: PType): TTypeRelation =
|
|
var body = ff.skipTypes({tyUserTypeClassInst})
|
|
if c.inTypeClass > 20:
|
|
localError(body.n[3].info, $body.n[3] & " too nested for type matching")
|
|
return isNone
|
|
|
|
openScope(c)
|
|
inc c.inTypeClass
|
|
|
|
defer:
|
|
dec c.inTypeClass
|
|
closeScope(c)
|
|
|
|
if ff.kind == tyUserTypeClassInst:
|
|
for i in 1 .. <(ff.len - 1):
|
|
var
|
|
typeParamName = ff.base.sons[i-1].sym.name
|
|
typ = ff.sons[i]
|
|
param: PSym
|
|
|
|
template paramSym(kind): expr =
|
|
newSym(kind, typeParamName, body.sym, body.sym.info)
|
|
|
|
case typ.kind
|
|
of tyStatic:
|
|
param = paramSym skConst
|
|
param.typ = typ.base
|
|
param.ast = typ.n
|
|
of tyUnknown:
|
|
param = paramSym skVar
|
|
param.typ = typ
|
|
else:
|
|
param = paramSym skType
|
|
param.typ = makeTypeDesc(c, typ)
|
|
|
|
addDecl(c, param)
|
|
#echo "A ", param.name.s, " ", typeToString(param.typ), " ", param.kind
|
|
|
|
for param in body.n[0]:
|
|
var
|
|
dummyName: PNode
|
|
dummyType: PType
|
|
|
|
if param.kind == nkVarTy:
|
|
dummyName = param[0]
|
|
dummyType = if a.kind != tyVar: makeVarType(c, a) else: a
|
|
else:
|
|
dummyName = param
|
|
dummyType = a
|
|
|
|
internalAssert dummyName.kind == nkIdent
|
|
var dummyParam = newSym(skVar, dummyName.ident, body.sym, body.sym.info)
|
|
dummyParam.typ = dummyType
|
|
addDecl(c, dummyParam)
|
|
#echo "B ", dummyName.ident.s, " ", typeToString(dummyType), " ", dummyparam.kind
|
|
|
|
var checkedBody = c.semTryExpr(c, body.n[3].copyTree)
|
|
if checkedBody == nil: return isNone
|
|
return isGeneric
|
|
|
|
proc shouldSkipDistinct(rules: PNode, callIdent: PIdent): bool =
|
|
if rules.kind == nkWith:
|
|
for r in rules:
|
|
if r.considerQuotedIdent == callIdent: return true
|
|
return false
|
|
else:
|
|
for r in rules:
|
|
if r.considerQuotedIdent == callIdent: return false
|
|
return true
|
|
|
|
proc maybeSkipDistinct(t: PType, callee: PSym): PType =
|
|
if t != nil and t.kind == tyDistinct and t.n != nil and
|
|
shouldSkipDistinct(t.n, callee.name):
|
|
result = t.base
|
|
else:
|
|
result = t
|
|
|
|
proc tryResolvingStaticExpr(c: var TCandidate, n: PNode): PNode =
|
|
# Consider this example:
|
|
# type Value[N: static[int]] = object
|
|
# proc foo[N](a: Value[N], r: range[0..(N-1)])
|
|
# Here, N-1 will be initially nkStaticExpr that can be evaluated only after
|
|
# N is bound to a concrete value during the matching of the first param.
|
|
# This proc is used to evaluate such static expressions.
|
|
let instantiated = replaceTypesInBody(c.c, c.bindings, n, nil)
|
|
result = c.c.semExpr(c.c, instantiated)
|
|
|
|
proc typeRel(c: var TCandidate, f, aOrig: PType, doBind = true): TTypeRelation =
|
|
# typeRel can be used to establish various relationships between types:
|
|
#
|
|
# 1) When used with concrete types, it will check for type equivalence
|
|
# or a subtype relationship.
|
|
#
|
|
# 2) When used with a concrete type against a type class (such as generic
|
|
# signature of a proc), it will check whether the concrete type is a member
|
|
# of the designated type class.
|
|
#
|
|
# 3) When used with two type classes, it will check whether the types
|
|
# matching the first type class are a strict subset of the types matching
|
|
# the other. This allows us to compare the signatures of generic procs in
|
|
# order to give preferrence to the most specific one:
|
|
#
|
|
# seq[seq[any]] is a strict subset of seq[any] and hence more specific.
|
|
|
|
result = isNone
|
|
assert(f != nil)
|
|
|
|
if f.kind == tyExpr:
|
|
if aOrig != nil: put(c.bindings, f, aOrig)
|
|
return isGeneric
|
|
|
|
assert(aOrig != nil)
|
|
|
|
# var and static arguments match regular modifier-free types
|
|
let a = aOrig.skipTypes({tyStatic, tyVar}).maybeSkipDistinct(c.calleeSym)
|
|
# XXX: Theoretically, maybeSkipDistinct could be called before we even
|
|
# start the param matching process. This could be done in `prepareOperand`
|
|
# for example, but unfortunately `prepareOperand` is not called in certain
|
|
# situation when nkDotExpr are rotated to nkDotCalls
|
|
|
|
if a.kind == tyGenericInst and
|
|
skipTypes(f, {tyVar}).kind notin {
|
|
tyGenericBody, tyGenericInvocation,
|
|
tyGenericInst, tyGenericParam} + tyTypeClasses:
|
|
return typeRel(c, f, lastSon(a))
|
|
|
|
template bindingRet(res) =
|
|
if doBind:
|
|
let bound = aOrig.skipTypes({tyRange}).skipIntLit
|
|
if doBind: put(c.bindings, f, bound)
|
|
return res
|
|
|
|
template considerPreviousT(body: stmt) {.immediate.} =
|
|
var prev = PType(idTableGet(c.bindings, f))
|
|
if prev == nil: body
|
|
else: return typeRel(c, prev, a)
|
|
|
|
case a.kind
|
|
of tyOr:
|
|
# seq[int|string] vs seq[number]
|
|
# both int and string must match against number
|
|
# but ensure that '[T: A|A]' matches as good as '[T: A]' (bug #2219):
|
|
result = isGeneric
|
|
for branch in a.sons:
|
|
let x = typeRel(c, f, branch, false)
|
|
if x == isNone: return isNone
|
|
if x < result: result = x
|
|
|
|
of tyAnd:
|
|
# seq[Sortable and Iterable] vs seq[Sortable]
|
|
# only one match is enough
|
|
for branch in a.sons:
|
|
let x = typeRel(c, f, branch, false)
|
|
if x != isNone:
|
|
return if x >= isGeneric: isGeneric else: x
|
|
result = isNone
|
|
|
|
of tyNot:
|
|
case f.kind
|
|
of tyNot:
