mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 17:34:43 +00:00
306 lines
7.6 KiB
Nim
306 lines
7.6 KiB
Nim
#
|
|
#
|
|
# Nimrod's Runtime Library
|
|
# (c) Copyright 2010 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
|
|
|
|
## This module implements complex numbers.
|
|
{.push checks:off, line_dir:off, stack_trace:off, debugger:off.}
|
|
# the user does not want to trace a part
|
|
# of the standard library!
|
|
|
|
|
|
import
|
|
math
|
|
|
|
const
|
|
EPS = 5.0e-6 ## Epsilon used for float comparisons (should be smaller
|
|
## if float is really float64, but w/ the current version
|
|
## it seems to be float32?)
|
|
|
|
|
|
type
|
|
TComplex* = tuple[re, im: float]
|
|
## a complex number, consisting of a real and an imaginary part
|
|
|
|
proc `==` *(x, y: TComplex): bool =
|
|
## Compare two complex numbers `x` and `y` for equality.
|
|
result = x.re == y.re and x.im == y.im
|
|
|
|
proc `=~` *(x, y: TComplex): bool =
|
|
## Compare two complex numbers `x` and `y` approximately.
|
|
result = abs(x.re-y.re)<EPS and abs(x.im-y.im)<EPS
|
|
|
|
proc `+` *(x, y: TComplex): TComplex =
|
|
## Add two complex numbers.
|
|
result.re = x.re + y.re
|
|
result.im = x.im + y.im
|
|
|
|
proc `+` *(x: TComplex, y: float): TComplex =
|
|
## Add complex `x` to float `y`.
|
|
result.re = x.re + y
|
|
result.im = x.im
|
|
|
|
proc `+` *(x: float, y: TComplex): TComplex =
|
|
## Add float `x` to complex `y`.
|
|
result.re = x + y.re
|
|
result.im = y.im
|
|
|
|
|
|
proc `-` *(z: TComplex): TComplex =
|
|
## Unary minus for complex numbers.
|
|
result.re = -z.re
|
|
result.im = -z.im
|
|
|
|
proc `-` *(x, y: TComplex): TComplex =
|
|
## Subtract two complex numbers.
|
|
result.re = x.re - y.re
|
|
result.im = x.im - y.im
|
|
|
|
proc `-` *(x: TComplex, y: float): TComplex =
|
|
## Subtracts float `y` from complex `x`.
|
|
result = x + (-y)
|
|
|
|
proc `-` *(x: float, y: TComplex): TComplex =
|
|
## Subtracts complex `y` from float `x`.
|
|
result = x + (-y)
|
|
|
|
|
|
proc `/` *(x, y: TComplex): TComplex =
|
|
## Divide `x` by `y`.
|
|
var
|
|
r, den: float
|
|
if abs(y.re) < abs(y.im):
|
|
r = y.re / y.im
|
|
den = y.im + r * y.re
|
|
result.re = (x.re * r + x.im) / den
|
|
result.im = (x.im * r - x.re) / den
|
|
else:
|
|
r = y.im / y.re
|
|
den = y.re + r * y.im
|
|
result.re = (x.re + r * x.im) / den
|
|
result.im = (x.im - r * x.re) / den
|
|
|
|
proc `/` *(x : TComplex, y: float ): TComplex =
|
|
## Divide complex `x` by float `y`.
|
|
result.re = x.re/y
|
|
result.im = x.im/y
|
|
|
|
proc `/` *(x : float, y: TComplex ): TComplex =
|
|
## Divide float `x` by complex `y`.
|
|
var num : TComplex = (x, 0.0)
