mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 17:34:43 +00:00
1086 lines
35 KiB
Nim
1086 lines
35 KiB
Nim
#
|
|
#
|
|
# Nim's Runtime Library
|
|
# (c) Copyright 2011 Alexander Mitchell-Robinson
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
## Although this module has `seq` in its name, it implements operations
|
|
## not only for the `seq`:idx: type, but for three built-in container types
|
|
## under the `openArray` umbrella:
|
|
## * sequences
|
|
## * strings
|
|
## * array
|
|
##
|
|
## The `system` module defines several common functions, such as:
|
|
## * `newSeq[T]` for creating new sequences of type `T`
|
|
## * `@` for converting arrays and strings to sequences
|
|
## * `add` for adding new elements to strings and sequences
|
|
## * `&` for string and seq concatenation
|
|
## * `in` (alias for `contains`) and `notin` for checking if an item is
|
|
## in a container
|
|
##
|
|
## This module builds upon that, providing additional functionality in form of
|
|
## procs, iterators and templates inspired by functional programming
|
|
## languages.
|
|
##
|
|
## For functional style programming you have different options at your disposal:
|
|
## * the `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
|
|
## * pass an `anonymous proc<manual.html#procedures-anonymous-procs>`_
|
|
## * import the `sugar module<sugar.html>`_ and use
|
|
## the `=> macro<sugar.html#%3D>.m,untyped,untyped>`_
|
|
## * use `...It templates<#18>`_
|
|
## (`mapIt<#mapIt.t,typed,untyped>`_,
|
|
## `filterIt<#filterIt.t,untyped,untyped>`_, etc.)
|
|
##
|
|
## Chaining of functions is possible thanks to the
|
|
## `method call syntax<manual.html#procedures-method-call-syntax>`_.
|
|
|
|
runnableExamples:
|
|
import std/sugar
|
|
|
|
# Creating a sequence from 1 to 10, multiplying each member by 2,
|
|
# keeping only the members which are not divisible by 6.
|
|
let
|
|
foo = toSeq(1..10).map(x => x * 2).filter(x => x mod 6 != 0)
|
|
bar = toSeq(1..10).mapIt(it * 2).filterIt(it mod 6 != 0)
|
|
baz = collect:
|
|
for i in 1..10:
|
|
let j = 2 * i
|
|
if j mod 6 != 0:
|
|
j
|
|
|
|
doAssert foo == bar
|
|
doAssert foo == baz
|
|
doAssert foo == @[2, 4, 8, 10, 14, 16, 20]
|
|
|
|
doAssert foo.any(x => x > 17)
|
|
doAssert not bar.allIt(it < 20)
|
|
doAssert foo.foldl(a + b) == 74 # sum of all members
|
|
|
|
|
|
runnableExamples:
|
|
from std/strutils import join
|
|
|
|
let
|
|
vowels = @"aeiou"
|
|
foo = "sequtils is an awesome module"
|
|
|
|
doAssert (vowels is seq[char]) and (vowels == @['a', 'e', 'i', 'o', 'u'])
|
|
doAssert foo.filterIt(it notin vowels).join == "sqtls s n wsm mdl"
|
|
|
|
## See also
|
|
## ========
|
|
## * `strutils module<strutils.html>`_ for common string functions
|
|
## * `sugar module<sugar.html>`_ for syntactic sugar macros
|
|
## * `algorithm module<algorithm.html>`_ for common generic algorithms
|
|
## * `json module<json.html>`_ for a structure which allows
|
|
## heterogeneous members
|
|
|
|
|
|
import std/private/since
|
|
|
|
import macros
|
|
|
|
macro evalOnceAs(expAlias, exp: untyped,
|
|
letAssigneable: static[bool]): untyped =
|
|
## Injects `expAlias` in caller scope, to avoid bugs involving multiple
|
|
## substitution in macro arguments such as
|
|
## https://github.com/nim-lang/Nim/issues/7187.
|
|
## `evalOnceAs(myAlias, myExp)` will behave as `let myAlias = myExp`
|
|
## except when `letAssigneable` is false (e.g. to handle openArray) where
|
|
## it just forwards `exp` unchanged.
|
|
expectKind(expAlias, nnkIdent)
|
|
var val = exp
|
|
|
|
result = newStmtList()
|
|
# If `exp` is not a symbol we evaluate it once here and then use the temporary
|
|
# symbol as alias
|
|
if exp.kind != nnkSym and letAssigneable:
|
|
val = genSym()
|
|
result.add(newLetStmt(val, exp))
|
|
|
|
result.add(
|
|
newProc(name = genSym(nskTemplate, $expAlias), params = [getType(untyped)],
|
|
body = val, procType = nnkTemplateDef))
|
|
|
|
func concat*[T](seqs: varargs[seq[T]]): seq[T] =
|
|
## Takes several sequences' items and returns them inside a new sequence.
|
|
## All sequences must be of the same type.
|
|
##
|
|
## **See also:**
|
|
## * `distribute func<#distribute,seq[T],Positive>`_ for a reverse
|
|
## operation
|
|
##
|
|
runnableExamples:
|
|
let
|
|
s1 = @[1, 2, 3]
|
|
s2 = @[4, 5]
|
|
s3 = @[6, 7]
|
|
total = concat(s1, s2, s3)
|
|
assert total == @[1, 2, 3, 4, 5, 6, 7]
|
|
|
|
var L = 0
|
|
for seqitm in items(seqs): inc(L, len(seqitm))
|
|
newSeq(result, L)
|
|
var i = 0
|
|
for s in items(seqs):
|
|
for itm in items(s):
|
|
result[i] = itm
|
|
inc(i)
