Files
Nim/lib/pure/times.nim
Timothee Cour 4dd34feb08 doc times: do not use now (and also epochTime) for benchmarking (#17405)
* doc times: do not use now for benchmarking

* Update lib/pure/times.nim

Co-authored-by: konsumlamm <44230978+konsumlamm@users.noreply.github.com>

* Update lib/pure/times.nim

Co-authored-by: konsumlamm <44230978+konsumlamm@users.noreply.github.com>

Co-authored-by: konsumlamm <44230978+konsumlamm@users.noreply.github.com>
2021-03-18 15:17:20 +01:00

2682 lines
95 KiB
Nim

#
#
# Nim's Runtime Library
# (c) Copyright 2018 Nim contributors
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
##[
The `times` module contains routines and types for dealing with time using
the `proleptic Gregorian calendar<https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar>`_.
It's also available for the
`JavaScript target <backends.html#backends-the-javascript-target>`_.
Although the `times` module supports nanosecond time resolution, the
resolution used by `getTime()` depends on the platform and backend
(JS is limited to millisecond precision).
Examples
========
.. code-block:: nim
import std/[times, os]
# Simple benchmarking
let time = cpuTime()
sleep(100) # Replace this with something to be timed
echo "Time taken: ", cpuTime() - time
# Current date & time
let now1 = now() # Current timestamp as a DateTime in local time
let now2 = now().utc # Current timestamp as a DateTime in UTC
let now3 = getTime() # Current timestamp as a Time
# Arithmetic using Duration
echo "One hour from now : ", now() + initDuration(hours = 1)
# Arithmetic using TimeInterval
echo "One year from now : ", now() + 1.years
echo "One month from now : ", now() + 1.months
Parsing and Formatting Dates
============================
The `DateTime` type can be parsed and formatted using the different
`parse` and `format` procedures.
.. code-block:: nim
let dt = parse("2000-01-01", "yyyy-MM-dd")
echo dt.format("yyyy-MM-dd")
The different format patterns that are supported are documented below.
=========== ================================================================================= ==============================================
Pattern Description Example
=========== ================================================================================= ==============================================
`d` Numeric value representing the day of the month, | `1/04/2012 -> 1`
it will be either one or two digits long. | `21/04/2012 -> 21`
`dd` Same as above, but is always two digits. | `1/04/2012 -> 01`
| `21/04/2012 -> 21`
`ddd` Three letter string which indicates the day of the week. | `Saturday -> Sat`
| `Monday -> Mon`
`dddd` Full string for the day of the week. | `Saturday -> Saturday`
| `Monday -> Monday`
`h` The hours in one digit if possible. Ranging from 1-12. | `5pm -> 5`
| `2am -> 2`
`hh` The hours in two digits always. If the hour is one digit, 0 is prepended. | `5pm -> 05`
| `11am -> 11`
`H` The hours in one digit if possible, ranging from 0-23. | `5pm -> 17`
| `2am -> 2`
`HH` The hours in two digits always. 0 is prepended if the hour is one digit. | `5pm -> 17`
| `2am -> 02`
`m` The minutes in one digit if possible. | `5:30 -> 30`
| `2:01 -> 1`
`mm` Same as above but always two digits, 0 is prepended if the minute is one digit. | `5:30 -> 30`
| `2:01 -> 01`
`M` The month in one digit if possible. | `September -> 9`
| `December -> 12`
`MM` The month in two digits always. 0 is prepended if the month value is one digit. | `September -> 09`
| `December -> 12`
`MMM` Abbreviated three-letter form of the month. | `September -> Sep`
| `December -> Dec`
`MMMM` Full month string, properly capitalized. | `September -> September`
`s` Seconds as one digit if possible. | `00:00:06 -> 6`
`ss` Same as above but always two digits. 0 is prepended if the second is one digit. | `00:00:06 -> 06`
`t` `A` when time is in the AM. `P` when time is in the PM. | `5pm -> P`
| `2am -> A`
`tt` Same as above, but `AM` and `PM` instead of `A` and `P` respectively. | `5pm -> PM`
| `2am -> AM`
`yy` The last two digits of the year. When parsing, the current century is assumed. | `2012 AD -> 12`
`yyyy` The year, padded to at least four digits. | `2012 AD -> 2012`
Is always positive, even when the year is BC. | `24 AD -> 0024`
When the year is more than four digits, '+' is prepended. | `24 BC -> 00024`
| `12345 AD -> +12345`
`YYYY` The year without any padding. | `2012 AD -> 2012`
Is always positive, even when the year is BC. | `24 AD -> 24`
| `24 BC -> 24`
| `12345 AD -> 12345`
`uuuu` The year, padded to at least four digits. Will be negative when the year is BC. | `2012 AD -> 2012`
When the year is more than four digits, '+' is prepended unless the year is BC. | `24 AD -> 0024`
| `24 BC -> -0023`
| `12345 AD -> +12345`
`UUUU` The year without any padding. Will be negative when the year is BC. | `2012 AD -> 2012`
| `24 AD -> 24`
| `24 BC -> -23`
| `12345 AD -> 12345`
`z` Displays the timezone offset from UTC. | `UTC+7 -> +7`
| `UTC-5 -> -5`
`zz` Same as above but with leading 0. | `UTC+7 -> +07`
| `UTC-5 -> -05`
`zzz` Same as above but with `:mm` where *mm* represents minutes. | `UTC+7 -> +07:00`
| `UTC-5 -> -05:00`
`ZZZ` Same as above but with `mm` where *mm* represents minutes. | `UTC+7 -> +0700`
| `UTC-5 -> -0500`
`zzzz` Same as above but with `:ss` where *ss* represents seconds. | `UTC+7 -> +07:00:00`
| `UTC-5 -> -05:00:00`
`ZZZZ` Same as above but with `ss` where *ss* represents seconds. | `UTC+7 -> +070000`
| `UTC-5 -> -050000`
`g` Era: AD or BC | `300 AD -> AD`
| `300 BC -> BC`
`fff` Milliseconds display | `1000000 nanoseconds -> 1`
`ffffff` Microseconds display | `1000000 nanoseconds -> 1000`
`fffffffff` Nanoseconds display | `1000000 nanoseconds -> 1000000`
=========== ================================================================================= ==============================================
Other strings can be inserted by putting them in `''`. For example
`hh'->'mm` will give `01->56`. The following characters can be
inserted without quoting them: `:` `-` `(` `)` `/` `[` `]`
`,`. A literal `'` can be specified with `''`.