|
|
result = num/y
|
|
|
|
|
|
proc `*` *(x, y: TComplex): TComplex =
|
|
## Multiply `x` with `y`.
|
|
result.re = x.re * y.re - x.im * y.im
|
|
result.im = x.im * y.re + x.re * y.im
|
|
|
|
proc `*` *(x: float, y: TComplex): TComplex =
|
|
## Multiply float `x` with complex `y`.
|
|
result.re = x * y.re
|
|
result.im = x * y.im
|
|
|
|
proc `*` *(x: TComplex, y: float): TComplex =
|
|
## Multiply complex `x` with float `y`.
|
|
result.re = x.re * y
|
|
result.im = x.im * y
|
|
|
|
|
|
proc abs*(z: TComplex): float =
|
|
## Return the distance from (0,0) to `z`.
|
|
|
|
# optimized by checking special cases (sqrt is expensive)
|
|
var x, y, temp: float
|
|
|
|
x = abs(z.re)
|
|
y = abs(z.im)
|
|
if x == 0.0:
|
|
result = y
|
|
elif y == 0.0:
|
|
result = x
|
|
elif x > y:
|
|
temp = y / x
|
|
result = x * sqrt(1.0 + temp * temp)
|
|
else:
|
|
temp = x / y
|
|
result = y * sqrt(1.0 + temp * temp)
|
|
|
|
|
|
proc sqrt*(z: TComplex): TComplex =
|
|
## Square root for a complex number `z`.
|
|
var x, y, w, r: float
|
|
|
|
if z.re == 0.0 and z.im == 0.0:
|
|
result = z
|
|
else:
|
|
x = abs(z.re)
|
|
y = abs(z.im)
|
|
if x >= y:
|
|
r = y / x
|
|
w = sqrt(x) * sqrt(0.5 * (1.0 + sqrt(1.0 + r * r)))
|
|
else:
|
|
r = x / y
|
|
w = sqrt(y) * sqrt(0.5 * (r + sqrt(1.0 + r * r)))
|
|
if z.re >= 0.0:
|
|
result.re = w
|
|
result.im = z.im / (w * 2.0)
|
|
else:
|
|
if z.im >= 0.0: result.im = w
|
|
else: result.im = -w
|
|
result.re = z.im / (result.im + result.im)
|
|
|
|
|
|
proc exp*(z: TComplex): TComplex =
|
|
## e raised to the power `z`.
|
|
var rho = exp(z.re)
|
|
var theta = z.im
|
|
result.re = rho*cos(theta)
|
|
result.im = rho*sin(theta)
|
|
|
|
|
|
proc ln*(z: TComplex): TComplex =
|
|
## Returns the natural log of `z`.
|
|
result.re = ln(abs(z))
|
|
result.im = arctan2(z.im,z.re)
|
|
|
|
proc log10*(z: TComplex): TComplex =
|
|
## Returns the log base 10 of `z`.
|
|
result = ln(z)/ln(10.0)
|
|
|
|
proc log2*(z: TComplex): TComplex =
|
|
## Returns the log base 2 of `z`.
|
|
result = ln(z)/ln(2.0)
|
|
|
|
|
|
proc pow*(x, y: TComplex): TComplex =
|
|
## `x` raised to the power `y`.
|
|
if x.re == 0.0 and x.im == 0.0:
|
|
if y.re == 0.0 and y.im == 0.0:
|
|
result.re = 1.0
|
|
result.im = 0.0
|
|
else:
|
|
result.re = 0.0
|
|
result.im = 0.0
|
|
elif y.re == 1.0 and y.im == 0.0:
|
|
result = x
|
|
elif y.re == -1.0 and y.im == 0.0:
|
|
result = 1.0/x
|
|
else:
|
|
var rho = sqrt(x.re*x.re + x.im*x.im)
|
|
var theta = arctan2(x.im,x.re)
|
|
var s = pow(rho,y.re) * exp(-y.im*theta)
|
|
var r = y.re*theta + y.im*ln(rho)
|
|
result.re = s*cos(r)
|
|
result.im = s*sin(r)
|
|
|
|
|
|
proc sin*(z: TComplex): TComplex =
|
|
## Returns the sine of `z`.
|
|
result.re = sin(z.re)*cosh(z.im)
|
|
result.im = cos(z.re)*sinh(z.im)
|
|
|
|
proc arcsin*(z: TComplex): TComplex =
|
|
## Returns the inverse sine of `z`.
|
|
var i: TComplex = (0.0,1.0)
|
|
result = -i*ln(i*z + sqrt(1.0-z*z))
|
|
|
|
proc cos*(z: TComplex): TComplex =
|
|
## Returns the cosine of `z`.
|
|
result.re = cos(z.re)*cosh(z.im)
|
|
result.im = -sin(z.re)*sinh(z.im)