|
|
|
|
func count*[T](s: openArray[T], x: T): int =
|
|
## Returns the number of occurrences of the item `x` in the container `s`.
|
|
##
|
|
runnableExamples:
|
|
let
|
|
a = @[1, 2, 2, 3, 2, 4, 2]
|
|
b = "abracadabra"
|
|
assert count(a, 2) == 4
|
|
assert count(a, 99) == 0
|
|
assert count(b, 'r') == 2
|
|
|
|
for itm in items(s):
|
|
if itm == x:
|
|
inc result
|
|
|
|
func cycle*[T](s: openArray[T], n: Natural): seq[T] =
|
|
## Returns a new sequence with the items of the container `s` repeated
|
|
## `n` times.
|
|
## `n` must be a non-negative number (zero or more).
|
|
##
|
|
runnableExamples:
|
|
let
|
|
s = @[1, 2, 3]
|
|
total = s.cycle(3)
|
|
assert total == @[1, 2, 3, 1, 2, 3, 1, 2, 3]
|
|
|
|
result = newSeq[T](n * s.len)
|
|
var o = 0
|
|
for x in 0 ..< n:
|
|
for e in s:
|
|
result[o] = e
|
|
inc o
|
|
|
|
func repeat*[T](x: T, n: Natural): seq[T] =
|
|
## Returns a new sequence with the item `x` repeated `n` times.
|
|
## `n` must be a non-negative number (zero or more).
|
|
##
|
|
runnableExamples:
|
|
let
|
|
total = repeat(5, 3)
|
|
assert total == @[5, 5, 5]
|
|
|
|
result = newSeq[T](n)
|
|
for i in 0 ..< n:
|
|
result[i] = x
|
|
|
|
func deduplicate*[T](s: openArray[T], isSorted: bool = false): seq[T] =
|
|
## Returns a new sequence without duplicates.
|
|
##
|
|
## Setting the optional argument `isSorted` to true (default: false)
|
|
## uses a faster algorithm for deduplication.
|
|
##
|
|
runnableExamples:
|
|
let
|
|
dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
|
|
dup2 = @["a", "a", "c", "d", "d"]
|
|
unique1 = deduplicate(dup1)
|
|
unique2 = deduplicate(dup2, isSorted = true)
|
|
assert unique1 == @[1, 3, 4, 2, 8]
|
|
assert unique2 == @["a", "c", "d"]
|
|
|
|
result = @[]
|
|
if s.len > 0:
|
|
if isSorted:
|
|
var prev = s[0]
|
|
result.add(prev)
|
|
for i in 1..s.high:
|
|
if s[i] != prev:
|
|
prev = s[i]
|
|
result.add(prev)
|
|
else:
|
|
for itm in items(s):
|
|
if not result.contains(itm): result.add(itm)
|
|
|
|
func minIndex*[T](s: openArray[T]): int {.since: (1, 1).} =
|
|
## Returns the index of the minimum value of `s`.
|
|
## `T` needs to have a `<` operator.
|
|
runnableExamples:
|
|
let
|
|
a = @[1, 2, 3, 4]
|
|
b = @[6, 5, 4, 3]
|
|
c = [2, -7, 8, -5]
|
|
d = "ziggy"
|
|
assert minIndex(a) == 0
|
|
assert minIndex(b) == 3
|
|
assert minIndex(c) == 1
|
|
assert minIndex(d) == 2
|
|
|
|
for i in 1..high(s):
|
|
if s[i] < s[result]: result = i
|
|
|
|
func maxIndex*[T](s: openArray[T]): int {.since: (1, 1).} =
|
|
## Returns the index of the maximum value of `s`.
|
|
## `T` needs to have a `<` operator.
|
|
runnableExamples:
|
|
let
|
|
a = @[1, 2, 3, 4]
|
|
b = @[6, 5, 4, 3]
|
|
c = [2, -7, 8, -5]
|
|
d = "ziggy"
|
|
assert maxIndex(a) == 3
|
|
assert maxIndex(b) == 0
|
|
assert maxIndex(c) == 2
|
|
assert maxIndex(d) == 0
|
|
|
|
for i in 1..high(s):
|
|
if s[i] > s[result]: result = i
|
|
|
|
|
|
template zipImpl(s1, s2, retType: untyped): untyped =
|
|
func zip*[S, T](s1: openArray[S], s2: openArray[T]): retType =
|
|
## Returns a new sequence with a combination of the two input containers.
|
|
##
|
|
## The input containers can be of different types.
|
|
## If one container is shorter, the remaining items in the longer container
|
|
## are discarded.
|
|
##
|
|
## **Note**: For Nim 1.0.x and older version, `zip` returned a seq of
|
|
## named tuples with fields `a` and `b`. For Nim versions 1.1.x and newer,
|
|
## `zip` returns a seq of unnamed tuples.
|
|
runnableExamples:
|
|
let
|
|
short = @[1, 2, 3]
|
|
long = @[6, 5, 4, 3, 2, 1]
|
|
words = @["one", "two", "three"]
|
|
letters = "abcd"
|
|
zip1 = zip(short, long)
|
|
zip2 = zip(short, words)
|
|
assert zip1 == @[(1, 6), (2, 5), (3, 4)]
|
|
assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
|
|
assert zip1[2][0] == 3
|
|
assert zip2[1][1] == "two"
|
|
when (NimMajor, NimMinor) <= (1, 0):
|
|
let
|
|
zip3 = zip(long, letters)
|
|
assert zip3 == @[(a: 6, b: 'a'), (5, 'b'), (4, 'c'), (3, 'd')]
|
|
assert zip3[0].b == 'a'
|
|
else:
|
|
let
|
|
zip3: seq[tuple[num: int, letter: char]] = zip(long, letters)
|
|
assert zip3 == @[(6, 'a'), (5, 'b'), (4, 'c'), (3, 'd')]
|
|
assert zip3[0].letter == 'a'
|
|
|
|
var m = min(s1.len, s2.len)
|
|
newSeq(result, m)
|
|
for i in 0 ..< m:
|
|
result[i] = (s1[i], s2[i])
|
|
|
|
when (NimMajor, NimMinor) <= (1, 0):
|
|
zipImpl(s1, s2, seq[tuple[a: S, b: T]])
|
|
else:
|
|
zipImpl(s1, s2, seq[(S, T)])