However you don't need to necessarily separate format patterns, as an
unambiguous format string like `yyyyMMddhhmmss` is also valid (although
only for years in the range 1..9999).
Duration vs TimeInterval
============================
The `times` module exports two similar types that are both used to
represent some amount of time: `Duration <#Duration>`_ and
`TimeInterval <#TimeInterval>`_.
This section explains how they differ and when one should be preferred over the
other (short answer: use `Duration` unless support for months and years is
needed).
Duration
----------------------------
A `Duration` represents a duration of time stored as seconds and
nanoseconds. A `Duration` is always fully normalized, so
`initDuration(hours = 1)` and `initDuration(minutes = 60)` are equivalent.
Arithmetic with a `Duration` is very fast, especially when used with the
`Time` type, since it only involves basic arithmetic. Because `Duration`
is more performant and easier to understand it should generally preferred.
TimeInterval
----------------------------
A `TimeInterval` represents an amount of time expressed in calendar
units, for example "1 year and 2 days". Since some units cannot be
normalized (the length of a year is different for leap years for example),
the `TimeInterval` type uses separate fields for every unit. The
`TimeInterval`'s returned from this module generally don't normalize
**anything**, so even units that could be normalized (like seconds,
milliseconds and so on) are left untouched.
Arithmetic with a `TimeInterval` can be very slow, because it requires
timezone information.
Since it's slower and more complex, the `TimeInterval` type should be
avoided unless the program explicitly needs the features it offers that
`Duration` doesn't have.
How long is a day?
----------------------------
It should be especially noted that the handling of days differs between
`TimeInterval` and `Duration`. The `Duration` type always treats a day
as exactly 86400 seconds. For `TimeInterval`, it's more complex.
As an example, consider the amount of time between these two timestamps, both
in the same timezone:
- 2018-03-25T12:00+02:00
- 2018-03-26T12:00+01:00
If only the date & time is considered, it appears that exactly one day has
passed. However, the UTC offsets are different, which means that the
UTC offset was changed somewhere in between. This happens twice each year for
timezones that use daylight savings time. Because of this change, the amount
of time that has passed is actually 25 hours.
The `TimeInterval` type uses calendar units, and will say that exactly one
day has passed. The `Duration` type on the other hand normalizes everything
to seconds, and will therefore say that 90000 seconds has passed, which is
the same as 25 hours.
See also
========
* `monotimes module <monotimes.html>`_
]##
import strutils, math, options
import std/private/since
include "system/inclrtl"
when defined(js):
import jscore
# This is really bad, but overflow checks are broken badly for
# ints on the JS backend. See #6752.
{.push overflowChecks: off.}
proc `*`(a, b: int64): int64 =
system.`*`(a, b)
proc `*`(a, b: int): int =
system.`*`(a, b)
proc `+`(a, b: int64): int64 =
system.`+`(a, b)
proc `+`(a, b: int): int =
system.`+`(a, b)
proc `-`(a, b: int64): int64 =
system.`-`(a, b)
proc `-`(a, b: int): int =
system.`-`(a, b)
proc inc(a: var int, b: int) =
system.inc(a, b)
proc inc(a: var int64, b: int) =
system.inc(a, b)
{.pop.}
elif defined(posix):
import posix
type CTime = posix.Time
when defined(macosx):
proc gettimeofday(tp: var Timeval, unused: pointer = nil)
{.importc: "gettimeofday", header: "<sys/time.h>", sideEffect.}
elif defined(windows):
import winlean, std/time_t
type
CTime = time_t.Time
Tm {.importc: "struct tm", header: "<time.h>", final, pure.} = object
tm_sec*: cint ## Seconds [0,60].
tm_min*: cint ## Minutes [0,59].
tm_hour*: cint ## Hour [0,23].
tm_mday*: cint ## Day of month [1,31].
tm_mon*: cint ## Month of year [0,11].
tm_year*: cint ## Years since 1900.
tm_wday*: cint ## Day of week [0,6] (Sunday =0).
tm_yday*: cint ## Day of year [0,365].
tm_isdst*: cint ## Daylight Savings flag.
proc localtime(a1: var CTime): ptr Tm {.importc, header: "<time.h>", sideEffect.}
type
Month* = enum ## Represents a month. Note that the enum starts at `1`,
## so `ord(month)` will give the month number in the
## range `1..12`.
mJan = (1, "January")
mFeb = "February"
mMar = "March"
mApr = "April"
mMay = "May"
mJun = "June"
mJul = "July"
mAug = "August"
mSep = "September"
mOct = "October"
mNov = "November"
mDec = "December"
WeekDay* = enum ## Represents a weekday.