|
|
# seq[!int] vs seq[!number]
|
|
# seq[float] matches the first, but not the second
|
|
# we must turn the problem around:
|
|
# is number a subset of int?
|
|
return typeRel(c, a.lastSon, f.lastSon)
|
|
|
|
else:
|
|
# negative type classes are essentially infinite,
|
|
# so only the `any` type class is their superset
|
|
return if f.kind == tyAnything: isGeneric
|
|
else: isNone
|
|
|
|
of tyAnything:
|
|
return if f.kind == tyAnything: isGeneric
|
|
else: isNone
|
|
|
|
of tyUserTypeClass, tyUserTypeClassInst:
|
|
# consider this: 'var g: Node' *within* a concept where 'Node'
|
|
# is a concept too (tgraph)
|
|
let x = typeRel(c, a, f, false)
|
|
if x >= isGeneric:
|
|
return isGeneric
|
|
else: discard
|
|
|
|
case f.kind
|
|
of tyEnum:
|
|
if a.kind == f.kind and sameEnumTypes(f, a): result = isEqual
|
|
elif sameEnumTypes(f, skipTypes(a, {tyRange})): result = isSubtype
|
|
of tyBool, tyChar:
|
|
if a.kind == f.kind: result = isEqual
|
|
elif skipTypes(a, {tyRange}).kind == f.kind: result = isSubtype
|
|
of tyRange:
|
|
if a.kind == f.kind:
|
|
if f.base.kind == tyNone: return isGeneric
|
|
result = typeRel(c, base(f), base(a))
|
|
# bugfix: accept integer conversions here
|
|
#if result < isGeneric: result = isNone
|
|
if result notin {isNone, isGeneric}:
|
|
# resolve any late-bound static expressions
|
|
# that may appear in the range:
|
|
for i in 0..1:
|
|
if f.n[i].kind == nkStaticExpr:
|
|
f.n.sons[i] = tryResolvingStaticExpr(c, f.n[i])
|
|
result = typeRangeRel(f, a)
|
|
else:
|
|
if skipTypes(f, {tyRange}).kind == a.kind:
|
|
result = isIntConv
|
|
elif isConvertibleToRange(skipTypes(f, {tyRange}), a):
|
|
result = isConvertible # a convertible to f
|
|
of tyInt: result = handleRange(f, a, tyInt8, tyInt32)
|
|
of tyInt8: result = handleRange(f, a, tyInt8, tyInt8)
|
|
of tyInt16: result = handleRange(f, a, tyInt8, tyInt16)
|
|
of tyInt32: result = handleRange(f, a, tyInt8, tyInt32)
|
|
of tyInt64: result = handleRange(f, a, tyInt, tyInt64)
|
|
of tyUInt: result = handleRange(f, a, tyUInt8, tyUInt32)
|
|
of tyUInt8: result = handleRange(f, a, tyUInt8, tyUInt8)
|
|
of tyUInt16: result = handleRange(f, a, tyUInt8, tyUInt16)
|
|
of tyUInt32: result = handleRange(f, a, tyUInt8, tyUInt32)
|
|
of tyUInt64: result = handleRange(f, a, tyUInt, tyUInt64)
|
|
of tyFloat: result = handleFloatRange(f, a)
|
|
of tyFloat32: result = handleFloatRange(f, a)
|
|
of tyFloat64: result = handleFloatRange(f, a)
|
|
of tyFloat128: result = handleFloatRange(f, a)
|
|
of tyVar:
|
|
if aOrig.kind == tyVar: result = typeRel(c, f.base, aOrig.base)
|
|
else: result = typeRel(c, f.base, aOrig)
|
|
of tyArray, tyArrayConstr:
|
|
# tyArrayConstr cannot happen really, but
|
|
# we wanna be safe here
|
|
case a.kind
|
|
of tyArray, tyArrayConstr:
|
|
var fRange = f.sons[0]
|
|
if fRange.kind == tyGenericParam:
|
|
var prev = PType(idTableGet(c.bindings, fRange))
|
|
if prev == nil:
|
|
put(c.bindings, fRange, a.sons[0])
|
|
fRange = a
|
|
else:
|
|
fRange = prev
|
|
result = typeRel(c, f.sons[1], a.sons[1])
|
|
if result < isGeneric: return isNone
|
|
if rangeHasStaticIf(fRange):
|
|
if tfUnresolved in fRange.flags:
|
|
# This is a range from an array instantiated with a generic
|
|
# static param. We must extract the static param here and bind
|
|
# it to the size of the currently supplied array.
|
|
var
|
|
rangeStaticT = fRange.getStaticTypeFromRange
|
|
replacementT = newTypeWithSons(c.c, tyStatic, @[tyInt.getSysType])
|
|
inputUpperBound = a.sons[0].n[1].intVal
|
|
# we must correct for the off-by-one discrepancy between
|
|
# ranges and static params:
|
|
replacementT.n = newIntNode(nkIntLit, inputUpperBound + 1)
|
|
put(c.bindings, rangeStaticT, replacementT)
|
|
return isGeneric
|
|
|
|
let len = tryResolvingStaticExpr(c, fRange.n[1])
|
|
if len.kind == nkIntLit and len.intVal+1 == lengthOrd(a):
|
|
return # if we get this far, the result is already good
|
|
else:
|
|
return isNone
|
|
elif lengthOrd(fRange) != lengthOrd(a):
|
|
result = isNone
|
|
else: discard
|
|
of tyOpenArray, tyVarargs:
|
|
# varargs[expr] is special too but handled earlier. So we only need to
|
|
# handle varargs[stmt] which is the same as varargs[typed]:
|
|
if f.kind == tyVarargs:
|
|
if tfOldSchoolExprStmt in f.sons[0].flags:
|
|
if f.sons[0].kind == tyExpr: return
|
|
elif f.sons[0].kind == tyStmt: return
|
|
case a.kind
|
|
of tyOpenArray, tyVarargs:
|
|
result = typeRel(c, base(f), base(a))
|
|
if result < isGeneric: result = isNone
|
|
of tyArrayConstr:
|
|
if (f.sons[0].kind != tyGenericParam) and (a.sons[1].kind == tyEmpty):
|
|
result = isSubtype # [] is allowed here
|
|
elif typeRel(c, base(f), a.sons[1]) >= isGeneric:
|
|
result = isSubtype
|
|
of tyArray:
|
|
if (f.sons[0].kind != tyGenericParam) and (a.sons[1].kind == tyEmpty):
|
|
result = isSubtype
|
|
elif typeRel(c, base(f), a.sons[1]) >= isGeneric:
|
|
result = isConvertible
|
|
of tySequence:
|
|
if (f.sons[0].kind != tyGenericParam) and (a.sons[0].kind == tyEmpty):
|
|
result = isConvertible
|
|
elif typeRel(c, base(f), a.sons[0]) >= isGeneric:
|
|
result = isConvertible
|
|
of tyString:
|
|
if f.kind == tyOpenArray:
|
|
if f.sons[0].kind == tyChar:
|
|
result = isConvertible
|
|
elif f.sons[0].kind == tyGenericParam and a.len > 0 and
|
|
typeRel(c, base(f), base(a)) >= isGeneric:
|
|
result = isConvertible
|
|
else: discard
|
|
of tySequence:
|
|
case a.kind
|
|
of tySequence:
|
|
if (f.sons[0].kind != tyGenericParam) and (a.sons[0].kind == tyEmpty):
|
|
result = isSubtype
|
|
else:
|
|
result = typeRel(c, f.sons[0], a.sons[0])
|
|
if result < isGeneric: result = isNone
|
|
elif tfNotNil in f.flags and tfNotNil notin a.flags:
|
|
result = isNilConversion
|
|
of tyNil: result = f.allowsNil
|
|
else: discard
|
|
of tyOrdinal:
|
|
if isOrdinalType(a):
|
|
var x = if a.kind == tyOrdinal: a.sons[0] else: a
|
|
if f.sons[0].kind == tyNone:
|
|
result = isGeneric
|
|
else:
|
|
result = typeRel(c, f.sons[0], x)
|
|
if result < isGeneric: result = isNone
|
|
elif a.kind == tyGenericParam:
|
|
result = isGeneric
|
|
of tyForward: internalError("forward type in typeRel()")
|
|
of tyNil:
|
|
if a.kind == f.kind: result = isEqual
|
|
of tyTuple:
|
|
if a.kind == tyTuple: result = recordRel(c, f, a)
|
|
of tyObject:
|
|
if a.kind == tyObject:
|
|
if sameObjectTypes(f, a):
|
|
result = isEqual
|
|
# elif tfHasMeta in f.flags: result = recordRel(c, f, a)
|
|
else:
|
|
var depth = isObjectSubtype(a, f)
|
|
if depth > 0:
|
|
inc(c.inheritancePenalty, depth)
|
|
result = isSubtype
|
|
of tyDistinct:
|
|
if a.kind == tyDistinct and sameDistinctTypes(f, a): result = isEqual
|
|
elif c.coerceDistincts: result = typeRel(c, f.base, a)
|
|
of tySet:
|
|
if a.kind == tySet:
|
|
if f.sons[0].kind != tyGenericParam and a.sons[0].kind == tyEmpty:
|
|
result = isSubtype
|
|
else:
|
|
result = typeRel(c, f.sons[0], a.sons[0])
|
|
if result <= isConvertible:
|
|
result = isNone # BUGFIX!