|
|
|
|
func unzip*[S, T](s: openArray[(S, T)]): (seq[S], seq[T]) {.since: (1, 1).} =
|
|
## Returns a tuple of two sequences split out from a sequence of 2-field tuples.
|
|
runnableExamples:
|
|
let
|
|
zipped = @[(1, 'a'), (2, 'b'), (3, 'c')]
|
|
unzipped1 = @[1, 2, 3]
|
|
unzipped2 = @['a', 'b', 'c']
|
|
assert zipped.unzip() == (unzipped1, unzipped2)
|
|
assert zip(unzipped1, unzipped2).unzip() == (unzipped1, unzipped2)
|
|
result[0] = newSeq[S](s.len)
|
|
result[1] = newSeq[T](s.len)
|
|
for i in 0..<s.len:
|
|
result[0][i] = s[i][0]
|
|
result[1][i] = s[i][1]
|
|
|
|
func distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
|
|
## Splits and distributes a sequence `s` into `num` sub-sequences.
|
|
##
|
|
## Returns a sequence of `num` sequences. For *some* input values this is the
|
|
## inverse of the `concat <#concat,varargs[seq[T]]>`_ func.
|
|
## The input sequence `s` can be empty, which will produce
|
|
## `num` empty sequences.
|
|
##
|
|
## If `spread` is false and the length of `s` is not a multiple of `num`, the
|
|
## func will max out the first sub-sequence with `1 + len(s) div num`
|
|
## entries, leaving the remainder of elements to the last sequence.
|
|
##
|
|
## On the other hand, if `spread` is true, the func will distribute evenly
|
|
## the remainder of the division across all sequences, which makes the result
|
|
## more suited to multithreading where you are passing equal sized work units
|
|
## to a thread pool and want to maximize core usage.
|
|
##
|
|
runnableExamples:
|
|
let numbers = @[1, 2, 3, 4, 5, 6, 7]
|
|
assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
|
|
assert numbers.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]]
|
|
assert numbers.distribute(6)[0] == @[1, 2]
|
|
assert numbers.distribute(6)[1] == @[3]
|
|
|
|
if num < 2:
|
|
result = @[s]
|
|
return
|
|
|
|
# Create the result and calculate the stride size and the remainder if any.
|
|
result = newSeq[seq[T]](num)
|
|
var
|
|
stride = s.len div num
|
|
first = 0
|
|
last = 0
|
|
extra = s.len mod num
|
|
|
|
if extra == 0 or spread == false:
|
|
# Use an algorithm which overcounts the stride and minimizes reading limits.
|
|
if extra > 0: inc(stride)
|
|
for i in 0 ..< num:
|
|
result[i] = newSeq[T]()
|
|
for g in first ..< min(s.len, first + stride):
|
|
result[i].add(s[g])
|
|
first += stride
|
|
else:
|
|
# Use an undercounting algorithm which *adds* the remainder each iteration.
|
|
for i in 0 ..< num:
|
|
last = first + stride
|
|
if extra > 0:
|
|
extra -= 1
|
|
inc(last)
|
|
result[i] = newSeq[T]()
|
|
for g in first ..< last:
|
|
result[i].add(s[g])
|
|
first = last
|
|
|
|
proc map*[T, S](s: openArray[T], op: proc (x: T): S {.closure.}):
|
|
seq[S]{.inline.} =
|
|
## Returns a new sequence with the results of the `op` proc applied to every
|
|
## item in the container `s`.
|
|
##
|
|
## Since the input is not modified, you can use it to
|
|
## transform the type of the elements in the input container.
|
|
##
|
|
## Instead of using `map` and `filter`, consider using the `collect` macro
|
|
## from the `sugar` module.
|
|
##
|
|
## **See also:**
|
|
## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
|
|
## * `mapIt template<#mapIt.t,typed,untyped>`_
|
|
## * `apply proc<#apply,openArray[T],proc(T)_2>`_ for the in-place version
|
|
##
|
|
runnableExamples:
|
|
let
|
|
a = @[1, 2, 3, 4]
|
|
b = map(a, proc(x: int): string = $x)
|
|
assert b == @["1", "2", "3", "4"]
|
|
|
|
newSeq(result, s.len)
|
|
for i in 0 ..< s.len:
|
|
result[i] = op(s[i])
|
|
|
|
proc apply*[T](s: var openArray[T], op: proc (x: var T) {.closure.})
|
|
{.inline.} =
|
|
## Applies `op` to every item in `s`, modifying it directly.
|
|
##
|
|
## Note that the container `s` must be declared as a `var`,
|
|
## since `s` is modified in-place.
|
|
## The parameter function takes a `var T` type parameter.
|
|
##
|
|
## **See also:**
|
|
## * `applyIt template<#applyIt.t,untyped,untyped>`_
|
|
## * `map proc<#map,openArray[T],proc(T)>`_
|
|
##
|
|
runnableExamples:
|
|
var a = @["1", "2", "3", "4"]
|
|
apply(a, proc(x: var string) = x &= "42")
|
|
assert a == @["142", "242", "342", "442"]
|
|
|
|
for i in 0 ..< s.len: op(s[i])
|
|
|
|
proc apply*[T](s: var openArray[T], op: proc (x: T): T {.closure.})