dMon = "Monday"
dTue = "Tuesday"
dWed = "Wednesday"
dThu = "Thursday"
dFri = "Friday"
dSat = "Saturday"
dSun = "Sunday"
type
MonthdayRange* = range[1..31]
HourRange* = range[0..23]
MinuteRange* = range[0..59]
SecondRange* = range[0..60] ## \
## Includes the value 60 to allow for a leap second. Note however
## that the `second` of a `DateTime` will never be a leap second.
YeardayRange* = range[0..365]
NanosecondRange* = range[0..999_999_999]
Time* = object ## Represents a point in time.
seconds: int64
nanosecond: NanosecondRange
DateTime* = object of RootObj ## \
## Represents a time in different parts. Although this type can represent
## leap seconds, they are generally not supported in this module. They are
## not ignored, but the `DateTime`'s returned by procedures in this
## module will never have a leap second.
nanosecond: NanosecondRange
second: SecondRange
minute: MinuteRange
hour: HourRange
monthdayZero: int
monthZero: int
year: int
weekday: WeekDay
yearday: YeardayRange
isDst: bool
timezone: Timezone
utcOffset: int
Duration* = object ## Represents a fixed duration of time, meaning a duration
## that has constant length independent of the context.
##
## To create a new `Duration`, use `initDuration proc
## <#initDuration,int64,int64,int64,int64,int64,int64,int64,int64>`_.
seconds: int64
nanosecond: NanosecondRange
TimeUnit* = enum ## Different units of time.
Nanoseconds, Microseconds, Milliseconds, Seconds, Minutes, Hours, Days,
Weeks, Months, Years
FixedTimeUnit* = range[Nanoseconds..Weeks] ## \
## Subrange of `TimeUnit` that only includes units of fixed duration.
## These are the units that can be represented by a `Duration`.
TimeInterval* = object ## \
## Represents a non-fixed duration of time. Can be used to add and
## subtract non-fixed time units from a `DateTime <#DateTime>`_ or
## `Time <#Time>`_.
##
## Create a new `TimeInterval` with `initTimeInterval proc
## <#initTimeInterval,int,int,int,int,int,int,int,int,int,int>`_.
##
## Note that `TimeInterval` doesn't represent a fixed duration of time,
## since the duration of some units depend on the context (e.g a year
## can be either 365 or 366 days long). The non-fixed time units are
## years, months, days and week.
##
## Note that `TimeInterval`'s returned from the `times` module are
## never normalized. If you want to normalize a time unit,
## `Duration <#Duration>`_ should be used instead.
nanoseconds*: int ## The number of nanoseconds
microseconds*: int ## The number of microseconds
milliseconds*: int ## The number of milliseconds
seconds*: int ## The number of seconds
minutes*: int ## The number of minutes
hours*: int ## The number of hours
days*: int ## The number of days
weeks*: int ## The number of weeks
months*: int ## The number of months
years*: int ## The number of years
Timezone* = ref object ## \
## Timezone interface for supporting `DateTime <#DateTime>`_\s of arbitrary
## timezones. The `times` module only supplies implementations for the
## systems local time and UTC.
zonedTimeFromTimeImpl: proc (x: Time): ZonedTime
{.tags: [], raises: [], benign.}
zonedTimeFromAdjTimeImpl: proc (x: Time): ZonedTime
{.tags: [], raises: [], benign.}
name: string
ZonedTime* = object ## Represents a point in time with an associated
## UTC offset and DST flag. This type is only used for
## implementing timezones.
time*: Time ## The point in time being represented.
utcOffset*: int ## The offset in seconds west of UTC,
## including any offset due to DST.
isDst*: bool ## Determines whether DST is in effect.
DurationParts* = array[FixedTimeUnit, int64] # Array of Duration parts starts
TimeIntervalParts* = array[TimeUnit, int] # Array of Duration parts starts
const
secondsInMin = 60
secondsInHour = 60*60
secondsInDay = 60*60*24
rateDiff = 10000000'i64 # 100 nsecs
# The number of hectonanoseconds between 1601/01/01 (windows epoch)
# and 1970/01/01 (unix epoch).
epochDiff = 116444736000000000'i64
const unitWeights: array[FixedTimeUnit, int64] = [
1'i64,
1000,
1_000_000,
1e9.int64,
secondsInMin * 1e9.int64,
secondsInHour * 1e9.int64,
secondsInDay * 1e9.int64,
7 * secondsInDay * 1e9.int64,
]