|
|
of tyPtr, tyRef:
|
|
if a.kind == f.kind:
|
|
# ptr[R, T] can be passed to ptr[T], but not the other way round:
|
|
if a.len < f.len: return isNone
|
|
for i in 0..f.len-2:
|
|
if typeRel(c, f.sons[i], a.sons[i]) == isNone: return isNone
|
|
result = typeRel(c, f.lastSon, a.lastSon)
|
|
if result <= isConvertible: result = isNone
|
|
elif tfNotNil in f.flags and tfNotNil notin a.flags:
|
|
result = isNilConversion
|
|
elif a.kind == tyNil: result = f.allowsNil
|
|
else: discard
|
|
of tyProc:
|
|
result = procTypeRel(c, f, a)
|
|
if result != isNone and tfNotNil in f.flags and tfNotNil notin a.flags:
|
|
result = isNilConversion
|
|
of tyPointer:
|
|
case a.kind
|
|
of tyPointer:
|
|
if tfNotNil in f.flags and tfNotNil notin a.flags:
|
|
result = isNilConversion
|
|
else:
|
|
result = isEqual
|
|
of tyNil: result = f.allowsNil
|
|
of tyProc:
|
|
if a.callConv != ccClosure: result = isConvertible
|
|
of tyPtr:
|
|
# 'pointer' is NOT compatible to regionized pointers
|
|
# so 'dealloc(regionPtr)' fails:
|
|
if a.len == 1: result = isConvertible
|
|
of tyCString: result = isConvertible
|
|
else: discard
|
|
of tyString:
|
|
case a.kind
|
|
of tyString:
|
|
if tfNotNil in f.flags and tfNotNil notin a.flags:
|
|
result = isNilConversion
|
|
else:
|
|
result = isEqual
|
|
of tyNil: result = f.allowsNil
|
|
else: discard
|
|
of tyCString:
|
|
# conversion from string to cstring is automatic:
|
|
case a.kind
|
|
of tyCString:
|
|
if tfNotNil in f.flags and tfNotNil notin a.flags:
|
|
result = isNilConversion
|
|
else:
|
|
result = isEqual
|
|
of tyNil: result = f.allowsNil
|
|
of tyString: result = isConvertible
|
|
of tyPtr:
|
|
# ptr[Tag, char] is not convertible to 'cstring' for now:
|
|
if a.len == 1 and a.sons[0].kind == tyChar: result = isConvertible
|
|
of tyArray:
|
|
if (firstOrd(a.sons[0]) == 0) and
|
|
(skipTypes(a.sons[0], {tyRange}).kind in {tyInt..tyInt64}) and
|
|
(a.sons[1].kind == tyChar):
|
|
result = isConvertible
|
|
else: discard
|
|
|
|
of tyEmpty:
|
|
if a.kind == tyEmpty: result = isEqual
|
|
|
|
of tyGenericInst:
|
|
let roota = a.skipGenericAlias
|
|
let rootf = f.skipGenericAlias
|
|
if a.kind == tyGenericInst and roota.base == rootf.base:
|
|
for i in 1 .. rootf.sonsLen-2:
|
|
let ff = rootf.sons[i]
|
|
let aa = roota.sons[i]
|
|
result = typeRel(c, ff, aa)
|
|
if result == isNone: return
|
|
if ff.kind == tyRange and result != isEqual: return isNone
|
|
#result = isGeneric
|
|
# XXX See bug #2220. A[int] should match A[int] better than some generic X
|
|
else:
|
|
result = typeRel(c, lastSon(f), a)
|
|
|
|
of tyGenericBody:
|
|
considerPreviousT:
|
|
if a.kind == tyGenericInst and a.sons[0] == f:
|
|
bindingRet isGeneric
|
|
let ff = lastSon(f)
|
|
if ff != nil: result = typeRel(c, ff, a)
|
|
|
|
of tyGenericInvocation:
|
|
var x = a.skipGenericAlias
|
|
if x.kind == tyGenericInvocation or f.sons[0].kind != tyGenericBody:
|
|
#InternalError("typeRel: tyGenericInvocation -> tyGenericInvocation")
|
|
# simply no match for now:
|
|
discard
|
|
elif x.kind == tyGenericInst and
|
|
(f.sons[0] == x.sons[0]) and
|
|
(sonsLen(x) - 1 == sonsLen(f)):
|
|
for i in countup(1, sonsLen(f) - 1):
|
|
if x.sons[i].kind == tyGenericParam:
|
|
internalError("wrong instantiated type!")
|
|
elif typeRel(c, f.sons[i], x.sons[i]) <= isSubtype: return
|
|
result = isGeneric
|
|
else:
|
|
let genericBody = f.sons[0]
|
|
result = typeRel(c, genericBody, x)
|
|
if result != isNone:
|
|
# see tests/generics/tgeneric3.nim for an example that triggers this
|
|
# piece of code:
|
|
#
|
|
# proc internalFind[T,D](n: PNode[T,D], key: T): ref TItem[T,D]
|
|
# proc internalPut[T,D](ANode: ref TNode[T,D], Akey: T, Avalue: D,
|
|
# Oldvalue: var D): ref TNode[T,D]
|
|
# var root = internalPut[int, int](nil, 312, 312, oldvalue)
|
|
# var it1 = internalFind(root, 312) # cannot instantiate: 'D'
|
|
#
|
|
# we steal the generic parameters from the tyGenericBody:
|
|
for i in countup(1, sonsLen(f) - 1):
|
|
var x = PType(idTableGet(c.bindings, genericBody.sons[i-1]))
|
|
if x == nil:
|
|
discard "maybe fine (for eg. a==tyNil)"
|
|
elif x.kind in {tyGenericInvocation, tyGenericParam}:
|
|
internalError("wrong instantiated type!")
|
|
else:
|
|
put(c.bindings, f.sons[i], x)
|
|
|
|
of tyAnd:
|
|
considerPreviousT:
|
|
result = isEqual
|
|
for branch in f.sons:
|
|
let x = typeRel(c, branch, aOrig)
|
|
if x < isSubtype: return isNone
|
|
# 'and' implies minimum matching result:
|
|
if x < result: result = x
|
|
bindingRet result
|
|
|
|
of tyOr:
|
|
considerPreviousT:
|
|
result = isNone
|
|
for branch in f.sons:
|
|
let x = typeRel(c, branch, aOrig)
|
|
# 'or' implies maximum matching result:
|
|
if x > result: result = x
|
|
if result >= isSubtype:
|
|
bindingRet result
|
|
else:
|
|
result = isNone
|
|
|
|
of tyNot:
|
|
considerPreviousT:
|
|
for branch in f.sons:
|
|
if typeRel(c, branch, aOrig) != isNone:
|
|
return isNone
|
|
|
|
bindingRet isGeneric
|
|
|
|
of tyAnything:
|
|
considerPreviousT:
|
|
var concrete = concreteType(c, a)
|
|
if concrete != nil and doBind:
|
|
put(c.bindings, f, concrete)
|
|
return isGeneric
|
|
|
|
of tyBuiltInTypeClass:
|
|
considerPreviousT:
|
|
let targetKind = f.sons[0].kind
|
|
if targetKind == a.skipTypes({tyRange, tyGenericInst}).kind or
|
|
(targetKind in {tyProc, tyPointer} and a.kind == tyNil):
|
|
put(c.bindings, f, a)
|
|
return isGeneric
|
|
else:
|
|
return isNone
|
|
|
|
of tyUserTypeClass, tyUserTypeClassInst:
|
|
considerPreviousT:
|
|
result = matchUserTypeClass(c.c, c, f, aOrig)
|
|
if result == isGeneric:
|
|
put(c.bindings, f, a)
|
|
|
|
of tyCompositeTypeClass:
|
|
considerPreviousT:
|
|
if typeRel(c, f.sons[1], a) != isNone:
|
|
put(c.bindings, f, a)
|
|
return isGeneric
|
|
else:
|
|
return isNone
|
|
|
|
of tyGenericParam:
|
|
var x = PType(idTableGet(c.bindings, f))
|
|
if x == nil:
|
|
if c.callee.kind == tyGenericBody and
|
|
f.kind == tyGenericParam and not c.typedescMatched:
|
|
# XXX: The fact that generic types currently use tyGenericParam for
|
|
# their parameters is really a misnomer. tyGenericParam means "match
|
|
# any value" and what we need is "match any type", which can be encoded
|
|
# by a tyTypeDesc params. Unfortunately, this requires more substantial
|
|
# changes in semtypinst and elsewhere.
|
|
if tfWildcard in a.flags:
|
|
result = isGeneric
|
|
elif a.kind == tyTypeDesc:
|
|
if f.sonsLen == 0:
|
|
result = isGeneric
|
|
else:
|
|
internalAssert a.sons != nil and a.sons.len > 0
|
|
c.typedescMatched = true
|
|
var aa = a
|
|
while aa.kind in {tyTypeDesc, tyGenericParam} and
|
|
aa.len > 0:
|
|
aa = lastSon(aa)
|
|
result = typeRel(c, f.base, aa)
|
|
if result > isGeneric: result = isGeneric
|
|
else:
|
|
result = isNone
|
|
else:
|
|
if f.sonsLen > 0 and f.sons[0].kind != tyNone:
|
|
result = typeRel(c, f.lastSon, a)
|
|
if doBind and result notin {isNone, isGeneric}:
|
|
let concrete = concreteType(c, a)
|
|
if concrete == nil: return isNone
|
|
put(c.bindings, f, concrete)
|
|
else:
|
|
result = isGeneric
|
|
|
|
if result == isGeneric:
|
|
var concrete = a
|
|
if tfWildcard in a.flags:
|
|
a.sym.kind = skType
|
|
a.flags.excl tfWildcard
|
|
else:
|
|
concrete = concreteType(c, a)
|
|
if concrete == nil:
|
|
return isNone
|
|
if doBind:
|
|
put(c.bindings, f, concrete)
|
|
elif result > isGeneric:
|
|
result = isGeneric
|
|
elif a.kind == tyEmpty:
|
|
result = isGeneric
|
|
elif x.kind == tyGenericParam:
|
|
result = isGeneric
|
|
else:
|
|
result = typeRel(c, x, a) # check if it fits
|
|
if result > isGeneric: result = isGeneric
|
|
|
|
of tyStatic:
|
|
let prev = PType(idTableGet(c.bindings, f))
|
|
if prev == nil:
|
|
if aOrig.kind == tyStatic:
|
|
result = typeRel(c, f.lastSon, a)
|
|
if result != isNone and f.n != nil:
|
|
if not exprStructuralEquivalent(f.n, aOrig.n):
|
|
result = isNone
|
|
if result != isNone: put(c.bindings, f, aOrig)
|
|
else:
|
|
result = isNone
|
|
elif prev.kind == tyStatic:
|
|
if aOrig.kind == tyStatic:
|
|
result = typeRel(c, prev.lastSon, a)
|
|
if result != isNone and prev.n != nil:
|
|
if not exprStructuralEquivalent(prev.n, aOrig.n):
|
|
result = isNone
|
|
else: result = isNone
|
|
else:
|
|
# XXX endless recursion?
|
|
#result = typeRel(c, prev, aOrig)
|
|
result = isNone
|
|
of tyTypeDesc:
|
|
var prev = PType(idTableGet(c.bindings, f))
|
|
if prev == nil:
|
|
# proc foo(T: typedesc, x: T)
|
|
# when `f` is an unresolved typedesc, `a` could be any
|
|
# type, so we should not perform this check earlier
|
|
if a.kind != tyTypeDesc: return isNone
|
|
|
|
if f.base.kind == tyNone:
|
|
result = isGeneric
|
|
else:
|
|
result = typeRel(c, f.base, a.base)
|
|
|
|
if result != isNone:
|
|
put(c.bindings, f, a)
|
|
else:
|
|
if tfUnresolved in f.flags:
|
|
result = typeRel(c, prev.base, a)
|
|
elif a.kind == tyTypeDesc:
|
|
result = typeRel(c, prev.base, a.base)
|
|
else:
|
|
result = isNone
|
|
|
|
of tyIter:
|
|
if a.kind == tyIter or
|
|
(a.kind == tyProc and tfIterator in a.flags):
|
|
result = typeRel(c, f.base, a.base)
|
|
else:
|
|
result = isNone
|
|
|
|
of tyStmt:
|
|
if aOrig != nil and tfOldSchoolExprStmt notin f.flags:
|
|
put(c.bindings, f, aOrig)
|
|
result = isGeneric
|
|
|
|
of tyProxy:
|
|
result = isEqual
|
|
|
|
of tyFromExpr:
|
|
# fix the expression, so it contains the already instantiated types
|
|
if f.n == nil or f.n.kind == nkEmpty: return isGeneric
|
|
let reevaluated = tryResolvingStaticExpr(c, f.n)
|
|
case reevaluated.typ.kind
|
|
of tyTypeDesc:
|
|
result = typeRel(c, a, reevaluated.typ.base)
|
|
of tyStatic:
|
|
result = typeRel(c, a, reevaluated.typ.base)
|
|
if result != isNone and reevaluated.typ.n != nil:
|
|
if not exprStructuralEquivalent(aOrig.n, reevaluated.typ.n):
|
|
result = isNone
|
|
else:
|
|
localError(f.n.info, errTypeExpected)
|
|
result = isNone
|
|
|
|
of tyNone:
|
|
if a.kind == tyNone: result = isEqual
|
|
else:
|
|
internalError " unknown type kind " & $f.kind
|
|
|
|
proc cmpTypes*(c: PContext, f, a: PType): TTypeRelation =
|
|
var m: TCandidate
|
|
initCandidate(c, m, f)
|
|
result = typeRel(m, f, a)
|
|
|
|
proc getInstantiatedType(c: PContext, arg: PNode, m: TCandidate,
|
|
f: PType): PType =
|
|
result = PType(idTableGet(m.bindings, f))
|
|
if result == nil:
|
|
result = generateTypeInstance(c, m.bindings, arg, f)
|
|
if result == nil:
|
|
internalError(arg.info, "getInstantiatedType")
|
|
result = errorType(c)
|
|
|
|
proc implicitConv(kind: TNodeKind, f: PType, arg: PNode, m: TCandidate,
|
|
c: PContext): PNode =
|
|
result = newNodeI(kind, arg.info)
|
|
if containsGenericType(f):
|
|
if not m.hasFauxMatch:
|
|
result.typ = getInstantiatedType(c, arg, m, f)
|
|
else:
|
|
result.typ = errorType(c)
|
|
else:
|
|
result.typ = f
|
|
if result.typ == nil: internalError(arg.info, "implicitConv")
|
|
addSon(result, ast.emptyNode)
|
|
addSon(result, arg)
|
|
|
|
proc userConvMatch(c: PContext, m: var TCandidate, f, a: PType,
|
|
arg: PNode): PNode =
|
|
result = nil
|
|
for i in countup(0, len(c.converters) - 1):
|
|
var src = c.converters[i].typ.sons[1]
|
|
var dest = c.converters[i].typ.sons[0]
|
|
# for generic type converters we need to check 'src <- a' before
|
|
# 'f <- dest' in order to not break the unification:
|
|
# see tests/tgenericconverter:
|
|
let srca = typeRel(m, src, a)
|
|
if srca notin {isEqual, isGeneric}: continue
|
|
|
|
let destIsGeneric = containsGenericType(dest)
|
|
if destIsGeneric:
|
|
dest = generateTypeInstance(c, m.bindings, arg, dest)
|
|
let fdest = typeRel(m, f, dest)
|
|
if fdest in {isEqual, isGeneric}:
|
|
markUsed(arg.info, c.converters[i])
|
|
var s = newSymNode(c.converters[i])
|
|
s.typ = c.converters[i].typ
|
|
s.info = arg.info
|
|
result = newNodeIT(nkHiddenCallConv, arg.info, dest)
|
|
addSon(result, s)
|
|
addSon(result, copyTree(arg))
|
|
inc(m.convMatches)