|
|
{.inline.} =
|
|
## Applies `op` to every item in `s` modifying it directly.
|
|
##
|
|
## Note that the container `s` must be declared as a `var`
|
|
## and it is required for your input and output types to
|
|
## be the same, since `s` is modified in-place.
|
|
## The parameter function takes and returns a `T` type variable.
|
|
##
|
|
## **See also:**
|
|
## * `applyIt template<#applyIt.t,untyped,untyped>`_
|
|
## * `map proc<#map,openArray[T],proc(T)>`_
|
|
##
|
|
runnableExamples:
|
|
var a = @["1", "2", "3", "4"]
|
|
apply(a, proc(x: string): string = x & "42")
|
|
assert a == @["142", "242", "342", "442"]
|
|
|
|
for i in 0 ..< s.len: s[i] = op(s[i])
|
|
|
|
proc apply*[T](s: openArray[T], op: proc (x: T) {.closure.}) {.inline, since: (1, 3).} =
|
|
## Same as `apply` but for a proc that does not return anything
|
|
## and does not mutate `s` directly.
|
|
runnableExamples:
|
|
var message: string
|
|
apply([0, 1, 2, 3, 4], proc(item: int) = message.addInt item)
|
|
assert message == "01234"
|
|
for i in 0 ..< s.len: op(s[i])
|
|
|
|
iterator filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): T =
|
|
## Iterates through a container `s` and yields every item that fulfills the
|
|
## predicate `pred` (a function that returns a `bool`).
|
|
##
|
|
## Instead of using `map` and `filter`, consider using the `collect` macro
|
|
## from the `sugar` module.
|
|
##
|
|
## **See also:**
|
|
## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
|
|
## * `filter proc<#filter,openArray[T],proc(T)>`_
|
|
## * `filterIt template<#filterIt.t,untyped,untyped>`_
|
|
##
|
|
runnableExamples:
|
|
let numbers = @[1, 4, 5, 8, 9, 7, 4]
|
|
var evens = newSeq[int]()
|
|
for n in filter(numbers, proc (x: int): bool = x mod 2 == 0):
|
|
evens.add(n)
|
|
assert evens == @[4, 8, 4]
|
|
|
|
for i in 0 ..< s.len:
|
|
if pred(s[i]):
|
|
yield s[i]
|
|
|
|
proc filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): seq[T]
|
|
{.inline.} =
|
|
## Returns a new sequence with all the items of `s` that fulfill the
|
|
## predicate `pred` (a function that returns a `bool`).
|
|
##
|
|
## Instead of using `map` and `filter`, consider using the `collect` macro
|
|
## from the `sugar` module.
|
|
##
|
|
## **See also:**
|
|
## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
|
|
## * `filterIt template<#filterIt.t,untyped,untyped>`_
|
|
## * `filter iterator<#filter.i,openArray[T],proc(T)>`_
|
|
## * `keepIf proc<#keepIf,seq[T],proc(T)>`_ for the in-place version
|
|
##
|
|
runnableExamples:
|
|
let
|
|
colors = @["red", "yellow", "black"]
|
|
f1 = filter(colors, proc(x: string): bool = x.len < 6)
|
|
f2 = filter(colors, proc(x: string): bool = x.contains('y'))
|
|
assert f1 == @["red", "black"]
|
|
assert f2 == @["yellow"]
|
|
|
|
result = newSeq[T]()
|
|
for i in 0 ..< s.len:
|
|
if pred(s[i]):
|
|
result.add(s[i])
|
|
|
|
proc keepIf*[T](s: var seq[T], pred: proc(x: T): bool {.closure.})
|
|
{.inline.} =
|
|
## Keeps the items in the passed sequence `s` if they fulfill the
|
|
## predicate `pred` (a function that returns a `bool`).
|
|
##
|
|
## Note that `s` must be declared as a `var`.
|
|
##
|
|
## Similar to the `filter proc<#filter,openArray[T],proc(T)>`_,
|
|
## but modifies the sequence directly.
|
|
##
|
|
## **See also:**
|
|
## * `keepItIf template<#keepItIf.t,seq,untyped>`_
|
|
## * `filter proc<#filter,openArray[T],proc(T)>`_
|
|
##
|
|
runnableExamples:
|
|
var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1]
|
|
keepIf(floats, proc(x: float): bool = x > 10)
|
|
assert floats == @[13.0, 12.5, 10.1]
|
|
|
|
var pos = 0
|
|
for i in 0 ..< len(s):
|
|
if pred(s[i]):
|
|
if pos != i:
|
|
when defined(gcDestructors):
|
|
s[pos] = move(s[i])
|
|
else:
|
|
shallowCopy(s[pos], s[i])
|
|
inc(pos)
|
|
setLen(s, pos)
|
|
|
|
func delete*[T](s: var seq[T]; first, last: Natural) =
|
|
## Deletes the items of a sequence `s` at positions `first..last`
|
|
## (including both ends of the range).
|
|
## This modifies `s` itself, it does not return a copy.
|
|
##
|
|
runnableExamples:
|
|
let outcome = @[1, 1, 1, 1, 1, 1, 1, 1]
|
|
var dest = @[1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1]
|
|
dest.delete(3, 8)
|
|
assert outcome == dest
|
|
doAssert first <= last
|
|
if first >= s.len:
|
|
return
|
|
var i = first
|
|
var j = min(len(s), last + 1)
|
|
var newLen = len(s) - j + i
|
|
while i < newLen:
|
|
when defined(gcDestructors):
|
|
s[i] = move(s[j])
|
|
else:
|
|
s[i].shallowCopy(s[j])
|
|
inc(i)
|
|
inc(j)
|
|
setLen(s, newLen)