#
# Helper procs
#
{.pragma: operator, rtl, noSideEffect, benign.}
proc convert*[T: SomeInteger](unitFrom, unitTo: FixedTimeUnit, quantity: T): T
{.inline.} =
## Convert a quantity of some duration unit to another duration unit.
## This proc only deals with integers, so the result might be truncated.
runnableExamples:
doAssert convert(Days, Hours, 2) == 48
doAssert convert(Days, Weeks, 13) == 1 # Truncated
doAssert convert(Seconds, Milliseconds, -1) == -1000
if unitFrom < unitTo:
(quantity div (unitWeights[unitTo] div unitWeights[unitFrom])).T
else:
((unitWeights[unitFrom] div unitWeights[unitTo]) * quantity).T
proc normalize[T: Duration|Time](seconds, nanoseconds: int64): T =
## Normalize a (seconds, nanoseconds) pair and return it as either
## a `Duration` or `Time`. A normalized `Duration|Time` has a
## positive nanosecond part in the range `NanosecondRange`.
result.seconds = seconds + convert(Nanoseconds, Seconds, nanoseconds)
var nanosecond = nanoseconds mod convert(Seconds, Nanoseconds, 1)
if nanosecond < 0:
nanosecond += convert(Seconds, Nanoseconds, 1)
result.seconds -= 1
result.nanosecond = nanosecond.int
proc isLeapYear*(year: int): bool =
## Returns true if `year` is a leap year.
runnableExamples:
doAssert isLeapYear(2000)
doAssert not isLeapYear(1900)
year mod 4 == 0 and (year mod 100 != 0 or year mod 400 == 0)
proc getDaysInMonth*(month: Month, year: int): int =
## Get the number of days in `month` of `year`.
# http://www.dispersiondesign.com/articles/time/number_of_days_in_a_month
runnableExamples:
doAssert getDaysInMonth(mFeb, 2000) == 29
doAssert getDaysInMonth(mFeb, 2001) == 28
case month
of mFeb: result = if isLeapYear(year): 29 else: 28
of mApr, mJun, mSep, mNov: result = 30
else: result = 31
proc assertValidDate(monthday: MonthdayRange, month: Month, year: int)
{.inline.} =
assert monthday <= getDaysInMonth(month, year),
$year & "-" & intToStr(ord(month), 2) & "-" & $monthday &
" is not a valid date"
proc toEpochDay(monthday: MonthdayRange, month: Month, year: int): int64 =
## Get the epoch day from a year/month/day date.
## The epoch day is the number of days since 1970/01/01
## (it might be negative).
# Based on http://howardhinnant.github.io/date_algorithms.html
assertValidDate monthday, month, year
var (y, m, d) = (year, ord(month), monthday.int)
if m <= 2:
y.dec
let era = (if y >= 0: y else: y-399) div 400
let yoe = y - era * 400
let doy = (153 * (m + (if m > 2: -3 else: 9)) + 2) div 5 + d-1
let doe = yoe * 365 + yoe div 4 - yoe div 100 + doy
return era * 146097 + doe - 719468
proc fromEpochDay(epochday: int64):
tuple[monthday: MonthdayRange, month: Month, year: int] =
## Get the year/month/day date from a epoch day.
## The epoch day is the number of days since 1970/01/01
## (it might be negative).
# Based on http://howardhinnant.github.io/date_algorithms.html
var z = epochday
z.inc 719468
let era = (if z >= 0: z else: z - 146096) div 146097
let doe = z - era * 146097
let yoe = (doe - doe div 1460 + doe div 36524 - doe div 146096) div 365
let y = yoe + era * 400;
let doy = doe - (365 * yoe + yoe div 4 - yoe div 100)
let mp = (5 * doy + 2) div 153
let d = doy - (153 * mp + 2) div 5 + 1
let m = mp + (if mp < 10: 3 else: -9)
return (d.MonthdayRange, m.Month, (y + ord(m <= 2)).int)
proc getDayOfYear*(monthday: MonthdayRange, month: Month, year: int):
YeardayRange {.tags: [], raises: [], benign.} =
## Returns the day of the year.
## Equivalent with `initDateTime(monthday, month, year, 0, 0, 0).yearday`.
runnableExamples:
doAssert getDayOfYear(1, mJan, 2000) == 0
doAssert getDayOfYear(10, mJan, 2000) == 9
doAssert getDayOfYear(10, mFeb, 2000) == 40
assertValidDate monthday, month, year
const daysUntilMonth: array[Month, int] =
[0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334]
const daysUntilMonthLeap: array[Month, int] =
[0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335]
if isLeapYear(year):
result = daysUntilMonthLeap[month] + monthday - 1
else:
result = daysUntilMonth[month] + monthday - 1
proc getDayOfWeek*(monthday: MonthdayRange, month: Month, year: int): WeekDay
{.tags: [], raises: [], benign.} =
## Returns the day of the week enum from day, month and year.
## Equivalent with `initDateTime(monthday, month, year, 0, 0, 0).weekday`.
runnableExamples:
doAssert getDayOfWeek(13, mJun, 1990) == dWed
doAssert $getDayOfWeek(13, mJun, 1990) == "Wednesday"
assertValidDate monthday, month, year
# 1970-01-01 is a Thursday, we adjust to the previous Monday
let days = toEpochDay(monthday, month, year) - 3
let weeks = floorDiv(days, 7)
