Files
Nim/lib/pure/math.nim
ASVIEST 20d79c9fb0 Deprecate asm stmt for js target (#23149)
why ?

- We already have an emit that does the same thing
- The name asm itself is a bit confusing, you might think it's an alias
for asm.js or something else.
- The asm keyword is used differently on different compiler targets (it
makes it inexpressive).
- Does anyone (other than some compiler libraries) use asm instead of
emit ? If yes, it's a bit strange to use asm somewhere and emit
somewhere. By making the asm keyword for js target deprecated, there
would be even less use of the asm keyword for js target, reducing the
amount of confusion.
- New users might accidentally use a non-universal approach via the asm
keyword instead of emit, and then when they learn about asm, try to
figure out what the differences are.

see https://forum.nim-lang.org/t/10821

---------

Co-authored-by: Andreas Rumpf <rumpf_a@web.de>
2024-01-02 07:49:54 +01:00

1313 lines
46 KiB
Nim

#
#
# Nim's Runtime Library
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## *Constructive mathematics is naturally typed.* -- Simon Thompson
##
## Basic math routines for Nim.
##
## Note that the trigonometric functions naturally operate on radians.
## The helper functions `degToRad <#degToRad,T>`_ and `radToDeg <#radToDeg,T>`_
## provide conversion between radians and degrees.
runnableExamples:
from std/fenv import epsilon
from std/random import rand
proc generateGaussianNoise(mu: float = 0.0, sigma: float = 1.0): (float, float) =
# Generates values from a normal distribution.
# Translated from https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform#Implementation.
var u1: float
var u2: float
while true:
u1 = rand(1.0)
u2 = rand(1.0)
if u1 > epsilon(float): break
let mag = sigma * sqrt(-2 * ln(u1))
let z0 = mag * cos(2 * PI * u2) + mu
let z1 = mag * sin(2 * PI * u2) + mu
(z0, z1)
echo generateGaussianNoise()
## This module is available for the `JavaScript target
## <backends.html#backends-the-javascript-target>`_.
##
## See also
## ========
## * `complex module <complex.html>`_ for complex numbers and their
## mathematical operations
## * `rationals module <rationals.html>`_ for rational numbers and their
## mathematical operations
## * `fenv module <fenv.html>`_ for handling of floating-point rounding
## and exceptions (overflow, zero-divide, etc.)
## * `random module <random.html>`_ for a fast and tiny random number generator
## * `stats module <stats.html>`_ for statistical analysis
## * `strformat module <strformat.html>`_ for formatting floats for printing
## * `system module <system.html>`_ for some very basic and trivial math operators
## (`shr`, `shl`, `xor`, `clamp`, etc.)
import std/private/since
{.push debugger: off.} # the user does not want to trace a part
# of the standard library!
import std/[bitops, fenv]
when defined(nimPreviewSlimSystem):
import std/assertions
when defined(c) or defined(cpp):
proc c_isnan(x: float): bool {.importc: "isnan", header: "<math.h>".}
# a generic like `x: SomeFloat` might work too if this is implemented via a C macro.
proc c_copysign(x, y: cfloat): cfloat {.importc: "copysignf", header: "<math.h>".}
proc c_copysign(x, y: cdouble): cdouble {.importc: "copysign", header: "<math.h>".}
proc c_signbit(x: SomeFloat): cint {.importc: "signbit", header: "<math.h>".}
# don't export `c_frexp` in the future and remove `c_frexp2`.
func c_frexp2(x: cfloat, exponent: var cint): cfloat {.
importc: "frexpf", header: "<math.h>".}
func c_frexp2(x: cdouble, exponent: var cint): cdouble {.
importc: "frexp", header: "<math.h>".}
type
div_t {.importc, header: "<stdlib.h>".} = object
quot: cint
rem: cint
ldiv_t {.importc, header: "<stdlib.h>".} = object
quot: clong
rem: clong
lldiv_t {.importc, header: "<stdlib.h>".} = object
quot: clonglong
rem: clonglong
when cint isnot clong:
func divmod_c(x, y: cint): div_t {.importc: "div", header: "<stdlib.h>".}
when clong isnot clonglong:
func divmod_c(x, y: clonglong): lldiv_t {.importc: "lldiv", header: "<stdlib.h>".}
func divmod_c(x, y: clong): ldiv_t {.importc: "ldiv", header: "<stdlib.h>".}
func divmod*[T: SomeInteger](x, y: T): (T, T) {.inline.} =
## Specialized instructions for computing both division and modulus.
## Return structure is: (quotient, remainder)
runnableExamples:
doAssert divmod(5, 2) == (2, 1)
doAssert divmod(5, -3) == (-1, 2)
when T is cint | clong | clonglong:
when compileOption("overflowChecks"):
if y == 0:
raise new(DivByZeroDefect)
elif (x == T.low and y == -1.T):
raise new(OverflowDefect)
let res = divmod_c(x, y)
result[0] = res.quot
result[1] = res.rem
else:
result[0] = x div y
result[1] = x mod y
func binom*(n, k: int): int =
## Computes the [binomial coefficient](https://en.wikipedia.org/wiki/Binomial_coefficient).
runnableExamples:
doAssert binom(6, 2) == 15
doAssert binom(-6, 2) == 1
doAssert binom(6, 0) == 1
if k <= 0: return 1
if 2 * k > n: return binom(n, n - k)
result = n
for i in countup(2, k):
result = (result * (n + 1 - i)) div i
func createFactTable[N: static[int]]: array[N, int] =
result[0] = 1
for i in 1 ..< N:
result[i] = result[i - 1] * i
func fac*(n: int): int =
## Computes the [factorial](https://en.wikipedia.org/wiki/Factorial) of
## a non-negative integer `n`.
##
## **See also:**
## * `prod func <#prod,openArray[T]>`_
runnableExamples:
doAssert fac(0) == 1
doAssert fac(4) == 24
doAssert fac(10) == 3628800
const factTable =
when sizeof(int) == 2:
createFactTable[5]()
elif sizeof(int) == 4:
createFactTable[13]()
else:
createFactTable[21]()
assert(n >= 0, $n & " must not be negative.")
assert(n < factTable.len, $n & " is too large to look up in the table")
factTable[n]
{.push checks: off, line_dir: off, stack_trace: off.}
when defined(posix) and not defined(genode):
{.passl: "-lm".}
const
PI* = 3.1415926535897932384626433 ## The circle constant PI (Ludolph's number).