|
|
|
|
func insert*[T](dest: var seq[T], src: openArray[T], pos = 0) =
|
|
## Inserts items from `src` into `dest` at position `pos`. This modifies
|
|
## `dest` itself, it does not return a copy.
|
|
##
|
|
## Note that the elements of `src` and `dest` must be of the same type.
|
|
##
|
|
runnableExamples:
|
|
var dest = @[1, 1, 1, 1, 1, 1, 1, 1]
|
|
let
|
|
src = @[2, 2, 2, 2, 2, 2]
|
|
outcome = @[1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1]
|
|
dest.insert(src, 3)
|
|
assert dest == outcome
|
|
|
|
var j = len(dest) - 1
|
|
var i = j + len(src)
|
|
if i == j: return
|
|
dest.setLen(i + 1)
|
|
|
|
# Move items after `pos` to the end of the sequence.
|
|
while j >= pos:
|
|
when defined(gcDestructors):
|
|
dest[i] = move(dest[j])
|
|
else:
|
|
dest[i].shallowCopy(dest[j])
|
|
dec(i)
|
|
dec(j)
|
|
# Insert items from `dest` into `dest` at `pos`
|
|
inc(j)
|
|
for item in src:
|
|
dest[j] = item
|
|
inc(j)
|
|
|
|
|
|
template filterIt*(s, pred: untyped): untyped =
|
|
## Returns a new sequence with all the items of `s` that fulfill the
|
|
## predicate `pred`.
|
|
##
|
|
## Unlike the `filter proc<#filter,openArray[T],proc(T)>`_ and
|
|
## `filter iterator<#filter.i,openArray[T],proc(T)>`_,
|
|
## the predicate needs to be an expression using the `it` variable
|
|
## for testing, like: `filterIt("abcxyz", it == 'x')`.
|
|
##
|
|
## Instead of using `mapIt` and `filterIt`, consider using the `collect` macro
|
|
## from the `sugar` module.
|
|
##
|
|
## **See also:**
|
|
## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
|
|
## * `filter proc<#filter,openArray[T],proc(T)>`_
|
|
## * `filter iterator<#filter.i,openArray[T],proc(T)>`_
|
|
##
|
|
runnableExamples:
|
|
let
|
|
temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
|
|
acceptable = temperatures.filterIt(it < 50 and it > -10)
|
|
notAcceptable = temperatures.filterIt(it > 50 or it < -10)
|
|
assert acceptable == @[-2.0, 24.5, 44.31]
|
|
assert notAcceptable == @[-272.15, 99.9, -113.44]
|
|
|
|
var result = newSeq[typeof(s[0])]()
|
|
for it {.inject.} in items(s):
|
|
if pred: result.add(it)
|
|
result
|
|
|
|
template keepItIf*(varSeq: seq, pred: untyped) =
|
|
## Keeps the items in the passed sequence (must be declared as a `var`)
|
|
## if they fulfill the predicate.
|
|
##
|
|
## Unlike the `keepIf proc<#keepIf,seq[T],proc(T)>`_,
|
|
## the predicate needs to be an expression using
|
|
## the `it` variable for testing, like: `keepItIf("abcxyz", it == 'x')`.
|
|
##
|
|
## **See also:**
|
|
## * `keepIf proc<#keepIf,seq[T],proc(T)>`_
|
|
## * `filterIt template<#filterIt.t,untyped,untyped>`_
|
|
##
|
|
runnableExamples:
|
|
var candidates = @["foo", "bar", "baz", "foobar"]
|
|
candidates.keepItIf(it.len == 3 and it[0] == 'b')
|
|
assert candidates == @["bar", "baz"]
|
|
|
|
var pos = 0
|
|
for i in 0 ..< len(varSeq):
|
|
let it {.inject.} = varSeq[i]
|
|
if pred:
|
|
if pos != i:
|
|
when defined(gcDestructors):
|
|
varSeq[pos] = move(varSeq[i])
|
|
else:
|
|
shallowCopy(varSeq[pos], varSeq[i])
|
|
inc(pos)
|
|
setLen(varSeq, pos)
|
|
|
|
since (1, 1):
|
|
template countIt*(s, pred: untyped): int =
|
|
## Returns a count of all the items that fulfill the predicate.
|
|
##
|
|
## The predicate needs to be an expression using
|
|
## the `it` variable for testing, like: `countIt(@[1, 2, 3], it > 2)`.
|
|
##
|
|
runnableExamples:
|
|
let numbers = @[-3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
|
|
iterator iota(n: int): int =
|
|
for i in 0..<n: yield i
|
|
assert numbers.countIt(it < 0) == 3
|
|
assert countIt(iota(10), it < 2) == 2
|
|
|
|
var result = 0
|
|
for it {.inject.} in s:
|
|
if pred: result += 1
|
|
result
|
|
|
|
proc all*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool =
|
|
## Iterates through a container and checks if every item fulfills the
|
|
## predicate.
|
|
##
|
|
## **See also:**
|
|
## * `allIt template<#allIt.t,untyped,untyped>`_
|
|
## * `any proc<#any,openArray[T],proc(T)>`_
|
|
##
|
|
runnableExamples:
|
|
let numbers = @[1, 4, 5, 8, 9, 7, 4]
|
|
assert all(numbers, proc (x: int): bool = x < 10) == true
|
|
assert all(numbers, proc (x: int): bool = x < 9) == false
|
|
|
|
for i in s:
|
|
if not pred(i):