|
|
m.genericConverter = srca == isGeneric or destIsGeneric
|
|
return result
|
|
|
|
proc localConvMatch(c: PContext, m: var TCandidate, f, a: PType,
|
|
arg: PNode): PNode =
|
|
# arg.typ can be nil in 'suggest':
|
|
if isNil(arg.typ): return nil
|
|
|
|
# sem'checking for 'echo' needs to be re-entrant:
|
|
# XXX we will revisit this issue after 0.10.2 is released
|
|
if f == arg.typ and arg.kind == nkHiddenStdConv: return arg
|
|
|
|
var call = newNodeI(nkCall, arg.info)
|
|
call.add(f.n.copyTree)
|
|
call.add(arg.copyTree)
|
|
result = c.semOverloadedCall(c, call, call, routineKinds)
|
|
if result != nil:
|
|
# resulting type must be consistent with the other arguments:
|
|
var r = typeRel(m, f.sons[0], result.typ)
|
|
if r < isGeneric: return nil
|
|
if result.kind == nkCall: result.kind = nkHiddenCallConv
|
|
inc(m.convMatches)
|
|
if r == isGeneric:
|
|
result.typ = getInstantiatedType(c, arg, m, base(f))
|
|
m.baseTypeMatch = true
|
|
|
|
proc isInlineIterator*(t: PType): bool =
|
|
result = t.kind == tyIter or
|
|
(t.kind == tyBuiltInTypeClass and t.base.kind == tyIter)
|
|
|
|
proc incMatches(m: var TCandidate; r: TTypeRelation; convMatch = 1) =
|
|
case r
|
|
of isConvertible, isIntConv: inc(m.convMatches, convMatch)
|
|
of isSubtype, isSubrange: inc(m.subtypeMatches)
|
|
of isGeneric, isInferred, isBothMetaConvertible: inc(m.genericMatches)
|
|
of isFromIntLit: inc(m.intConvMatches, 256)
|
|
of isInferredConvertible:
|
|
inc(m.convMatches)
|
|
of isEqual: inc(m.exactMatches)
|
|
of isNone: discard
|
|
|
|
proc paramTypesMatchAux(m: var TCandidate, f, argType: PType,
|
|
argSemantized, argOrig: PNode): PNode =
|
|
var
|
|
fMaybeStatic = f.skipTypes({tyDistinct})
|
|
arg = argSemantized
|
|
argType = argType
|
|
c = m.c
|
|
|
|
if tfHasStatic in fMaybeStatic.flags:
|
|
# XXX: When implicit statics are the default
|
|
# this will be done earlier - we just have to
|
|
# make sure that static types enter here
|
|
|
|
# XXX: weaken tyGenericParam and call it tyGenericPlaceholder
|
|
# and finally start using tyTypedesc for generic types properly.
|
|
if argType.kind == tyGenericParam and tfWildcard in argType.flags:
|
|
argType.assignType(f)
|
|
# put(m.bindings, f, argType)
|
|
return argSemantized
|
|
|
|
if argType.kind == tyStatic:
|
|
if m.callee.kind == tyGenericBody and tfGenericTypeParam notin argType.flags:
|
|
result = newNodeIT(nkType, argOrig.info, makeTypeFromExpr(c, arg))
|
|
return
|
|
else:
|
|
var evaluated = c.semTryConstExpr(c, arg)
|
|
if evaluated != nil:
|
|
arg.typ = newTypeS(tyStatic, c)
|
|
arg.typ.sons = @[evaluated.typ]
|
|
arg.typ.n = evaluated
|
|
argType = arg.typ
|
|
|
|
var
|
|
a = if c.inTypeClass > 0: argType.skipTypes({tyTypeDesc, tyFieldAccessor})
|
|
else: argType
|
|
|
|
r = typeRel(m, f, a)
|
|
|
|
if r != isNone and m.calleeSym != nil and
|
|
m.calleeSym.kind in {skMacro, skTemplate}:
|
|
# XXX: duplicating this is ugly, but we cannot (!) move this
|
|
# directly into typeRel using return-like templates
|
|
incMatches(m, r)
|
|
if f.kind == tyStmt:
|
|
return arg
|
|
elif f.kind == tyTypeDesc:
|
|
return arg
|
|
elif f.kind == tyStatic:
|
|
return arg.typ.n
|
|
else:
|
|
return argSemantized # argOrig
|
|
|
|
if r != isNone and f.isInlineIterator:
|
|
var inlined = newTypeS(tyStatic, c)
|
|
inlined.sons = @[argType]
|
|
inlined.n = argSemantized
|
|
put(m.bindings, f, inlined)
|
|
return argSemantized
|
|
|
|
# If r == isBothMetaConvertible then we rerun typeRel.
|
|
# bothMetaCounter is for safety to avoid any infinite loop,
|
|
# I don't have any example when it is needed.
|
|
# lastBindingsLenth is used to check whether m.bindings remains the same,
|
|
# because in that case there is no point in continuing.
|
|
var bothMetaCounter = 0
|
|
var lastBindingsLength = -1
|
|
while r == isBothMetaConvertible and
|
|
lastBindingsLength != m.bindings.counter and
|
|
bothMetaCounter < 100:
|
|
lastBindingsLength = m.bindings.counter
|
|
inc(bothMetaCounter)
|
|
if arg.kind in {nkProcDef, nkIteratorDef} + nkLambdaKinds:
|
|
result = c.semInferredLambda(c, m.bindings, arg)
|
|
elif arg.kind != nkSym:
|
|
return nil
|
|
else:
|
|
let inferred = c.semGenerateInstance(c, arg.sym, m.bindings, arg.info)
|
|
result = newSymNode(inferred, arg.info)
|
|
inc(m.convMatches)
|
|
arg = result
|
|
r = typeRel(m, f, arg.typ)
|
|
|
|
case r
|
|
of isConvertible:
|
|
inc(m.convMatches)
|
|
result = implicitConv(nkHiddenStdConv, f, arg, m, c)
|
|
of isIntConv:
|
|
# I'm too lazy to introduce another ``*matches`` field, so we conflate
|
|
# ``isIntConv`` and ``isIntLit`` here:
|
|
inc(m.intConvMatches)
|
|
result = implicitConv(nkHiddenStdConv, f, arg, m, c)
|
|
of isSubtype:
|
|
inc(m.subtypeMatches)
|
|
if f.kind == tyTypeDesc:
|
|
result = arg
|
|
else:
|
|
result = implicitConv(nkHiddenSubConv, f, arg, m, c)
|
|
of isSubrange:
|
|
inc(m.subtypeMatches)
|
|
if f.kind == tyVar:
|
|
result = arg
|
|
else:
|
|
result = implicitConv(nkHiddenStdConv, f, arg, m, c)
|
|
of isInferred, isInferredConvertible:
|
|
if arg.kind in {nkProcDef, nkIteratorDef} + nkLambdaKinds:
|
|
result = c.semInferredLambda(c, m.bindings, arg)
|
|
elif arg.kind != nkSym:
|
|
return nil
|
|
else:
|
|
let inferred = c.semGenerateInstance(c, arg.sym, m.bindings, arg.info)
|
|
result = newSymNode(inferred, arg.info)
|
|
if r == isInferredConvertible:
|
|
inc(m.convMatches)
|
|
result = implicitConv(nkHiddenStdConv, f, result, m, c)
|
|
else:
|
|
inc(m.genericMatches)
|
|
of isGeneric:
|
|
inc(m.genericMatches)
|
|
if arg.typ == nil:
|
|
result = arg
|
|
elif skipTypes(arg.typ, abstractVar-{tyTypeDesc}).kind == tyTuple:
|
|
result = implicitConv(nkHiddenSubConv, f, arg, m, c)
|
|
elif arg.typ.isEmptyContainer:
|
|
result = arg.copyTree
|
|
result.typ = getInstantiatedType(c, arg, m, f)
|
|
else:
|
|
result = arg
|
|
of isBothMetaConvertible:
|
|
# This is the result for the 101th time.
|
|
result = nil
|
|
of isFromIntLit:
|
|
# too lazy to introduce another ``*matches`` field, so we conflate
|
|
# ``isIntConv`` and ``isIntLit`` here:
|
|
inc(m.intConvMatches, 256)
|
|
result = implicitConv(nkHiddenStdConv, f, arg, m, c)
|
|
of isEqual:
|
|
inc(m.exactMatches)
|
|
result = arg
|
|
if skipTypes(f, abstractVar-{tyTypeDesc}).kind in {tyTuple}:
|
|
result = implicitConv(nkHiddenSubConv, f, arg, m, c)
|
|
of isNone:
|
|
# do not do this in ``typeRel`` as it then can't infere T in ``ref T``:
|
|
if a.kind in {tyProxy, tyUnknown}:
|
|
inc(m.genericMatches)
|
|
m.fauxMatch = a.kind
|
|
return arg
|
|
result = userConvMatch(c, m, f, a, arg)
|
|
# check for a base type match, which supports varargs[T] without []
|
|
# constructor in a call:
|
|
if result == nil and f.kind == tyVarargs:
|
|
if f.n != nil:
|
|
result = localConvMatch(c, m, f, a, arg)
|
|
else:
|
|
r = typeRel(m, base(f), a)
|
|
if r >= isGeneric:
|
|
inc(m.convMatches)
|
|
result = copyTree(arg)
|
|
if r == isGeneric:
|
|
result.typ = getInstantiatedType(c, arg, m, base(f))
|
|
m.baseTypeMatch = true
|
|
else:
|
|
result = userConvMatch(c, m, base(f), a, arg)
|
|
|
|
proc paramTypesMatch*(m: var TCandidate, f, a: PType,
|
|
arg, argOrig: PNode): PNode =
|
|
if arg == nil or arg.kind notin nkSymChoices:
|
|
result = paramTypesMatchAux(m, f, a, arg, argOrig)
|
|
else:
|
|
# CAUTION: The order depends on the used hashing scheme. Thus it is
|
|
# incorrect to simply use the first fitting match. However, to implement
|
|
# this correctly is inefficient. We have to copy `m` here to be able to
|
|
# roll back the side effects of the unification algorithm.
|
|
let c = m.c
|
|
var x, y, z: TCandidate
|
|
initCandidate(c, x, m.callee)
|
|
initCandidate(c, y, m.callee)
|
|
initCandidate(c, z, m.callee)
|
|
x.calleeSym = m.calleeSym
|
|
y.calleeSym = m.calleeSym
|
|
z.calleeSym = m.calleeSym
|
|
var best = -1
|
|
for i in countup(0, sonsLen(arg) - 1):
|
|
if arg.sons[i].sym.kind in {skProc, skMethod, skConverter}+skIterators:
|
|
copyCandidate(z, m)
|
|
z.callee = arg.sons[i].typ
|
|
z.calleeSym = arg.sons[i].sym
|
|
#if arg.sons[i].sym.name.s == "cmp":
|
|
# ggDebug = true
|
|
# echo "CALLLEEEEEEEE A ", typeToString(z.callee)
|
|
# XXX this is still all wrong: (T, T) should be 2 generic matches
|
|
# and (int, int) 2 exact matches, etc. Essentially you cannot call
|
|
# typeRel here and expect things to work!
|
|
let r = typeRel(z, f, arg.sons[i].typ)
|
|
incMatches(z, r, 2)
|
|
#if arg.sons[i].sym.name.s == "cmp": # and arg.info.line == 606:
|
|
# echo "M ", r, " ", arg.info, " ", typeToString(arg.sons[i].sym.typ)
|
|
# writeMatches(z)
|
|
if r != isNone:
|
|
z.state = csMatch
|
|
case x.state
|
|
of csEmpty, csNoMatch:
|
|
x = z
|
|
best = i
|
|
of csMatch:
|
|
let cmp = cmpCandidates(x, z)
|
|
if cmp < 0:
|
|
best = i
|
|
x = z
|
|
elif cmp == 0:
|
|
y = z # z is as good as x
|
|
if x.state == csEmpty:
|
|
result = nil
|
|
elif y.state == csMatch and cmpCandidates(x, y) == 0:
|
|
if x.state != csMatch:
|
|
internalError(arg.info, "x.state is not csMatch")
|
|
# ambiguous: more than one symbol fits!
|
|
# See tsymchoice_for_expr as an example. 'f.kind == tyExpr' should match
|
|
# anyway:
|
|
if f.kind == tyExpr: result = arg
|
|
else: result = nil
|
|
else:
|
|
# only one valid interpretation found:
|
|
markUsed(arg.info, arg.sons[best].sym)
|
|
styleCheckUse(arg.info, arg.sons[best].sym)
|
|
result = paramTypesMatchAux(m, f, arg.sons[best].typ, arg.sons[best],
|
|
argOrig)
|
|
|
|
|
|
proc setSon(father: PNode, at: int, son: PNode) =
|
|
if sonsLen(father) <= at: setLen(father.sons, at + 1)
|
|
father.sons[at] = son
|
|
|
|
# we are allowed to modify the calling node in the 'prepare*' procs:
|
|
proc prepareOperand(c: PContext; formal: PType; a: PNode): PNode =
|
|
if formal.kind == tyExpr and formal.len != 1:
|
|
# {tyTypeDesc, tyExpr, tyStmt, tyProxy}:
|
|
# a.typ == nil is valid
|
|
result = a
|
|
elif a.typ.isNil:
|
|
# XXX This is unsound! 'formal' can differ from overloaded routine to
|
|
# overloaded routine!
|
|
let flags = if formal.kind == tyIter: {efDetermineType, efWantIterator}
|
|
else: {efDetermineType, efAllowStmt}
|
|
#elif formal.kind == tyStmt: {efDetermineType, efWantStmt}
|
|
#else: {efDetermineType}
|
|
result = c.semOperand(c, a, flags)
|
|
else:
|
|
result = a
|
|
|
|
proc prepareOperand(c: PContext; a: PNode): PNode =
|
|
if a.typ.isNil:
|
|
result = c.semOperand(c, a, {efDetermineType})
|
|
else:
|
|
result = a
|
|
|
|
proc prepareNamedParam(a: PNode) =
|
|
if a.sons[0].kind != nkIdent:
|
|
var info = a.sons[0].info
|
|
a.sons[0] = newIdentNode(considerQuotedIdent(a.sons[0]), info)
|
|
|
|
proc arrayConstr(c: PContext, n: PNode): PType =
|
|
result = newTypeS(tyArrayConstr, c)
|
|
rawAddSon(result, makeRangeType(c, 0, 0, n.info))
|
|
addSonSkipIntLit(result, skipTypes(n.typ, {tyGenericInst, tyVar, tyOrdinal}))
|
|
|
|
proc arrayConstr(c: PContext, info: TLineInfo): PType =
|
|
result = newTypeS(tyArrayConstr, c)
|
|
rawAddSon(result, makeRangeType(c, 0, -1, info))
|
|
rawAddSon(result, newTypeS(tyEmpty, c)) # needs an empty basetype!