TAU* = 2.0 * PI ## The circle constant TAU (= 2 * PI).
E* = 2.71828182845904523536028747 ## Euler's number.
MaxFloat64Precision* = 16 ## Maximum number of meaningful digits
## after the decimal point for Nim's
## `float64` type.
MaxFloat32Precision* = 8 ## Maximum number of meaningful digits
## after the decimal point for Nim's
## `float32` type.
MaxFloatPrecision* = MaxFloat64Precision ## Maximum number of
## meaningful digits
## after the decimal point
## for Nim's `float` type.
MinFloatNormal* = 2.225073858507201e-308 ## Smallest normal number for Nim's
## `float` type (= 2^-1022).
RadPerDeg = PI / 180.0 ## Number of radians per degree.
type
FloatClass* = enum ## Describes the class a floating point value belongs to.
## This is the type that is returned by the
## `classify func <#classify,float>`_.
fcNormal, ## value is an ordinary nonzero floating point value
fcSubnormal, ## value is a subnormal (a very small) floating point value
fcZero, ## value is zero
fcNegZero, ## value is the negative zero
fcNan, ## value is Not a Number (NaN)
fcInf, ## value is positive infinity
fcNegInf ## value is negative infinity
func isNaN*(x: SomeFloat): bool {.inline, since: (1,5,1).} =
## Returns whether `x` is a `NaN`, more efficiently than via `classify(x) == fcNan`.
## Works even with `--passc:-ffast-math`.
runnableExamples:
doAssert NaN.isNaN
doAssert not Inf.isNaN
doAssert not isNaN(3.1415926)
template fn: untyped = result = x != x
when nimvm: fn()
else:
when defined(js): fn()
else: result = c_isnan(x)
when defined(js):
import std/private/jsutils
proc toBitsImpl(x: float): array[2, uint32] =
let buffer = newArrayBuffer(8)
let a = newFloat64Array(buffer)
let b = newUint32Array(buffer)
a[0] = x
{.emit: "`result` = `b`;".}
# result = cast[array[2, uint32]](b)
proc jsSetSign(x: float, sgn: bool): float =
let buffer = newArrayBuffer(8)
let a = newFloat64Array(buffer)
let b = newUint32Array(buffer)
a[0] = x
{.emit: """
function updateBit(num, bitPos, bitVal) {
return (num & ~(1 << bitPos)) | (bitVal << bitPos);
}
`b`[1] = updateBit(`b`[1], 31, `sgn`);
`result` = `a`[0]
""".}
proc signbit*(x: SomeFloat): bool {.inline, since: (1, 5, 1).} =
## Returns true if `x` is negative, false otherwise.
runnableExamples:
doAssert not signbit(0.0)
doAssert signbit(-0.0)
doAssert signbit(-0.1)
doAssert not signbit(0.1)
when defined(js):
let uintBuffer = toBitsImpl(x)
result = (uintBuffer[1] shr 31) != 0
else:
result = c_signbit(x) != 0
func copySign*[T: SomeFloat](x, y: T): T {.inline, since: (1, 5, 1).} =
## Returns a value with the magnitude of `x` and the sign of `y`;
## this works even if x or y are NaN, infinity or zero, all of which can carry a sign.
runnableExamples:
doAssert copySign(10.0, 1.0) == 10.0
doAssert copySign(10.0, -1.0) == -10.0
doAssert copySign(-Inf, -0.0) == -Inf
doAssert copySign(NaN, 1.0).isNaN
doAssert copySign(1.0, copySign(NaN, -1.0)) == -1.0
# TODO: use signbit for examples
when defined(js):
let uintBuffer = toBitsImpl(y)
let sgn = (uintBuffer[1] shr 31) != 0
result = jsSetSign(x, sgn)
else:
when nimvm: # not exact but we have a vmops for recent enough nim
if y > 0.0 or (y == 0.0 and 1.0 / y > 0.0):
result = abs(x)
elif y <= 0.0:
result = -abs(x)
else: # must be NaN
result = abs(x)
else: result = c_copysign(x, y)
func classify*(x: float): FloatClass =
## Classifies a floating point value.
##
## Returns `x`'s class as specified by the `FloatClass enum<#FloatClass>`_.
## Doesn't work with `--passc:-ffast-math`.
runnableExamples:
doAssert classify(0.3) == fcNormal
doAssert classify(0.0) == fcZero
doAssert classify(0.3 / 0.0) == fcInf
doAssert classify(-0.3 / 0.0) == fcNegInf
doAssert classify(5.0e-324) == fcSubnormal
# JavaScript and most C compilers have no classify:
if x == 0.0:
if 1.0 / x == Inf:
return fcZero
else:
return fcNegZero
if x * 0.5 == x:
if x > 0.0: return fcInf
else: return fcNegInf
if x != x: return fcNan
if abs(x) < MinFloatNormal:
return fcSubnormal
return fcNormal
func almostEqual*[T: SomeFloat](x, y: T; unitsInLastPlace: Natural = 4): bool {.