let wd = days - weeks * 7
# The value of d is 0 for a Sunday, 1 for a Monday, 2 for a Tuesday, etc.
# so we must correct for the WeekDay type.
result = if wd == 0: dSun else: WeekDay(wd - 1)
proc getDaysInYear*(year: int): int =
## Get the number of days in a `year`
runnableExamples:
doAssert getDaysInYear(2000) == 366
doAssert getDaysInYear(2001) == 365
result = 365 + (if isLeapYear(year): 1 else: 0)
proc stringifyUnit(value: int | int64, unit: TimeUnit): string =
## Stringify time unit with it's name, lowercased
let strUnit = $unit
result = ""
result.add($value)
result.add(" ")
if abs(value) != 1:
result.add(strUnit.toLowerAscii())
else:
result.add(strUnit[0..^2].toLowerAscii())
proc humanizeParts(parts: seq[string]): string =
## Make date string parts human-readable
result = ""
if parts.len == 0:
result.add "0 nanoseconds"
elif parts.len == 1:
result = parts[0]
elif parts.len == 2:
result = parts[0] & " and " & parts[1]
else:
for i in 0..high(parts)-1:
result.add parts[i] & ", "
result.add "and " & parts[high(parts)]
template subImpl[T: Duration|Time](a: Duration|Time, b: Duration|Time): T =
normalize[T](a.seconds - b.seconds, a.nanosecond - b.nanosecond)
template addImpl[T: Duration|Time](a: Duration|Time, b: Duration|Time): T =
normalize[T](a.seconds + b.seconds, a.nanosecond + b.nanosecond)
template ltImpl(a: Duration|Time, b: Duration|Time): bool =
a.seconds < b.seconds or (
a.seconds == b.seconds and a.nanosecond < b.nanosecond)
template lqImpl(a: Duration|Time, b: Duration|Time): bool =
a.seconds < b.seconds or (
a.seconds == b.seconds and a.nanosecond <= b.nanosecond)
template eqImpl(a: Duration|Time, b: Duration|Time): bool =
a.seconds == b.seconds and a.nanosecond == b.nanosecond
#
# Duration
#
const DurationZero* = Duration() ## \
## Zero value for durations. Useful for comparisons.
##
## .. code-block:: nim
##
## doAssert initDuration(seconds = 1) > DurationZero
## doAssert initDuration(seconds = 0) == DurationZero
proc initDuration*(nanoseconds, microseconds, milliseconds,
seconds, minutes, hours, days, weeks: int64 = 0): Duration =
## Create a new `Duration <#Duration>`_.
runnableExamples:
let dur = initDuration(seconds = 1, milliseconds = 1)
doAssert dur.inMilliseconds == 1001
doAssert dur.inSeconds == 1
let seconds = convert(Weeks, Seconds, weeks) +
convert(Days, Seconds, days) +
convert(Minutes, Seconds, minutes) +
convert(Hours, Seconds, hours) +
convert(Seconds, Seconds, seconds) +
convert(Milliseconds, Seconds, milliseconds) +
convert(Microseconds, Seconds, microseconds) +
convert(Nanoseconds, Seconds, nanoseconds)
let nanoseconds = (convert(Milliseconds, Nanoseconds, milliseconds mod 1000) +
convert(Microseconds, Nanoseconds, microseconds mod 1_000_000) +
nanoseconds mod 1_000_000_000).int
# Nanoseconds might be negative so we must normalize.
result = normalize[Duration](seconds, nanoseconds)
template convert(dur: Duration, unit: static[FixedTimeUnit]): int64 =
# The correction is required due to how durations are normalized.
# For example,` initDuration(nanoseconds = -1)` is stored as
# { seconds = -1, nanoseconds = 999999999 }.
when unit == Nanoseconds:
dur.seconds * 1_000_000_000 + dur.nanosecond
else:
let correction = dur.seconds < 0 and dur.nanosecond > 0
when unit >= Seconds:
convert(Seconds, unit, dur.seconds + ord(correction))
else:
if correction:
convert(Seconds, unit, dur.seconds + 1) -
convert(Nanoseconds, unit,
convert(Seconds, Nanoseconds, 1) - dur.nanosecond)
else:
convert(Seconds, unit, dur.seconds) +
convert(Nanoseconds, unit, dur.nanosecond)
proc inWeeks*(dur: Duration): int64 =
## Convert the duration to the number of whole weeks.
runnableExamples:
let dur = initDuration(days = 8)
doAssert dur.inWeeks == 1
dur.convert(Weeks)
proc inDays*(dur: Duration): int64 =
## Convert the duration to the number of whole days.
runnableExamples:
let dur = initDuration(hours = -50)
doAssert dur.inDays == -2
dur.convert(Days)
proc inHours*(dur: Duration): int64 =
## Convert the duration to the number of whole hours.
runnableExamples:
let dur = initDuration(minutes = 60, days = 2)
doAssert dur.inHours == 49
dur.convert(Hours)
proc inMinutes*(dur: Duration): int64 =
## Convert the duration to the number of whole minutes.
runnableExamples:
let dur = initDuration(hours = 2, seconds = 10)
doAssert dur.inMinutes == 120
dur.convert(Minutes)
proc inSeconds*(dur: Duration): int64 =
## Convert the duration to the number of whole seconds.
runnableExamples:
let dur = initDuration(hours = 2, milliseconds = 10)
doAssert dur.inSeconds == 2 * 60 * 60
dur.convert(Seconds)
proc inMilliseconds*(dur: Duration): int64 =
## Convert the duration to the number of whole milliseconds.
runnableExamples:
let dur = initDuration(seconds = -2)
doAssert dur.inMilliseconds == -2000
dur.convert(Milliseconds)
proc inMicroseconds*(dur: Duration): int64 =
## Convert the duration to the number of whole microseconds.
runnableExamples:
let dur = initDuration(seconds = -2)
doAssert dur.inMicroseconds == -2000000
dur.convert(Microseconds)
proc inNanoseconds*(dur: Duration): int64 =
## Convert the duration to the number of whole nanoseconds.
runnableExamples:
let dur = initDuration(seconds = -2)
doAssert dur.inNanoseconds == -2000000000
dur.convert(Nanoseconds)