|
|
|
|
proc incrIndexType(t: PType) =
|
|
assert t.kind == tyArrayConstr
|
|
inc t.sons[0].n.sons[1].intVal
|
|
|
|
template isVarargsUntyped(x): expr =
|
|
x.kind == tyVarargs and x.sons[0].kind == tyExpr and
|
|
tfOldSchoolExprStmt notin x.sons[0].flags
|
|
|
|
proc matchesAux(c: PContext, n, nOrig: PNode,
|
|
m: var TCandidate, marker: var IntSet) =
|
|
template checkConstraint(n: expr) {.immediate, dirty.} =
|
|
if not formal.constraint.isNil:
|
|
if matchNodeKinds(formal.constraint, n):
|
|
# better match over other routines with no such restriction:
|
|
inc(m.genericMatches, 100)
|
|
else:
|
|
m.state = csNoMatch
|
|
return
|
|
if formal.typ.kind == tyVar:
|
|
if not n.isLValue:
|
|
m.state = csNoMatch
|
|
return
|
|
|
|
var
|
|
# iterates over formal parameters
|
|
f = if m.callee.kind != tyGenericBody: 1
|
|
else: 0
|
|
# iterates over the actual given arguments
|
|
a = 1
|
|
|
|
m.state = csMatch # until proven otherwise
|
|
m.call = newNodeI(n.kind, n.info)
|
|
m.call.typ = base(m.callee) # may be nil
|
|
var formalLen = m.callee.n.len
|
|
addSon(m.call, copyTree(n.sons[0]))
|
|
var container: PNode = nil # constructed container
|
|
var formal: PSym = if formalLen > 1: m.callee.n.sons[1].sym else: nil
|
|
|
|
while a < n.len:
|
|
if a >= formalLen-1 and formal != nil and formal.typ.isVarargsUntyped:
|
|
if container.isNil:
|
|
container = newNodeIT(nkBracket, n.sons[a].info, arrayConstr(c, n.info))
|
|
setSon(m.call, formal.position + 1, container)
|
|
else:
|
|
incrIndexType(container.typ)
|
|
addSon(container, n.sons[a])
|
|
elif n.sons[a].kind == nkExprEqExpr:
|
|
# named param
|
|
# check if m.callee has such a param:
|
|
prepareNamedParam(n.sons[a])
|
|
if n.sons[a].sons[0].kind != nkIdent:
|
|
localError(n.sons[a].info, errNamedParamHasToBeIdent)
|
|
m.state = csNoMatch
|
|
return
|
|
formal = getSymFromList(m.callee.n, n.sons[a].sons[0].ident, 1)
|
|
if formal == nil:
|
|
# no error message!
|
|
m.state = csNoMatch
|
|
return
|
|
if containsOrIncl(marker, formal.position):
|
|
# already in namedParams:
|
|
localError(n.sons[a].info, errCannotBindXTwice, formal.name.s)
|
|
m.state = csNoMatch
|
|
return
|
|
m.baseTypeMatch = false
|
|
n.sons[a].sons[1] = prepareOperand(c, formal.typ, n.sons[a].sons[1])
|
|
n.sons[a].typ = n.sons[a].sons[1].typ
|
|
var arg = paramTypesMatch(m, formal.typ, n.sons[a].typ,
|
|
n.sons[a].sons[1], n.sons[a].sons[1])
|
|
if arg == nil:
|
|
m.state = csNoMatch
|
|
return
|
|
checkConstraint(n.sons[a].sons[1])
|
|
if m.baseTypeMatch:
|
|
#assert(container == nil)
|
|
container = newNodeIT(nkBracket, n.sons[a].info, arrayConstr(c, arg))
|
|
addSon(container, arg)
|
|
setSon(m.call, formal.position + 1, container)
|
|
if f != formalLen - 1: container = nil
|
|
else:
|
|
setSon(m.call, formal.position + 1, arg)
|
|
inc f
|
|
else:
|
|
# unnamed param
|
|
if f >= formalLen:
|
|
# too many arguments?
|
|
if tfVarargs in m.callee.flags:
|
|
# is ok... but don't increment any counters...
|
|
# we have no formal here to snoop at:
|
|
n.sons[a] = prepareOperand(c, n.sons[a])
|
|
if skipTypes(n.sons[a].typ, abstractVar-{tyTypeDesc}).kind==tyString:
|
|
addSon(m.call, implicitConv(nkHiddenStdConv, getSysType(tyCString),
|
|
copyTree(n.sons[a]), m, c))
|
|
else:
|
|
addSon(m.call, copyTree(n.sons[a]))
|
|
elif formal != nil and formal.typ.kind == tyVarargs:
|
|
# beware of the side-effects in 'prepareOperand'! So only do it for
|
|
# varargs matching. See tests/metatype/tstatic_overloading.
|
|
m.baseTypeMatch = false
|
|
n.sons[a] = prepareOperand(c, formal.typ, n.sons[a])
|
|
var arg = paramTypesMatch(m, formal.typ, n.sons[a].typ,
|
|
n.sons[a], nOrig.sons[a])
|
|
if arg != nil and m.baseTypeMatch and container != nil:
|
|
addSon(container, arg)
|
|
incrIndexType(container.typ)
|
|
else:
|
|
m.state = csNoMatch
|
|
return
|
|
else:
|
|
m.state = csNoMatch
|
|
return
|
|
else:
|
|
if m.callee.n.sons[f].kind != nkSym:
|
|
internalError(n.sons[a].info, "matches")
|
|
return
|
|
formal = m.callee.n.sons[f].sym
|
|
if containsOrIncl(marker, formal.position) and container.isNil:
|
|
# already in namedParams:
|
|
localError(n.sons[a].info, errCannotBindXTwice, formal.name.s)
|
|
m.state = csNoMatch
|
|
return
|
|
m.baseTypeMatch = false
|
|
n.sons[a] = prepareOperand(c, formal.typ, n.sons[a])
|
|
var arg = paramTypesMatch(m, formal.typ, n.sons[a].typ,
|
|
n.sons[a], nOrig.sons[a])
|
|
if arg == nil:
|
|
m.state = csNoMatch
|
|
return
|
|
if m.baseTypeMatch:
|
|
#assert(container == nil)
|
|
if container.isNil:
|
|
container = newNodeIT(nkBracket, n.sons[a].info, arrayConstr(c, arg))
|
|
else:
|
|
incrIndexType(container.typ)
|
|
addSon(container, arg)
|
|
setSon(m.call, formal.position + 1,
|
|
implicitConv(nkHiddenStdConv, formal.typ, container, m, c))
|
|
#if f != formalLen - 1: container = nil
|
|
|
|
# pick the formal from the end, so that 'x, y, varargs, z' works:
|
|
f = max(f, formalLen - n.len + a + 1)
|
|
else:
|
|
setSon(m.call, formal.position + 1, arg)
|
|
inc(f)
|
|
container = nil
|
|
checkConstraint(n.sons[a])
|
|
inc(a)
|
|
|
|
proc semFinishOperands*(c: PContext, n: PNode) =
|
|
# this needs to be called to ensure that after overloading resolution every
|
|
# argument has been sem'checked:
|
|
for i in 1 .. <n.len:
|
|
n.sons[i] = prepareOperand(c, n.sons[i])
|
|
|
|
proc partialMatch*(c: PContext, n, nOrig: PNode, m: var TCandidate) =
|
|
# for 'suggest' support:
|
|
var marker = initIntSet()
|
|
matchesAux(c, n, nOrig, m, marker)
|
|
|