since: (1, 5), inline.} =
## Checks if two float values are almost equal, using the
## [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon).
##
## `unitsInLastPlace` is the max number of
## [units in the last place](https://en.wikipedia.org/wiki/Unit_in_the_last_place)
## difference tolerated when comparing two numbers. The larger the value, the
## more error is allowed. A `0` value means that two numbers must be exactly the
## same to be considered equal.
##
## The machine epsilon has to be scaled to the magnitude of the values used
## and multiplied by the desired precision in ULPs unless the difference is
## subnormal.
##
# taken from: https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon
runnableExamples:
doAssert almostEqual(PI, 3.14159265358979)
doAssert almostEqual(Inf, Inf)
doAssert not almostEqual(NaN, NaN)
if x == y:
# short circuit exact equality -- needed to catch two infinities of
# the same sign. And perhaps speeds things up a bit sometimes.
return true
let diff = abs(x - y)
result = diff <= epsilon(T) * abs(x + y) * T(unitsInLastPlace) or
diff < minimumPositiveValue(T)
func isPowerOfTwo*(x: int): bool =
## Returns `true`, if `x` is a power of two, `false` otherwise.
##
## Zero and negative numbers are not a power of two.
##
## **See also:**
## * `nextPowerOfTwo func <#nextPowerOfTwo,int>`_
runnableExamples:
doAssert isPowerOfTwo(16)
doAssert not isPowerOfTwo(5)
doAssert not isPowerOfTwo(0)
doAssert not isPowerOfTwo(-16)
return (x > 0) and ((x and (x - 1)) == 0)
func nextPowerOfTwo*(x: int): int =
## Returns `x` rounded up to the nearest power of two.
##
## Zero and negative numbers get rounded up to 1.
##
## **See also:**
## * `isPowerOfTwo func <#isPowerOfTwo,int>`_
runnableExamples:
doAssert nextPowerOfTwo(16) == 16
doAssert nextPowerOfTwo(5) == 8
doAssert nextPowerOfTwo(0) == 1
doAssert nextPowerOfTwo(-16) == 1
result = x - 1
when defined(cpu64):
result = result or (result shr 32)
when sizeof(int) > 2:
result = result or (result shr 16)
when sizeof(int) > 1:
result = result or (result shr 8)
result = result or (result shr 4)
result = result or (result shr 2)
result = result or (result shr 1)
result += 1 + ord(x <= 0)
when not defined(js): # C
func sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".}
func sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".} =
## Computes the square root of `x`.
##
## **See also:**
## * `cbrt func <#cbrt,float64>`_ for the cube root
runnableExamples:
doAssert almostEqual(sqrt(4.0), 2.0)
doAssert almostEqual(sqrt(1.44), 1.2)
func cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".}
func cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".} =
## Computes the cube root of `x`.
##
## **See also:**
## * `sqrt func <#sqrt,float64>`_ for the square root
runnableExamples:
doAssert almostEqual(cbrt(8.0), 2.0)
doAssert almostEqual(cbrt(2.197), 1.3)
doAssert almostEqual(cbrt(-27.0), -3.0)
func ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".}
func ln*(x: float64): float64 {.importc: "log", header: "<math.h>".} =
## Computes the [natural logarithm](https://en.wikipedia.org/wiki/Natural_logarithm)
## of `x`.
##
## **See also:**
## * `log func <#log,T,T>`_
## * `log10 func <#log10,float64>`_
## * `log2 func <#log2,float64>`_
## * `exp func <#exp,float64>`_
runnableExamples:
doAssert almostEqual(ln(exp(4.0)), 4.0)
doAssert almostEqual(ln(1.0), 0.0)
doAssert almostEqual(ln(0.0), -Inf)
doAssert ln(-7.0).isNaN
else: # JS
func sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.}
func sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.}
func cbrt*(x: float32): float32 {.importc: "Math.cbrt", nodecl.}
func cbrt*(x: float64): float64 {.importc: "Math.cbrt", nodecl.}
func ln*(x: float32): float32 {.importc: "Math.log", nodecl.}
func ln*(x: float64): float64 {.importc: "Math.log", nodecl.}
func log*[T: SomeFloat](x, base: T): T =
## Computes the logarithm of `x` to base `base`.
##
## **See also:**
## * `ln func <#ln,float64>`_
## * `log10 func <#log10,float64>`_
## * `log2 func <#log2,float64>`_
runnableExamples:
doAssert almostEqual(log(9.0, 3.0), 2.0)
doAssert almostEqual(log(0.0, 2.0), -Inf)
doAssert log(-7.0, 4.0).isNaN
doAssert log(8.0, -2.0).isNaN
ln(x) / ln(base)
when not defined(js): # C
func log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".}
func log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".} =
## Computes the common logarithm (base 10) of `x`.
##
## **See also:**
## * `ln func <#ln,float64>`_
## * `log func <#log,T,T>`_
## * `log2 func <#log2,float64>`_
runnableExamples:
doAssert almostEqual(log10(100.0) , 2.0)
doAssert almostEqual(log10(0.0), -Inf)
doAssert log10(-100.0).isNaN
func exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".}
func exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".} =
## Computes the exponential function of `x` (`e^x`).
##
## **See also:**
## * `ln func <#ln,float64>`_
runnableExamples:
doAssert almostEqual(exp(1.0), E)
doAssert almostEqual(ln(exp(4.0)), 4.0)
doAssert almostEqual(exp(0.0), 1.0)
func sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".}
func sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".} =
## Computes the sine of `x`.
##
## **See also:**
## * `arcsin func <#arcsin,float64>`_
runnableExamples:
doAssert almostEqual(sin(PI / 6), 0.5)
doAssert almostEqual(sin(degToRad(90.0)), 1.0)
func cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".}
func cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".} =
## Computes the cosine of `x`.
##
## **See also:**
## * `arccos func <#arccos,float64>`_
runnableExamples:
doAssert almostEqual(cos(2 * PI), 1.0)
doAssert almostEqual(cos(degToRad(60.0)), 0.5)
func tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".}
func tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".} =
## Computes the tangent of `x`.
##
## **See also:**
## * `arctan func <#arctan,float64>`_
runnableExamples:
doAssert almostEqual(tan(degToRad(45.0)), 1.0)
doAssert almostEqual(tan(PI / 4), 1.0)
func sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".}
func sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".} =
## Computes the [hyperbolic sine](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
##
## **See also:**
## * `arcsinh func <#arcsinh,float64>`_
runnableExamples:
doAssert almostEqual(sinh(0.0), 0.0)
doAssert almostEqual(sinh(1.0), 1.175201193643801)
func cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".}
func cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".} =
## Computes the [hyperbolic cosine](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
##
## **See also:**
## * `arccosh func <#arccosh,float64>`_
runnableExamples:
doAssert almostEqual(cosh(0.0), 1.0)
doAssert almostEqual(cosh(1.0), 1.543080634815244)
func tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".}
func tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".} =
## Computes the [hyperbolic tangent](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
##
## **See also:**
## * `arctanh func <#arctanh,float64>`_
runnableExamples:
doAssert almostEqual(tanh(0.0), 0.0)
doAssert almostEqual(tanh(1.0), 0.7615941559557649)
func arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".}
func arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".} =
## Computes the arc sine of `x`.
##
## **See also:**
## * `sin func <#sin,float64>`_
runnableExamples:
doAssert almostEqual(radToDeg(arcsin(0.0)), 0.0)
doAssert almostEqual(radToDeg(arcsin(1.0)), 90.0)
func arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".}
func arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".} =
## Computes the arc cosine of `x`.
##
## **See also:**
## * `cos func <#cos,float64>`_
runnableExamples:
doAssert almostEqual(radToDeg(arccos(0.0)), 90.0)
doAssert almostEqual(radToDeg(arccos(1.0)), 0.0)
func arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".}
func arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".} =
## Calculate the arc tangent of `x`.
##
## **See also:**
## * `arctan2 func <#arctan2,float64,float64>`_
## * `tan func <#tan,float64>`_
runnableExamples:
doAssert almostEqual(arctan(1.0), 0.7853981633974483)
doAssert almostEqual(radToDeg(arctan(1.0)), 45.0)
func arctan2*(y, x: float32): float32 {.importc: "atan2f", header: "<math.h>".}
func arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".} =
## Calculate the arc tangent of `y/x`.
##
## It produces correct results even when the resulting angle is near
## `PI/2` or `-PI/2` (`x` near 0).
##
## **See also:**
## * `arctan func <#arctan,float64>`_
runnableExamples:
doAssert almostEqual(arctan2(1.0, 0.0), PI / 2.0)
doAssert almostEqual(radToDeg(arctan2(1.0, 0.0)), 90.0)
func arcsinh*(x: float32): float32 {.importc: "asinhf", header: "<math.h>".}
func arcsinh*(x: float64): float64 {.importc: "asinh", header: "<math.h>".}
## Computes the inverse hyperbolic sine of `x`.
##
## **See also:**
## * `sinh func <#sinh,float64>`_
func arccosh*(x: float32): float32 {.importc: "acoshf", header: "<math.h>".}
func arccosh*(x: float64): float64 {.importc: "acosh", header: "<math.h>".}
## Computes the inverse hyperbolic cosine of `x`.
##
## **See also:**
## * `cosh func <#cosh,float64>`_
func arctanh*(x: float32): float32 {.importc: "atanhf", header: "<math.h>".}
func arctanh*(x: float64): float64 {.importc: "atanh", header: "<math.h>".}
## Computes the inverse hyperbolic tangent of `x`.
##
## **See also:**
## * `tanh func <#tanh,float64>`_
else: # JS
func log10*(x: float32): float32 {.importc: "Math.log10", nodecl.}
func log10*(x: float64): float64 {.importc: "Math.log10", nodecl.}
func log2*(x: float32): float32 {.importc: "Math.log2", nodecl.}
func log2*(x: float64): float64 {.importc: "Math.log2", nodecl.}
func exp*(x: float32): float32 {.importc: "Math.exp", nodecl.}
func exp*(x: float64): float64 {.importc: "Math.exp", nodecl.}
func sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.}
func cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.}
func tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.}
func sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.}
func cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.}
func tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.}
func arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.}
# keep this as generic or update test in `tvmops.nim` to make sure we
# keep testing that generic importc procs work
func arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.}
func arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.}
func arctan2*[T: float32|float64](y, x: T): T {.importc: "Math.atan2", nodecl.}
func arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.}
func arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.}
func arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.}
func cot*[T: float32|float64](x: T): T = 1.0 / tan(x)
## Computes the cotangent of `x` (`1/tan(x)`).
func sec*[T: float32|float64](x: T): T = 1.0 / cos(x)
## Computes the secant of `x` (`1/cos(x)`).
func csc*[T: float32|float64](x: T): T = 1.0 / sin(x)
## Computes the cosecant of `x` (`1/sin(x)`).
func coth*[T: float32|float64](x: T): T = 1.0 / tanh(x)
## Computes the hyperbolic cotangent of `x` (`1/tanh(x)`).
func sech*[T: float32|float64](x: T): T = 1.0 / cosh(x)
## Computes the hyperbolic secant of `x` (`1/cosh(x)`).
func csch*[T: float32|float64](x: T): T = 1.0 / sinh(x)
## Computes the hyperbolic cosecant of `x` (`1/sinh(x)`).
func arccot*[T: float32|float64](x: T): T = arctan(1.0 / x)
## Computes the inverse cotangent of `x` (`arctan(1/x)`).
func arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x)
## Computes the inverse secant of `x` (`arccos(1/x)`).
func arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x)
## Computes the inverse cosecant of `x` (`arcsin(1/x)`).
func arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x)
## Computes the inverse hyperbolic cotangent of `x` (`arctanh(1/x)`).
func arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x)
## Computes the inverse hyperbolic secant of `x` (`arccosh(1/x)`).
func arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x)
## Computes the inverse hyperbolic cosecant of `x` (`arcsinh(1/x)`).
const windowsCC89 = defined(windows) and defined(bcc)
when not defined(js): # C
func hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".}
func hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".} =
## Computes the length of the hypotenuse of a right-angle triangle with
## `x` as its base and `y` as its height. Equivalent to `sqrt(x*x + y*y)`.
runnableExamples:
doAssert almostEqual(hypot(3.0, 4.0), 5.0)
func pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".}
func pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".} =
## Computes `x` raised to the power of `y`.
##
## To compute the power between integers (e.g. 2^6),
## use the `^ func <#^,T,Natural>`_.
##
## **See also:**
## * `^ func <#^,T,Natural>`_
## * `sqrt func <#sqrt,float64>`_
## * `cbrt func <#cbrt,float64>`_
runnableExamples:
doAssert almostEqual(pow(100, 1.5), 1000.0)
doAssert almostEqual(pow(16.0, 0.5), 4.0)
# TODO: add C89 version on windows
when not windowsCC89:
func erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".}
func erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".}
## Computes the [error function](https://en.wikipedia.org/wiki/Error_function) for `x`.
##
## **Note:** Not available for the JS backend.
func erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".}
func erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".}
## Computes the [complementary error function](https://en.wikipedia.org/wiki/Error_function#Complementary_error_function) for `x`.
##
## **Note:** Not available for the JS backend.
func gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".}
func gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".} =
## Computes the [gamma function](https://en.wikipedia.org/wiki/Gamma_function) for `x`.
##
## **Note:** Not available for the JS backend.
##
## **See also:**
## * `lgamma func <#lgamma,float64>`_ for the natural logarithm of the gamma function
runnableExamples:
doAssert almostEqual(gamma(1.0), 1.0)
doAssert almostEqual(gamma(4.0), 6.0)
doAssert almostEqual(gamma(11.0), 3628800.0)
func lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".}
func lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".} =
## Computes the natural logarithm of the gamma function for `x`.
##
## **Note:** Not available for the JS backend.
##
## **See also:**
## * `gamma func <#gamma,float64>`_ for gamma function
func floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".}
func floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".} =
## Computes the floor function (i.e. the largest integer not greater than `x`).
##
## **See also:**
## * `ceil func <#ceil,float64>`_
## * `round func <#round,float64>`_
## * `trunc func <#trunc,float64>`_
runnableExamples:
doAssert floor(2.1) == 2.0
doAssert floor(2.9) == 2.0
doAssert floor(-3.5) == -4.0
func ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".}
func ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".} =
## Computes the ceiling function (i.e. the smallest integer not smaller
## than `x`).
##
## **See also:**
## * `floor func <#floor,float64>`_
## * `round func <#round,float64>`_
## * `trunc func <#trunc,float64>`_
runnableExamples:
doAssert ceil(2.1) == 3.0
doAssert ceil(2.9) == 3.0
doAssert ceil(-2.1) == -2.0
when windowsCC89:
# MSVC 2010 don't have trunc/truncf
# this implementation was inspired by Go-lang Math.Trunc
func truncImpl(f: float64): float64 =
const
mask: uint64 = 0x7FF
shift: uint64 = 64 - 12
bias: uint64 = 0x3FF
if f < 1:
if f < 0: return -truncImpl(-f)
elif f == 0: return f # Return -0 when f == -0
else: return 0
var x = cast[uint64](f)
let e = (x shr shift) and mask - bias
# Keep the top 12+e bits, the integer part; clear the rest.
if e < 64 - 12:
x = x and (not (1'u64 shl (64'u64 - 12'u64 - e) - 1'u64))
result = cast[float64](x)
func truncImpl(f: float32): float32 =
const
mask: uint32 = 0xFF
shift: uint32 = 32 - 9
bias: uint32 = 0x7F
if f < 1:
if f < 0: return -truncImpl(-f)
elif f == 0: return f # Return -0 when f == -0
else: return 0
var x = cast[uint32](f)
let e = (x shr shift) and mask - bias
# Keep the top 9+e bits, the integer part; clear the rest.
if e < 32 - 9:
x = x and (not (1'u32 shl (32'u32 - 9'u32 - e) - 1'u32))
result = cast[float32](x)
func trunc*(x: float64): float64 =
if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
result = truncImpl(x)
func trunc*(x: float32): float32 =
if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
result = truncImpl(x)
func round*[T: float32|float64](x: T): T =
## Windows compilers prior to MSVC 2012 do not implement 'round',
## 'roundl' or 'roundf'.
result = if x < 0.0: ceil(x - T(0.5)) else: floor(x + T(0.5))
else:
func round*(x: float32): float32 {.importc: "roundf", header: "<math.h>".}
func round*(x: float64): float64 {.importc: "round", header: "<math.h>".} =
## Rounds a float to zero decimal places.
##
## Used internally by the `round func <#round,T,int>`_
## when the specified number of places is 0.
##
## **See also:**
## * `round func <#round,T,int>`_ for rounding to the specific
## number of decimal places
## * `floor func <#floor,float64>`_
## * `ceil func <#ceil,float64>`_
## * `trunc func <#trunc,float64>`_
runnableExamples:
doAssert round(3.4) == 3.0
doAssert round(3.5) == 4.0
doAssert round(4.5) == 5.0
func trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".}
func trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".} =
## Truncates `x` to the decimal point.
##
## **See also:**
## * `floor func <#floor,float64>`_
## * `ceil func <#ceil,float64>`_
## * `round func <#round,float64>`_
runnableExamples:
doAssert trunc(PI) == 3.0
doAssert trunc(-1.85) == -1.0
func `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".}
func `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".} =
## Computes the modulo operation for float values (the remainder of `x` divided by `y`).
##
## **See also:**
## * `floorMod func <#floorMod,T,T>`_ for Python-like (`%` operator) behavior
runnableExamples:
doAssert 6.5 mod 2.5 == 1.5
doAssert -6.5 mod 2.5 == -1.5
doAssert 6.5 mod -2.5 == 1.5
doAssert -6.5 mod -2.5 == -1.5
else: # JS
func hypot*(x, y: float32): float32 {.importc: "Math.hypot", varargs, nodecl.}
func hypot*(x, y: float64): float64 {.importc: "Math.hypot", varargs, nodecl.}
func pow*(x, y: float32): float32 {.importc: "Math.pow", nodecl.}
func pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.}
func floor*(x: float32): float32 {.importc: "Math.floor", nodecl.}
func floor*(x: float64): float64 {.importc: "Math.floor", nodecl.}
func ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.}
func ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.}
when (NimMajor, NimMinor) < (1, 5) or defined(nimLegacyJsRound):
func round*(x: float): float {.importc: "Math.round", nodecl.}
else:
func jsRound(x: float): float {.importc: "Math.round", nodecl.}
func round*[T: float64 | float32](x: T): T =
if x >= 0: result = jsRound(x)
else:
result = ceil(x)
if result - x >= T(0.5):
result -= T(1.0)
func trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.}
func trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.}
func `mod`*(x, y: float32): float32 {.importjs: "(# % #)".}
func `mod`*(x, y: float64): float64 {.importjs: "(# % #)".} =
## Computes the modulo operation for float values (the remainder of `x` divided by `y`).
runnableExamples:
doAssert 6.5 mod 2.5 == 1.5
doAssert -6.5 mod 2.5 == -1.5
doAssert 6.5 mod -2.5 == 1.5
doAssert -6.5 mod -2.5 == -1.5
func divmod*[T:SomeInteger](num, denom: T): (T, T) =
runnableExamples:
doAssert divmod(5, 2) == (2, 1)
doAssert divmod(5, -3) == (-1, 2)
result[0] = num div denom
result[1] = num mod denom
func round*[T: float32|float64](x: T, places: int): T =
## Decimal rounding on a binary floating point number.
##
## This function is NOT reliable. Floating point numbers cannot hold
## non integer decimals precisely. If `places` is 0 (or omitted),
## round to the nearest integral value following normal mathematical
## rounding rules (e.g. `round(54.5) -> 55.0`). If `places` is
## greater than 0, round to the given number of decimal places,
## e.g. `round(54.346, 2) -> 54.350000000000001421…`. If `places` is negative, round
## to the left of the decimal place, e.g. `round(537.345, -1) -> 540.0`.
runnableExamples:
doAssert round(PI, 2) == 3.14
doAssert round(PI, 4) == 3.1416
if places == 0:
result = round(x)
else:
var mult = pow(10.0, T(places))
result = round(x * mult) / mult
func floorDiv*[T: SomeInteger](x, y: T): T =
## Floor division is conceptually defined as `floor(x / y)`.
##
## This is different from the `system.div <system.html#div,int,int>`_
## operator, which is defined as `trunc(x / y)`.
## That is, `div` rounds towards `0` and `floorDiv` rounds down.
##
## **See also:**
## * `system.div proc <system.html#div,int,int>`_ for integer division
## * `floorMod func <#floorMod,T,T>`_ for Python-like (`%` operator) behavior
runnableExamples:
doAssert floorDiv( 13, 3) == 4
doAssert floorDiv(-13, 3) == -5
doAssert floorDiv( 13, -3) == -5
doAssert floorDiv(-13, -3) == 4
result = x div y
let r = x mod y
if (r > 0 and y < 0) or (r < 0 and y > 0): result.dec 1
func floorMod*[T: SomeNumber](x, y: T): T =
## Floor modulo is conceptually defined as `x - (floorDiv(x, y) * y)`.
##
## This func behaves the same as the `%` operator in Python.
##
## **See also:**
## * `mod func <#mod,float64,float64>`_
## * `floorDiv func <#floorDiv,T,T>`_
runnableExamples:
doAssert floorMod( 13, 3) == 1
doAssert floorMod(-13, 3) == 2
doAssert floorMod( 13, -3) == -2
doAssert floorMod(-13, -3) == -1
result = x mod y
if (result > 0 and y < 0) or (result < 0 and y > 0): result += y
func euclDiv*[T: SomeInteger](x, y: T): T {.since: (1, 5, 1).} =
## Returns euclidean division of `x` by `y`.
runnableExamples:
doAssert euclDiv(13, 3) == 4
doAssert euclDiv(-13, 3) == -5
doAssert euclDiv(13, -3) == -4
doAssert euclDiv(-13, -3) == 5
result = x div y
if x mod y < 0:
if y > 0:
dec result
else:
inc result
func euclMod*[T: SomeNumber](x, y: T): T {.since: (1, 5, 1).} =
## Returns euclidean modulo of `x` by `y`.
## `euclMod(x, y)` is non-negative.
runnableExamples:
doAssert euclMod(13, 3) == 1
doAssert euclMod(-13, 3) == 2
doAssert euclMod(13, -3) == 1
doAssert euclMod(-13, -3) == 2
result = x mod y
if result < 0:
result += abs(y)
func ceilDiv*[T: SomeInteger](x, y: T): T {.inline, since: (1, 5, 1).} =
## Ceil division is conceptually defined as `ceil(x / y)`.
##
## Assumes `x >= 0` and `y > 0` (and `x + y - 1 <= high(T)` if T is SomeUnsignedInt).
##
## This is different from the `system.div <system.html#div,int,int>`_
## operator, which works like `trunc(x / y)`.
## That is, `div` rounds towards `0` and `ceilDiv` rounds up.
##
## This function has the above input limitation, because that allows the
## compiler to generate faster code and it is rarely used with
## negative values or unsigned integers close to `high(T)/2`.
## If you need a `ceilDiv` that works with any input, see:
## https://github.com/demotomohiro/divmath.
##
## **See also:**
## * `system.div proc <system.html#div,int,int>`_ for integer division
## * `floorDiv func <#floorDiv,T,T>`_ for integer division which rounds down.
runnableExamples:
assert ceilDiv(12, 3) == 4
assert ceilDiv(13, 3) == 5
when sizeof(T) == 8:
type UT = uint64
elif sizeof(T) == 4:
type UT = uint32
elif sizeof(T) == 2:
type UT = uint16
elif sizeof(T) == 1:
type UT = uint8
else:
{.fatal: "Unsupported int type".}
assert x >= 0 and y > 0
when T is SomeUnsignedInt:
assert x + y - 1 >= x
# If the divisor is const, the backend C/C++ compiler generates code without a `div`
# instruction, as it is slow on most CPUs.
# If the divisor is a power of 2 and a const unsigned integer type, the
# compiler generates faster code.
# If the divisor is const and a signed integer, generated code becomes slower
# than the code with unsigned integers, because division with signed integers
# need to works for both positive and negative value without `idiv`/`sdiv`.
# That is why this code convert parameters to unsigned.
# This post contains a comparison of the performance of signed/unsigned integers:
# https://github.com/nim-lang/Nim/pull/18596#issuecomment-894420984.
# If signed integer arguments were not converted to unsigned integers,
# `ceilDiv` wouldn't work for any positive signed integer value, because
# `x + (y - 1)` can overflow.
((x.UT + (y.UT - 1.UT)) div y.UT).T
func frexp*[T: float32|float64](x: T): tuple[frac: T, exp: int] {.inline.} =
## Splits `x` into a normalized fraction `frac` and an integral power of 2 `exp`,
## such that `abs(frac) in 0.5..<1` and `x == frac * 2 ^ exp`, except for special
## cases shown below.
runnableExamples:
doAssert frexp(8.0) == (0.5, 4)
doAssert frexp(-8.0) == (-0.5, 4)
doAssert frexp(0.0) == (0.0, 0)
# special cases:
when sizeof(int) == 8:
doAssert frexp(-0.0).frac.signbit # signbit preserved for +-0
doAssert frexp(Inf).frac == Inf # +- Inf preserved
doAssert frexp(NaN).frac.isNaN
when not defined(js):
var exp: cint
result.frac = c_frexp2(x, exp)
result.exp = exp
else:
if x == 0.0:
# reuse signbit implementation
let uintBuffer = toBitsImpl(x)
if (uintBuffer[1] shr 31) != 0:
# x is -0.0
result = (-0.0, 0)
else:
result = (0.0, 0)
elif x < 0.0:
result = frexp(-x)
result.frac = -result.frac
else:
var ex = trunc(log2(x))
result.exp = int(ex)
result.frac = x / pow(2.0, ex)
if abs(result.frac) >= 1:
inc(result.exp)
result.frac = result.frac / 2
if result.exp == 1024 and result.frac == 0.0:
result.frac = 0.99999999999999988898
func frexp*[T: float32|float64](x: T, exponent: var int): T {.inline.} =
## Overload of `frexp` that calls `(result, exponent) = frexp(x)`.
runnableExamples:
var x: int
doAssert frexp(5.0, x) == 0.625
doAssert x == 3
(result, exponent) = frexp(x)
when not defined(js):
when windowsCC89:
# taken from Go-lang Math.Log2
const ln2 = 0.693147180559945309417232121458176568075500134360255254120680009
template log2Impl[T](x: T): T =
var exp: int
var frac = frexp(x, exp)
# Make sure exact powers of two give an exact answer.
# Don't depend on Log(0.5)*(1/Ln2)+exp being exactly exp-1.
if frac == 0.5: return T(exp - 1)
log10(frac) * (1 / ln2) + T(exp)
func log2*(x: float32): float32 = log2Impl(x)
func log2*(x: float64): float64 = log2Impl(x)
## Log2 returns the binary logarithm of x.
## The special cases are the same as for Log.
else:
func log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".}
func log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".} =
## Computes the binary logarithm (base 2) of `x`.
##
## **See also:**
## * `log func <#log,T,T>`_
## * `log10 func <#log10,float64>`_
## * `ln func <#ln,float64>`_
runnableExamples:
doAssert almostEqual(log2(8.0), 3.0)
doAssert almostEqual(log2(1.0), 0.0)
doAssert almostEqual(log2(0.0), -Inf)
doAssert log2(-2.0).isNaN
func splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
## Breaks `x` into an integer and a fractional part.
##
## Returns a tuple containing `intpart` and `floatpart`, representing
## the integer part and the fractional part, respectively.
##
## Both parts have the same sign as `x`. Analogous to the `modf`
## function in C.
runnableExamples:
doAssert splitDecimal(5.25) == (intpart: 5.0, floatpart: 0.25)
doAssert splitDecimal(-2.73) == (intpart: -2.0, floatpart: -0.73)
var
absolute: T
absolute = abs(x)
result.intpart = floor(absolute)
result.floatpart = absolute - result.intpart
if x < 0:
result.intpart = -result.intpart
result.floatpart = -result.floatpart
func degToRad*[T: float32|float64](d: T): T {.inline.} =
## Converts from degrees to radians.
##
## **See also:**
## * `radToDeg func <#radToDeg,T>`_
runnableExamples:
doAssert almostEqual(degToRad(180.0), PI)
result = d * T(RadPerDeg)
func radToDeg*[T: float32|float64](d: T): T {.inline.} =
## Converts from radians to degrees.
##
## **See also:**
## * `degToRad func <#degToRad,T>`_
runnableExamples:
doAssert almostEqual(radToDeg(2 * PI), 360.0)
result = d / T(RadPerDeg)
func sgn*[T: SomeNumber](x: T): int {.inline.} =
## Sign function.
##
## Returns:
## * `-1` for negative numbers and `NegInf`,
## * `1` for positive numbers and `Inf`,
## * `0` for positive zero, negative zero and `NaN`
runnableExamples:
doAssert sgn(5) == 1
doAssert sgn(0) == 0
doAssert sgn(-4.1) == -1
ord(T(0) < x) - ord(x < T(0))