proc toParts*(dur: Duration): DurationParts =
## Converts a duration into an array consisting of fixed time units.
##
## Each value in the array gives information about a specific unit of
## time, for example `result[Days]` gives a count of days.
##
## This procedure is useful for converting `Duration` values to strings.
runnableExamples:
var dp = toParts(initDuration(weeks = 2, days = 1))
doAssert dp[Days] == 1
doAssert dp[Weeks] == 2
doAssert dp[Minutes] == 0
dp = toParts(initDuration(days = -1))
doAssert dp[Days] == -1
var remS = dur.seconds
var remNs = dur.nanosecond.int
# Ensure the same sign for seconds and nanoseconds
if remS < 0 and remNs != 0:
remNs -= convert(Seconds, Nanoseconds, 1)
remS.inc 1
for unit in countdown(Weeks, Seconds):
let quantity = convert(Seconds, unit, remS)
remS = remS mod convert(unit, Seconds, 1)
result[unit] = quantity
for unit in countdown(Milliseconds, Nanoseconds):
let quantity = convert(Nanoseconds, unit, remNs)
remNs = remNs mod convert(unit, Nanoseconds, 1)
result[unit] = quantity
proc `$`*(dur: Duration): string =
## Human friendly string representation of a `Duration`.
runnableExamples:
doAssert $initDuration(seconds = 2) == "2 seconds"
doAssert $initDuration(weeks = 1, days = 2) == "1 week and 2 days"
doAssert $initDuration(hours = 1, minutes = 2, seconds = 3) ==
"1 hour, 2 minutes, and 3 seconds"
doAssert $initDuration(milliseconds = -1500) ==
"-1 second and -500 milliseconds"
var parts = newSeq[string]()
var numParts = toParts(dur)
for unit in countdown(Weeks, Nanoseconds):
let quantity = numParts[unit]
if quantity != 0.int64:
parts.add(stringifyUnit(quantity, unit))
result = humanizeParts(parts)
proc `+`*(a, b: Duration): Duration {.operator, extern: "ntAddDuration".} =
## Add two durations together.
runnableExamples:
doAssert initDuration(seconds = 1) + initDuration(days = 1) ==
initDuration(seconds = 1, days = 1)
addImpl[Duration](a, b)
proc `-`*(a, b: Duration): Duration {.operator, extern: "ntSubDuration".} =
## Subtract a duration from another.
runnableExamples:
doAssert initDuration(seconds = 1, days = 1) - initDuration(seconds = 1) ==
initDuration(days = 1)
subImpl[Duration](a, b)
proc `-`*(a: Duration): Duration {.operator, extern: "ntReverseDuration".} =
## Reverse a duration.
runnableExamples:
doAssert -initDuration(seconds = 1) == initDuration(seconds = -1)
normalize[Duration](-a.seconds, -a.nanosecond)
proc `<`*(a, b: Duration): bool {.operator, extern: "ntLtDuration".} =
## Note that a duration can be negative,
## so even if `a < b` is true `a` might
## represent a larger absolute duration.
## Use `abs(a) < abs(b)` to compare the absolute
## duration.
runnableExamples:
doAssert initDuration(seconds = 1) < initDuration(seconds = 2)
doAssert initDuration(seconds = -2) < initDuration(seconds = 1)
doAssert initDuration(seconds = -2).abs < initDuration(seconds = 1).abs == false
ltImpl(a, b)
proc `<=`*(a, b: Duration): bool {.operator, extern: "ntLeDuration".} =
lqImpl(a, b)
proc `==`*(a, b: Duration): bool {.operator, extern: "ntEqDuration".} =
runnableExamples:
let
d1 = initDuration(weeks = 1)
d2 = initDuration(days = 7)
doAssert d1 == d2
eqImpl(a, b)
proc `*`*(a: int64, b: Duration): Duration {.operator,
extern: "ntMulInt64Duration".} =
## Multiply a duration by some scalar.
runnableExamples:
doAssert 5 * initDuration(seconds = 1) == initDuration(seconds = 5)
doAssert 3 * initDuration(minutes = 45) == initDuration(hours = 2, minutes = 15)
normalize[Duration](a * b.seconds, a * b.nanosecond)
proc `*`*(a: Duration, b: int64): Duration {.operator,
extern: "ntMulDuration".} =
## Multiply a duration by some scalar.
runnableExamples:
doAssert initDuration(seconds = 1) * 5 == initDuration(seconds = 5)
doAssert initDuration(minutes = 45) * 3 == initDuration(hours = 2, minutes = 15)
b * a
proc `+=`*(d1: var Duration, d2: Duration) =
d1 = d1 + d2
proc `-=`*(dt: var Duration, ti: Duration) =
dt = dt - ti
proc `*=`*(a: var Duration, b: int) =
a = a * b
proc `div`*(a: Duration, b: int64): Duration {.operator,
extern: "ntDivDuration".} =
## Integer division for durations.
runnableExamples:
doAssert initDuration(seconds = 3) div 2 ==
initDuration(milliseconds = 1500)
doAssert initDuration(minutes = 45) div 30 ==
initDuration(minutes = 1, seconds = 30)
doAssert initDuration(nanoseconds = 3) div 2 ==
initDuration(nanoseconds = 1)
let carryOver = convert(Seconds, Nanoseconds, a.seconds mod b)
normalize[Duration](a.seconds div b, (a.nanosecond + carryOver) div b)
proc high*(typ: typedesc[Duration]): Duration =
## Get the longest representable duration.
initDuration(seconds = high(int64), nanoseconds = high(NanosecondRange))