|
proc matches*(c: PContext, n, nOrig: PNode, m: var TCandidate) =
|
|
if m.calleeSym != nil and m.calleeSym.magic in {mArrGet, mArrPut}:
|
|
m.state = csMatch
|
|
m.call = n
|
|
return
|
|
var marker = initIntSet()
|
|
matchesAux(c, n, nOrig, m, marker)
|
|
if m.state == csNoMatch: return
|
|
# check that every formal parameter got a value:
|
|
var f = 1
|
|
while f < sonsLen(m.callee.n):
|
|
var formal = m.callee.n.sons[f].sym
|
|
if not containsOrIncl(marker, formal.position):
|
|
if formal.ast == nil:
|
|
if formal.typ.kind == tyVarargs:
|
|
var container = newNodeIT(nkBracket, n.info, arrayConstr(c, n.info))
|
|
addSon(m.call, implicitConv(nkHiddenStdConv, formal.typ,
|
|
container, m, c))
|
|
else:
|
|
# no default value
|
|
m.state = csNoMatch
|
|
break
|
|
else:
|
|
# use default value:
|
|
setSon(m.call, formal.position + 1, copyTree(formal.ast))
|
|
inc(f)
|
|
|
|
proc argtypeMatches*(c: PContext, f, a: PType): bool =
|
|
var m: TCandidate
|
|
initCandidate(c, m, f)
|
|
let res = paramTypesMatch(m, f, a, ast.emptyNode, nil)
|
|
#instantiateGenericConverters(c, res, m)
|
|
# XXX this is used by patterns.nim too; I think it's better to not
|
|
# instantiate generic converters for that
|
|
result = res != nil
|
|
|
|
proc instTypeBoundOp*(c: PContext; dc: PSym; t: PType; info: TLineInfo;
|
|
op: TTypeAttachedOp): PSym {.procvar.} =
|
|
var m: TCandidate
|
|
initCandidate(c, m, dc.typ)
|
|
var f = dc.typ.sons[1]
|
|
if op == attachedDeepCopy:
|
|
if f.kind in {tyRef, tyPtr}: f = f.lastSon
|
|
else:
|
|
if f.kind == tyVar: f = f.lastSon
|
|
if typeRel(m, f, t) == isNone:
|
|
localError(info, errGenerated, "cannot instantiate 'deepCopy'")
|
|
else:
|
|
result = c.semGenerateInstance(c, dc, m.bindings, info)
|
|
assert sfFromGeneric in result.flags
|
|
|
|
include suggest
|
|
|
|
when not declared(tests):
|
|
template tests(s: stmt) {.immediate.} = discard
|
|
|
|
tests:
|
|
var dummyOwner = newSym(skModule, getIdent("test_module"), nil, UnknownLineInfo())
|
|
|
|
proc `|` (t1, t2: PType): PType =
|
|
result = newType(tyOr, dummyOwner)
|
|
result.rawAddSon(t1)
|
|
result.rawAddSon(t2)
|
|
|
|
proc `&` (t1, t2: PType): PType =
|
|
result = newType(tyAnd, dummyOwner)
|
|
result.rawAddSon(t1)
|
|
result.rawAddSon(t2)
|
|
|
|
proc `!` (t: PType): PType =
|
|
result = newType(tyNot, dummyOwner)
|
|
result.rawAddSon(t)
|
|
|
|
proc seq(t: PType): PType =
|
|
result = newType(tySequence, dummyOwner)
|
|
result.rawAddSon(t)
|
|
|
|
proc array(x: int, t: PType): PType =
|
|
result = newType(tyArray, dummyOwner)
|
|
|
|
var n = newNodeI(nkRange, UnknownLineInfo())
|
|
addSon(n, newIntNode(nkIntLit, 0))
|
|
addSon(n, newIntNode(nkIntLit, x))
|
|
let range = newType(tyRange, dummyOwner)
|
|
|
|
result.rawAddSon(range)
|
|
result.rawAddSon(t)
|
|
|
|
suite "type classes":
|
|
let
|
|
int = newType(tyInt, dummyOwner)
|
|
float = newType(tyFloat, dummyOwner)
|
|
string = newType(tyString, dummyOwner)
|
|
ordinal = newType(tyOrdinal, dummyOwner)
|
|
any = newType(tyAnything, dummyOwner)
|
|
number = int | float
|
|
|
|
var TFoo = newType(tyObject, dummyOwner)
|
|
TFoo.sym = newSym(skType, getIdent"TFoo", dummyOwner, UnknownLineInfo())
|
|
|
|
var T1 = newType(tyGenericParam, dummyOwner)
|
|
T1.sym = newSym(skType, getIdent"T1", dummyOwner, UnknownLineInfo())
|
|
T1.sym.position = 0
|
|
|
|
var T2 = newType(tyGenericParam, dummyOwner)
|
|
T2.sym = newSym(skType, getIdent"T2", dummyOwner, UnknownLineInfo())
|
|
T2.sym.position = 1
|
|
|
|
setup:
|
|
var c: TCandidate
|
|
initCandidate(nil, c, nil)
|
|
|
|
template yes(x, y) =
|
|
test astToStr(x) & " is " & astToStr(y):
|
|
check typeRel(c, y, x) == isGeneric
|
|
|
|
template no(x, y) =
|
|
test astToStr(x) & " is not " & astToStr(y):
|
|
check typeRel(c, y, x) == isNone
|
|
|
|
yes seq(any), array(10, int) | seq(any)
|
|
# Sure, seq[any] is directly included
|
|
|
|
yes seq(int), seq(any)
|
|
yes seq(int), seq(number)
|
|
# Sure, the int sequence is certainly
|
|
# part of the number sequences (and all sequences)
|
|
|
|
no seq(any), seq(float)
|
|
# Nope, seq[any] includes types that are not seq[float] (e.g. seq[int])
|
|
|
|
yes seq(int|string), seq(any)
|
|
# Sure
|
|
|
|
yes seq(int&string), seq(any)
|
|
# Again
|
|
|
|
yes seq(int&string), seq(int)
|
|
# A bit more complicated
|
|
# seq[int&string] is not a real type, but it's analogous to
|
|
# seq[Sortable and Iterable], which is certainly a subset of seq[Sortable]
|
|
|
|
no seq(int|string), seq(int|float)
|
|
# Nope, seq[string] is not included in not included in
|
|
# the seq[int|float] set
|
|
|
|
no seq(!(int|string)), seq(string)
|
|
# A sequence that is neither seq[int] or seq[string]
|
|
# is obviously not seq[string]
|
|
|
|
no seq(!int), seq(number)
|
|
# Now your head should start to hurt a bit
|
|
# A sequence that is not seq[int] is not necessarily a number sequence
|
|
# it could well be seq[string] for example
|
|
|
|
yes seq(!(int|string)), seq(!string)
|
|
# all sequnece types besides seq[int] and seq[string]
|
|
# are subset of all sequence types that are not seq[string]
|
|
|
|
no seq(!(int|string)), seq(!(string|TFoo))
|
|
# Nope, seq[TFoo] is included in the first set, but not in the second
|
|
|
|
no seq(!string), seq(!number)
|
|
# Nope, seq[int] in included in the first set, but not in the second
|
|
|
|
yes seq(!number), seq(any)
|
|
yes seq(!int), seq(any)
|
|
no seq(any), seq(!any)
|
|
no seq(!int), seq(!any)
|
|
|
|
yes int, ordinal
|
|
no string, ordinal
|
|
|