|
|
return false
|
|
true
|
|
|
|
template allIt*(s, pred: untyped): bool =
|
|
## Iterates through a container and checks if every item fulfills the
|
|
## predicate.
|
|
##
|
|
## Unlike the `all proc<#all,openArray[T],proc(T)>`_,
|
|
## the predicate needs to be an expression using
|
|
## the `it` variable for testing, like: `allIt("abba", it == 'a')`.
|
|
##
|
|
## **See also:**
|
|
## * `all proc<#all,openArray[T],proc(T)>`_
|
|
## * `anyIt template<#anyIt.t,untyped,untyped>`_
|
|
##
|
|
runnableExamples:
|
|
let numbers = @[1, 4, 5, 8, 9, 7, 4]
|
|
assert numbers.allIt(it < 10) == true
|
|
assert numbers.allIt(it < 9) == false
|
|
|
|
var result = true
|
|
for it {.inject.} in items(s):
|
|
if not pred:
|
|
result = false
|
|
break
|
|
result
|
|
|
|
proc any*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool =
|
|
## Iterates through a container and checks if at least one item
|
|
## fulfills the predicate.
|
|
##
|
|
## **See also:**
|
|
## * `anyIt template<#anyIt.t,untyped,untyped>`_
|
|
## * `all proc<#all,openArray[T],proc(T)>`_
|
|
##
|
|
runnableExamples:
|
|
let numbers = @[1, 4, 5, 8, 9, 7, 4]
|
|
assert any(numbers, proc (x: int): bool = x > 8) == true
|
|
assert any(numbers, proc (x: int): bool = x > 9) == false
|
|
|
|
for i in s:
|
|
if pred(i):
|
|
return true
|
|
false
|
|
|
|
template anyIt*(s, pred: untyped): bool =
|
|
## Iterates through a container and checks if at least one item
|
|
## fulfills the predicate.
|
|
##
|
|
## Unlike the `any proc<#any,openArray[T],proc(T)>`_,
|
|
## the predicate needs to be an expression using
|
|
## the `it` variable for testing, like: `anyIt("abba", it == 'a')`.
|
|
##
|
|
## **See also:**
|
|
## * `any proc<#any,openArray[T],proc(T)>`_
|
|
## * `allIt template<#allIt.t,untyped,untyped>`_
|
|
##
|
|
runnableExamples:
|
|
let numbers = @[1, 4, 5, 8, 9, 7, 4]
|
|
assert numbers.anyIt(it > 8) == true
|
|
assert numbers.anyIt(it > 9) == false
|
|
|
|
var result = false
|
|
for it {.inject.} in items(s):
|
|
if pred:
|
|
result = true
|
|
break
|
|
result
|
|
|
|
template toSeq1(s: not iterator): untyped =
|
|
# overload for typed but not iterator
|
|
type OutType = typeof(items(s))
|
|
when compiles(s.len):
|
|
block:
|
|
evalOnceAs(s2, s, compiles((let _ = s)))
|
|
var i = 0
|
|
var result = newSeq[OutType](s2.len)
|
|
for it in s2:
|
|
result[i] = it
|
|
i += 1
|
|
result
|
|
else:
|
|
var result: seq[OutType] = @[]
|
|
for it in s:
|
|
result.add(it)
|
|
result
|
|
|
|
template toSeq2(iter: iterator): untyped =
|
|
# overload for iterator
|
|
evalOnceAs(iter2, iter(), false)
|
|
when compiles(iter2.len):
|
|
var i = 0
|
|
var result = newSeq[typeof(iter2)](iter2.len)
|
|
for x in iter2:
|
|
result[i] = x
|
|
inc i
|
|
result
|
|
else:
|
|
type OutType = typeof(iter2())
|
|
var result: seq[OutType] = @[]
|
|
when compiles(iter2()):
|
|
evalOnceAs(iter4, iter, false)
|
|
let iter3 = iter4()
|
|
for x in iter3():
|
|
result.add(x)
|
|
else:
|
|
for x in iter2():
|
|
result.add(x)
|
|
result
|
|
|
|
template toSeq*(iter: untyped): untyped =
|
|
## Transforms any iterable (anything that can be iterated over, e.g. with
|
|
## a for-loop) into a sequence.
|
|
##
|
|
runnableExamples:
|
|
let
|
|
myRange = 1..5
|
|
mySet: set[int8] = {5'i8, 3, 1}
|
|
assert typeof(myRange) is HSlice[system.int, system.int]
|
|
assert typeof(mySet) is set[int8]
|
|
|
|
let
|
|
mySeq1 = toSeq(myRange)
|
|
mySeq2 = toSeq(mySet)
|
|
assert mySeq1 == @[1, 2, 3, 4, 5]
|
|
assert mySeq2 == @[1'i8, 3, 5]
|
|
|
|
when compiles(toSeq1(iter)):
|
|
toSeq1(iter)
|
|
elif compiles(toSeq2(iter)):
|
|
toSeq2(iter)
|
|
else:
|
|
# overload for untyped, e.g.: `toSeq(myInlineIterator(3))`
|
|
when compiles(iter.len):
|
|
block:
|
|
evalOnceAs(iter2, iter, true)
|
|
var result = newSeq[typeof(iter)](iter2.len)
|
|
var i = 0
|
|
for x in iter2:
|
|
result[i] = x
|
|
inc i
|
|
result
|
|
else:
|
|
var result: seq[typeof(iter)] = @[]
|
|
for x in iter:
|
|
result.add(x)