proc low*(typ: typedesc[Duration]): Duration =
## Get the longest representable duration of negative direction.
initDuration(seconds = low(int64))
proc abs*(a: Duration): Duration =
runnableExamples:
doAssert initDuration(milliseconds = -1500).abs ==
initDuration(milliseconds = 1500)
initDuration(seconds = abs(a.seconds), nanoseconds = -a.nanosecond)
#
# Time
#
proc initTime*(unix: int64, nanosecond: NanosecondRange): Time =
## Create a `Time <#Time>`_ from a unix timestamp and a nanosecond part.
result.seconds = unix
result.nanosecond = nanosecond
proc nanosecond*(time: Time): NanosecondRange =
## Get the fractional part of a `Time` as the number
## of nanoseconds of the second.
time.nanosecond
proc fromUnix*(unix: int64): Time
{.benign, tags: [], raises: [], noSideEffect.} =
## Convert a unix timestamp (seconds since `1970-01-01T00:00:00Z`)
## to a `Time`.
runnableExamples:
doAssert $fromUnix(0).utc == "1970-01-01T00:00:00Z"
initTime(unix, 0)
proc toUnix*(t: Time): int64 {.benign, tags: [], raises: [], noSideEffect.} =
## Convert `t` to a unix timestamp (seconds since `1970-01-01T00:00:00Z`).
## See also `toUnixFloat` for subsecond resolution.
runnableExamples:
doAssert fromUnix(0).toUnix() == 0
t.seconds
proc fromUnixFloat(seconds: float): Time {.benign, tags: [], raises: [], noSideEffect.} =
## Convert a unix timestamp in seconds to a `Time`; same as `fromUnix`
## but with subsecond resolution.
runnableExamples:
doAssert fromUnixFloat(123456.0) == fromUnixFloat(123456)
doAssert fromUnixFloat(-123456.0) == fromUnixFloat(-123456)
let secs = seconds.floor
let nsecs = (seconds - secs) * 1e9
initTime(secs.int64, nsecs.NanosecondRange)
proc toUnixFloat(t: Time): float {.benign, tags: [], raises: [].} =
## Same as `toUnix` but using subsecond resolution.
runnableExamples:
let t = getTime()
# `<` because of rounding errors
doAssert abs(t.toUnixFloat().fromUnixFloat - t) < initDuration(nanoseconds = 1000)
t.seconds.float + t.nanosecond / convert(Seconds, Nanoseconds, 1)
since((1, 1)):
export fromUnixFloat
export toUnixFloat
proc fromWinTime*(win: int64): Time =
## Convert a Windows file time (100-nanosecond intervals since
## `1601-01-01T00:00:00Z`) to a `Time`.
const hnsecsPerSec = convert(Seconds, Nanoseconds, 1) div 100
let nanos = floorMod(win, hnsecsPerSec) * 100
let seconds = floorDiv(win - epochDiff, hnsecsPerSec)
result = initTime(seconds, nanos)
proc toWinTime*(t: Time): int64 =
## Convert `t` to a Windows file time (100-nanosecond intervals
## since `1601-01-01T00:00:00Z`).
result = t.seconds * rateDiff + epochDiff + t.nanosecond div 100
proc getTime*(): Time {.tags: [TimeEffect], benign.} =
## Gets the current time as a `Time` with up to nanosecond resolution.
when defined(js):
let millis = newDate().getTime()
let seconds = convert(Milliseconds, Seconds, millis)
let nanos = convert(Milliseconds, Nanoseconds,
millis mod convert(Seconds, Milliseconds, 1).int)
result = initTime(seconds, nanos)
elif defined(macosx):
var a {.noinit.}: Timeval
gettimeofday(a)
result = initTime(a.tv_sec.int64,
convert(Microseconds, Nanoseconds, a.tv_usec.int))
elif defined(posix):
var ts {.noinit.}: Timespec
discard clock_gettime(CLOCK_REALTIME, ts)
result = initTime(ts.tv_sec.int64, ts.tv_nsec.int)
elif defined(windows):
var f {.noinit.}: FILETIME
getSystemTimeAsFileTime(f)
result = fromWinTime(rdFileTime(f))
proc `-`*(a, b: Time): Duration {.operator, extern: "ntDiffTime".} =
## Computes the duration between two points in time.
runnableExamples:
doAssert initTime(1000, 100) - initTime(500, 20) ==
initDuration(minutes = 8, seconds = 20, nanoseconds = 80)
subImpl[Duration](a, b)
proc `+`*(a: Time, b: Duration): Time {.operator, extern: "ntAddTime".} =
## Add a duration of time to a `Time`.
runnableExamples:
doAssert (fromUnix(0) + initDuration(seconds = 1)) == fromUnix(1)
addImpl[Time](a, b)
proc `-`*(a: Time, b: Duration): Time {.operator, extern: "ntSubTime".} =
## Subtracts a duration of time from a `Time`.
runnableExamples:
doAssert (fromUnix(0) - initDuration(seconds = 1)) == fromUnix(-1)
subImpl[Time](a, b)
proc `<`*(a, b: Time): bool {.operator, extern: "ntLtTime".} =
## Returns true if `a < b`, that is if `a` happened before `b`.
runnableExamples:
doAssert initTime(50, 0) < initTime(99, 0)
ltImpl(a, b)
proc `<=`*(a, b: Time): bool {.operator, extern: "ntLeTime".} =
## Returns true if `a <= b`.
lqImpl(a, b)