|
|
|
|
proc arccos*(z: TComplex): TComplex =
|
|
## Returns the inverse cosine of `z`.
|
|
var i: TComplex = (0.0,1.0)
|
|
result = -i*ln(z + sqrt(z*z-1.0))
|
|
|
|
proc tan*(z: TComplex): TComplex =
|
|
## Returns the tangent of `z`.
|
|
result = sin(z)/cos(z)
|
|
|
|
proc cot*(z: TComplex): TComplex =
|
|
## Returns the cotangent of `z`.
|
|
result = cos(z)/sin(z)
|
|
|
|
proc sec*(z: TComplex): TComplex =
|
|
## Returns the secant of `z`.
|
|
result = 1.0/cos(z)
|
|
|
|
proc csc*(z: TComplex): TComplex =
|
|
## Returns the cosecant of `z`.
|
|
result = 1.0/sin(z)
|
|
|
|
|
|
proc sinh*(z: TComplex): TComplex =
|
|
## Returns the hyperbolic sine of `z`.
|
|
result = 0.5*(exp(z)-exp(-z))
|
|
|
|
proc cosh*(z: TComplex): TComplex =
|
|
## Returns the hyperbolic cosine of `z`.
|
|
result = 0.5*(exp(z)+exp(-z))
|
|
|
|
|
|
proc `$`*(z: TComplex): string =
|
|
## Returns `z`'s string representation as ``"(re, im)"``.
|
|
result = "(" & $z.re & ", " & $z.im & ")"
|
|
|
|
{.pop.}
|
|
|
|
|
|
when isMainModule:
|
|
var z = (0.0, 0.0)
|
|
var oo = (1.0,1.0)
|
|
var a = (1.0, 2.0)
|
|
var b = (-1.0, -2.0)
|
|
var m1 = (-1.0, 0.0)
|
|
var i = (0.0,1.0)
|
|
var one = (1.0,0.0)
|
|
var tt = (10.0, 20.0)
|
|
var ipi = (0.0, -PI)
|
|
|
|
assert( a == a )
|
|
assert( (a-a) == z )
|
|
assert( (a+b) == z )
|
|
assert( (a/b) == m1 )
|
|
assert( (1.0/a) == (0.2, -0.4) )
|
|
assert( (a*b) == (3.0, -4.0) )
|
|
assert( 10.0*a == tt )
|
|
assert( a*10.0 == tt )
|
|
assert( tt/10.0 == a )
|
|
assert( oo+(-1.0) == i )
|
|
assert( (-1.0)+oo == i )
|
|
assert( abs(oo) == sqrt(2.0) )
|
|
assert( sqrt(m1) == i )
|
|
assert( exp(ipi) =~ m1 )
|
|
|
|
assert( pow(a,b) =~ (-3.72999124927876, -1.68815826725068) )
|
|
assert( pow(z,a) =~ (0.0, 0.0) )
|
|
assert( pow(z,z) =~ (1.0, 0.0) )
|
|
assert( pow(a,one) =~ a )
|
|
assert( pow(a,m1) =~ (0.2, -0.4) )
|
|
|
|
assert( ln(a) =~ (0.804718956217050, 1.107148717794090) )
|
|
assert( log10(a) =~ (0.349485002168009, 0.480828578784234) )
|
|
assert( log2(a) =~ (1.16096404744368, 1.59727796468811) )
|
|
|
|
assert( sin(a) =~ (3.16577851321617, 1.95960104142161) )
|
|
assert( cos(a) =~ (2.03272300701967, -3.05189779915180) )
|
|
assert( tan(a) =~ (0.0338128260798967, 1.0147936161466335) )
|
|
assert( cot(a) =~ 1.0/tan(a) )
|
|
assert( sec(a) =~ 1.0/cos(a) )
|
|
assert( csc(a) =~ 1.0/sin(a) )
|
|
assert( arcsin(a) =~ (0.427078586392476, 1.528570919480998) )
|
|
assert( arccos(a) =~ (1.14371774040242, -1.52857091948100) )
|
|
|
|
assert( cosh(a) =~ (-0.642148124715520, 1.068607421382778) )
|
|
assert( sinh(a) =~ (-0.489056259041294, 1.403119250622040) )
|
|
|
|
|