|
|
result
|
|
|
|
template foldl*(sequence, operation: untyped): untyped =
|
|
## Template to fold a sequence from left to right, returning the accumulation.
|
|
##
|
|
## The sequence is required to have at least a single element. Debug versions
|
|
## of your program will assert in this situation but release versions will
|
|
## happily go ahead. If the sequence has a single element it will be returned
|
|
## without applying `operation`.
|
|
##
|
|
## The `operation` parameter should be an expression which uses the
|
|
## variables `a` and `b` for each step of the fold. Since this is a left
|
|
## fold, for non associative binary operations like subtraction think that
|
|
## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) -
|
|
## 3).
|
|
##
|
|
## **See also:**
|
|
## * `foldl template<#foldl.t,,,>`_ with a starting parameter
|
|
## * `foldr template<#foldr.t,untyped,untyped>`_
|
|
##
|
|
runnableExamples:
|
|
let
|
|
numbers = @[5, 9, 11]
|
|
addition = foldl(numbers, a + b)
|
|
subtraction = foldl(numbers, a - b)
|
|
multiplication = foldl(numbers, a * b)
|
|
words = @["nim", "is", "cool"]
|
|
concatenation = foldl(words, a & b)
|
|
procs = @["proc", "Is", "Also", "Fine"]
|
|
|
|
|
|
func foo(acc, cur: string): string =
|
|
result = acc & cur
|
|
|
|
assert addition == 25, "Addition is (((5)+9)+11)"
|
|
assert subtraction == -15, "Subtraction is (((5)-9)-11)"
|
|
assert multiplication == 495, "Multiplication is (((5)*9)*11)"
|
|
assert concatenation == "nimiscool"
|
|
assert foldl(procs, foo(a, b)) == "procIsAlsoFine"
|
|
|
|
let s = sequence
|
|
assert s.len > 0, "Can't fold empty sequences"
|
|
var result: typeof(s[0])
|
|
result = s[0]
|
|
for i in 1..<s.len:
|
|
let
|
|
a {.inject.} = result
|
|
b {.inject.} = s[i]
|
|
result = operation
|
|
result
|
|
|
|
template foldl*(sequence, operation, first): untyped =
|
|
## Template to fold a sequence from left to right, returning the accumulation.
|
|
##
|
|
## This version of `foldl` gets a **starting parameter**. This makes it possible
|
|
## to accumulate the sequence into a different type than the sequence elements.
|
|
##
|
|
## The `operation` parameter should be an expression which uses the variables
|
|
## `a` and `b` for each step of the fold. The `first` parameter is the
|
|
## start value (the first `a`) and therefor defines the type of the result.
|
|
##
|
|
## **See also:**
|
|
## * `foldr template<#foldr.t,untyped,untyped>`_
|
|
##
|
|
runnableExamples:
|
|
let
|
|
numbers = @[0, 8, 1, 5]
|
|
digits = foldl(numbers, a & (chr(b + ord('0'))), "")
|
|
assert digits == "0815"
|
|
|
|
var result: typeof(first) = first
|
|
for x in items(sequence):
|
|
let
|
|
a {.inject.} = result
|
|
b {.inject.} = x
|
|
result = operation
|
|
result
|
|
|
|
template foldr*(sequence, operation: untyped): untyped =
|
|
## Template to fold a sequence from right to left, returning the accumulation.
|
|
##
|
|
## The sequence is required to have at least a single element. Debug versions
|
|
## of your program will assert in this situation but release versions will
|
|
## happily go ahead. If the sequence has a single element it will be returned
|
|
## without applying `operation`.
|
|
##
|
|
## The `operation` parameter should be an expression which uses the
|
|
## variables `a` and `b` for each step of the fold. Since this is a right
|
|
## fold, for non associative binary operations like subtraction think that
|
|
## the sequence of numbers 1, 2 and 3 will be parenthesized as (1 - (2 -
|
|
## (3))).
|
|
##
|
|
## **See also:**
|
|
## * `foldl template<#foldl.t,untyped,untyped>`_
|
|
## * `foldl template<#foldl.t,,,>`_ with a starting parameter
|
|
##
|
|
runnableExamples:
|
|
let
|
|
numbers = @[5, 9, 11]
|
|
addition = foldr(numbers, a + b)
|
|
subtraction = foldr(numbers, a - b)
|
|
multiplication = foldr(numbers, a * b)
|
|
words = @["nim", "is", "cool"]
|
|
concatenation = foldr(words, a & b)
|
|
assert addition == 25, "Addition is (5+(9+(11)))"
|
|
assert subtraction == 7, "Subtraction is (5-(9-(11)))"
|
|
assert multiplication == 495, "Multiplication is (5*(9*(11)))"
|
|
assert concatenation == "nimiscool"
|
|
|
|
let s = sequence # xxx inefficient, use {.evalonce.} pending #13750
|
|
let n = s.len
|
|
assert n > 0, "Can't fold empty sequences"
|
|
var result = s[n - 1]
|
|
for i in countdown(n - 2, 0):
|
|
let
|
|
a {.inject.} = s[i]
|
|
b {.inject.} = result
|
|
result = operation
|
|
result
|
|
|
|
template mapIt*(s: typed, op: untyped): untyped =
|
|
## Returns a new sequence with the results of the `op` proc applied to every
|
|
## item in the container `s`.
|
|
##
|
|
## Since the input is not modified you can use it to
|
|
## transform the type of the elements in the input container.
|
|
##
|
|
## The template injects the `it` variable which you can use directly in an
|
|
## expression.
|
|
##
|
|
## Instead of using `mapIt` and `filterIt`, consider using the `collect` macro
|
|
## from the `sugar` module.
|
|
##
|
|
## **See also:**
|
|
## * `sugar.collect macro<sugar.html#collect.m%2Cuntyped%2Cuntyped>`_
|
|
## * `map proc<#map,openArray[T],proc(T)>`_
|
|
## * `applyIt template<#applyIt.t,untyped,untyped>`_ for the in-place version
|
|
##
|
|
runnableExamples:
|
|
let
|
|
nums = @[1, 2, 3, 4]
|
|
strings = nums.mapIt($(4 * it))
|
|
assert strings == @["4", "8", "12", "16"]
|
|
|
|
type OutType = typeof((
|
|
block:
|
|
var it{.inject.}: typeof(items(s), typeOfIter);
|
|
op), typeOfProc)
|
|
when OutType is not (proc):