{.pop.}
{.pop.}
func sum*[T](x: openArray[T]): T =
## Computes the sum of the elements in `x`.
##
## If `x` is empty, 0 is returned.
##
## **See also:**
## * `prod func <#prod,openArray[T]>`_
## * `cumsum func <#cumsum,openArray[T]>`_
## * `cumsummed func <#cumsummed,openArray[T]>`_
runnableExamples:
doAssert sum([1, 2, 3, 4]) == 10
doAssert sum([-4, 3, 5]) == 4
for i in items(x): result = result + i
func prod*[T](x: openArray[T]): T =
## Computes the product of the elements in `x`.
##
## If `x` is empty, 1 is returned.
##
## **See also:**
## * `sum func <#sum,openArray[T]>`_
## * `fac func <#fac,int>`_
runnableExamples:
doAssert prod([1, 2, 3, 4]) == 24
doAssert prod([-4, 3, 5]) == -60
result = T(1)
for i in items(x): result = result * i
func cumsummed*[T](x: openArray[T]): seq[T] =
## Returns the cumulative (aka prefix) summation of `x`.
##
## If `x` is empty, `@[]` is returned.
##
## **See also:**
## * `sum func <#sum,openArray[T]>`_
## * `cumsum func <#cumsum,openArray[T]>`_ for the in-place version
runnableExamples:
doAssert cumsummed([1, 2, 3, 4]) == @[1, 3, 6, 10]
let xLen = x.len
if xLen == 0:
return @[]
result.setLen(xLen)
result[0] = x[0]
for i in 1 ..< xLen: result[i] = result[i - 1] + x[i]
func cumsum*[T](x: var openArray[T]) =
## Transforms `x` in-place (must be declared as `var`) into its
## cumulative (aka prefix) summation.
##
## **See also:**
## * `sum func <#sum,openArray[T]>`_
## * `cumsummed func <#cumsummed,openArray[T]>`_ for a version which
## returns a cumsummed sequence
runnableExamples:
var a = [1, 2, 3, 4]
cumsum(a)
doAssert a == @[1, 3, 6, 10]
for i in 1 ..< x.len: x[i] = x[i - 1] + x[i]
func `^`*[T: SomeNumber](x: T, y: Natural): T =
## Computes `x` to the power of `y`.
##
## The exponent `y` must be non-negative, use
## `pow <#pow,float64,float64>`_ for negative exponents.
##
## **See also:**
## * `pow func <#pow,float64,float64>`_ for negative exponent or
## floats
## * `sqrt func <#sqrt,float64>`_
## * `cbrt func <#cbrt,float64>`_
runnableExamples:
doAssert -3 ^ 0 == 1
doAssert -3 ^ 1 == -3
doAssert -3 ^ 2 == 9
case y
of 0: result = 1
of 1: result = x
of 2: result = x * x
of 3: result = x * x * x
else:
var (x, y) = (x, y)
result = 1
while true:
if (y and 1) != 0:
result *= x
y = y shr 1
if y == 0:
break
x *= x
func gcd*[T](x, y: T): T =
## Computes the greatest common (positive) divisor of `x` and `y`.
##
## Note that for floats, the result cannot always be interpreted as
## "greatest decimal `z` such that `z*N == x and z*M == y`
## where N and M are positive integers".
##
## **See also:**
## * `gcd func <#gcd,SomeInteger,SomeInteger>`_ for an integer version
## * `lcm func <#lcm,T,T>`_
runnableExamples:
doAssert gcd(13.5, 9.0) == 4.5
var (x, y) = (x, y)
while y != 0:
x = x mod y
swap x, y
abs x
func gcd*(x, y: SomeInteger): SomeInteger =
## Computes the greatest common (positive) divisor of `x` and `y`,
## using the binary GCD (aka Stein's) algorithm.
##
## **See also:**
## * `gcd func <#gcd,T,T>`_ for a float version
## * `lcm func <#lcm,T,T>`_
runnableExamples:
doAssert gcd(12, 8) == 4
doAssert gcd(17, 63) == 1
when x is SomeSignedInt:
var x = abs(x)
else:
var x = x
when y is SomeSignedInt:
var y = abs(y)
else:
var y = y
if x == 0:
return y
if y == 0:
return x
let shift = countTrailingZeroBits(x or y)
y = y shr countTrailingZeroBits(y)
while x != 0:
x = x shr countTrailingZeroBits(x)
if y > x:
swap y, x
x -= y
y shl shift
func gcd*[T](x: openArray[T]): T {.since: (1, 1).} =
## Computes the greatest common (positive) divisor of the elements of `x`.
##
## **See also:**
## * `gcd func <#gcd,T,T>`_ for a version with two arguments
runnableExamples:
doAssert gcd(@[13.5, 9.0]) == 4.5
result = x[0]
for i in 1 ..< x.len:
result = gcd(result, x[i])
func lcm*[T](x, y: T): T =
## Computes the least common multiple of `x` and `y`.
##
## **See also:**
## * `gcd func <#gcd,T,T>`_
runnableExamples:
doAssert lcm(24, 30) == 120
doAssert lcm(13, 39) == 39
x div gcd(x, y) * y
func clamp*[T](val: T, bounds: Slice[T]): T {.since: (1, 5), inline.} =
## Like `system.clamp`, but takes a slice, so you can easily clamp within a range.
runnableExamples:
assert clamp(10, 1 .. 5) == 5
assert clamp(1, 1 .. 3) == 1
type A = enum a0, a1, a2, a3, a4, a5
assert a1.clamp(a2..a4) == a2
assert clamp((3, 0), (1, 0) .. (2, 9)) == (2, 9)
doAssertRaises(AssertionDefect): discard clamp(1, 3..2) # invalid bounds
assert bounds.a <= bounds.b, $(bounds.a, bounds.b)
clamp(val, bounds.a, bounds.b)
func lcm*[T](x: openArray[T]): T {.since: (1, 1).} =
## Computes the least common multiple of the elements of `x`.
##
## **See also:**
## * `lcm func <#lcm,T,T>`_ for a version with two arguments
runnableExamples:
doAssert lcm(@[24, 30]) == 120
result = x[0]
for i in 1 ..< x.len:
result = lcm(result, x[i])