|
|
# Here, we avoid to create closures in loops.
|
|
# This avoids https://github.com/nim-lang/Nim/issues/12625
|
|
when compiles(s.len):
|
|
block: # using a block avoids https://github.com/nim-lang/Nim/issues/8580
|
|
|
|
# BUG: `evalOnceAs(s2, s, false)` would lead to C compile errors
|
|
# (`error: use of undeclared identifier`) instead of Nim compile errors
|
|
evalOnceAs(s2, s, compiles((let _ = s)))
|
|
|
|
var i = 0
|
|
var result = newSeq[OutType](s2.len)
|
|
for it {.inject.} in s2:
|
|
result[i] = op
|
|
i += 1
|
|
result
|
|
else:
|
|
var result: seq[OutType] = @[]
|
|
# use `items` to avoid https://github.com/nim-lang/Nim/issues/12639
|
|
for it {.inject.} in items(s):
|
|
result.add(op)
|
|
result
|
|
else:
|
|
# `op` is going to create closures in loops, let's fallback to `map`.
|
|
# NOTE: Without this fallback, developers have to define a helper function and
|
|
# call `map`:
|
|
# [1, 2].map((it) => ((x: int) => it + x))
|
|
# With this fallback, above code can be simplified to:
|
|
# [1, 2].mapIt((x: int) => it + x)
|
|
# In this case, `mapIt` is just syntax sugar for `map`.
|
|
type InType = typeof(items(s), typeOfIter)
|
|
# Use a help proc `f` to create closures for each element in `s`
|
|
let f = proc (x: InType): OutType =
|
|
let it {.inject.} = x
|
|
op
|
|
map(s, f)
|
|
|
|
template applyIt*(varSeq, op: untyped) =
|
|
## Convenience template around the mutable `apply` proc to reduce typing.
|
|
##
|
|
## The template injects the `it` variable which you can use directly in an
|
|
## expression. The expression has to return the same type as the elements
|
|
## of the sequence you are mutating.
|
|
##
|
|
## **See also:**
|
|
## * `apply proc<#apply,openArray[T],proc(T)_2>`_
|
|
## * `mapIt template<#mapIt.t,typed,untyped>`_
|
|
##
|
|
runnableExamples:
|
|
var nums = @[1, 2, 3, 4]
|
|
nums.applyIt(it * 3)
|
|
assert nums[0] + nums[3] == 15
|
|
|
|
for i in low(varSeq) .. high(varSeq):
|
|
let it {.inject.} = varSeq[i]
|
|
varSeq[i] = op
|
|
|
|
|
|
template newSeqWith*(len: int, init: untyped): untyped =
|
|
## Creates a new sequence of length `len`, calling `init` to initialize
|
|
## each value of the sequence.
|
|
##
|
|
## Useful for creating "2D" sequences - sequences containing other sequences
|
|
## or to populate fields of the created sequence.
|
|
##
|
|
runnableExamples:
|
|
## Creates a sequence containing 5 bool sequences, each of length of 3.
|
|
var seq2D = newSeqWith(5, newSeq[bool](3))
|
|
assert seq2D.len == 5
|
|
assert seq2D[0].len == 3
|
|
assert seq2D[4][2] == false
|
|
|
|
## Creates a sequence of 20 random numbers from 1 to 10
|
|
import random
|
|
var seqRand = newSeqWith(20, rand(10))
|
|
|
|
var result = newSeq[typeof(init)](len)
|
|
for i in 0 ..< len:
|
|
result[i] = init
|
|
result
|
|
|
|
func mapLitsImpl(constructor: NimNode; op: NimNode; nested: bool;
|
|
filter = nnkLiterals): NimNode =
|
|
if constructor.kind in filter:
|
|
result = newNimNode(nnkCall, lineInfoFrom = constructor)
|
|
result.add op
|
|
result.add constructor
|
|
else:
|
|
result = copyNimNode(constructor)
|
|
for v in constructor:
|
|
if nested or v.kind in filter:
|
|
result.add mapLitsImpl(v, op, nested, filter)
|
|
else:
|
|
result.add v
|
|
|
|
macro mapLiterals*(constructor, op: untyped;
|
|
nested = true): untyped =
|
|
## Applies `op` to each of the **atomic** literals like `3`
|
|
## or `"abc"` in the specified `constructor` AST. This can
|
|
## be used to map every array element to some target type:
|
|
runnableExamples:
|
|
let x = mapLiterals([0.1, 1.2, 2.3, 3.4], int)
|
|
doAssert x is array[4, int]
|
|
doAssert x == [int(0.1), int(1.2), int(2.3), int(3.4)]
|
|
## If `nested` is true (which is the default), the literals are replaced
|
|
## everywhere in the `constructor` AST, otherwise only the first level
|
|
## is considered:
|
|
runnableExamples:
|
|
let a = mapLiterals((1.2, (2.3, 3.4), 4.8), int)
|
|
let b = mapLiterals((1.2, (2.3, 3.4), 4.8), int, nested=false)
|
|
assert a == (1, (2, 3), 4)
|
|
assert b == (1, (2.3, 3.4), 4)
|
|
|
|
let c = mapLiterals((1, (2, 3), 4, (5, 6)), `$`)
|
|
let d = mapLiterals((1, (2, 3), 4, (5, 6)), `$`, nested=false)
|
|
assert c == ("1", ("2", "3"), "4", ("5", "6"))
|
|
assert d == ("1", (2, 3), "4", (5, 6))
|
|
## There are no constraints for the `constructor` AST, it
|
|
## works for nested tuples of arrays of sets etc.
|
|
result = mapLitsImpl(constructor, op, nested.boolVal)
|
|
|
|
iterator items*[T](xs: iterator: T): T =
|
|
## Iterates over each element yielded by a closure iterator. This may
|
|
## not seem particularly useful on its own, but this allows closure
|
|
## iterators to be used by the mapIt, filterIt, allIt, anyIt, etc.
|
|
## templates.
|
|
for x in xs():
|
|
yield x
|