proc `==`*(a, b: Time): bool {.operator, extern: "ntEqTime".} =
## Returns true if `a == b`, that is if both times represent the same point in time.
eqImpl(a, b)
proc `+=`*(t: var Time, b: Duration) =
t = t + b
proc `-=`*(t: var Time, b: Duration) =
t = t - b
proc high*(typ: typedesc[Time]): Time =
initTime(high(int64), high(NanosecondRange))
proc low*(typ: typedesc[Time]): Time =
initTime(low(int64), 0)
#
# DateTime & Timezone
#
template assertDateTimeInitialized(dt: DateTime) =
assert dt.monthdayZero != 0, "Uninitialized datetime"
proc nanosecond*(dt: DateTime): NanosecondRange {.inline.} =
## The number of nanoseconds after the second,
## in the range 0 to 999_999_999.
assertDateTimeInitialized(dt)
dt.nanosecond
proc second*(dt: DateTime): SecondRange {.inline.} =
## The number of seconds after the minute,
## in the range 0 to 59.
assertDateTimeInitialized(dt)
dt.second
proc minute*(dt: DateTime): MinuteRange {.inline.} =
## The number of minutes after the hour,
## in the range 0 to 59.
assertDateTimeInitialized(dt)
dt.minute
proc hour*(dt: DateTime): HourRange {.inline.} =
## The number of hours past midnight,
## in the range 0 to 23.
assertDateTimeInitialized(dt)
dt.hour
proc monthday*(dt: DateTime): MonthdayRange {.inline.} =
## The day of the month, in the range 1 to 31.
assertDateTimeInitialized(dt)
# 'cast' to avoid extra range check
cast[MonthdayRange](dt.monthdayZero)
proc month*(dt: DateTime): Month =
## The month as an enum, the ordinal value
## is in the range 1 to 12.
assertDateTimeInitialized(dt)
# 'cast' to avoid extra range check
cast[Month](dt.monthZero)
proc year*(dt: DateTime): int {.inline.} =
## The year, using astronomical year numbering
## (meaning that before year 1 is year 0,
## then year -1 and so on).
assertDateTimeInitialized(dt)
dt.year
proc weekday*(dt: DateTime): WeekDay {.inline.} =
## The day of the week as an enum, the ordinal
## value is in the range 0 (monday) to 6 (sunday).
assertDateTimeInitialized(dt)
dt.weekday
proc yearday*(dt: DateTime): YeardayRange {.inline.} =
## The number of days since January 1,
## in the range 0 to 365.
assertDateTimeInitialized(dt)
dt.yearday
proc isDst*(dt: DateTime): bool {.inline.} =
## Determines whether DST is in effect.
## Always false for the JavaScript backend.
assertDateTimeInitialized(dt)
dt.isDst
proc timezone*(dt: DateTime): Timezone {.inline.} =
## The timezone represented as an implementation
## of `Timezone`.
assertDateTimeInitialized(dt)
dt.timezone
proc utcOffset*(dt: DateTime): int {.inline.} =
## The offset in seconds west of UTC, including
## any offset due to DST. Note that the sign of
## this number is the opposite of the one in a
## formatted offset string like `+01:00` (which
## would be equivalent to the UTC offset
## `-3600`).
assertDateTimeInitialized(dt)
dt.utcOffset
proc isInitialized(dt: DateTime): bool =
# Returns true if `dt` is not the (invalid) default value for `DateTime`.
runnableExamples:
doAssert now().isInitialized
doAssert not default(DateTime).isInitialized
dt.monthZero != 0
since((1, 3)):
export isInitialized
proc isLeapDay*(dt: DateTime): bool {.since: (1, 1).} =
## Returns whether `t` is a leap day, i.e. Feb 29 in a leap year. This matters
## as it affects time offset calculations.
runnableExamples:
let dt = initDateTime(29, mFeb, 2020, 00, 00, 00, utc())
doAssert dt.isLeapDay
doAssert dt+1.years-1.years != dt
let dt2 = initDateTime(28, mFeb, 2020, 00, 00, 00, utc())
doAssert not dt2.isLeapDay
doAssert dt2+1.years-1.years == dt2
doAssertRaises(Exception): discard initDateTime(29, mFeb, 2021, 00, 00, 00, utc())
assertDateTimeInitialized dt
dt.year.isLeapYear and dt.month == mFeb and dt.monthday == 29
proc toTime*(dt: DateTime): Time {.tags: [], raises: [], benign.} =
## Converts a `DateTime` to a `Time` representing the same point in time.
assertDateTimeInitialized dt
let epochDay = toEpochDay(dt.monthday, dt.month, dt.year)
var seconds = epochDay * secondsInDay
seconds.inc dt.hour * secondsInHour
seconds.inc dt.minute * 60
seconds.inc dt.second
seconds.inc dt.utcOffset
result = initTime(seconds, dt.nanosecond)
proc initDateTime(zt: ZonedTime, zone: Timezone): DateTime =
## Create a new `DateTime` using `ZonedTime` in the specified timezone.
let adjTime = zt.time - initDuration(seconds = zt.utcOffset)
let s = adjTime.seconds
let epochday = floorDiv(s, secondsInDay)
var rem = s - epochday * secondsInDay
let hour = rem div secondsInHour
rem = rem - hour * secondsInHour
let minute = rem div secondsInMin
rem = rem - minute * secondsInMin
let second = rem
let (d, m, y) = fromEpochDay(epochday)
DateTime(
year: y,
monthZero: m.int,
monthdayZero: d,
hour: hour,
minute: minute,
second: second,
nanosecond: zt.time.nanosecond,
weekday: getDayOfWeek(d, m, y),
yearday: getDayOfYear(d, m, y),
isDst: zt.isDst,
timezone: zone,
utcOffset: zt.utcOffset
)
proc newTimezone*(
name: string,
zonedTimeFromTimeImpl: proc (time: Time): ZonedTime
{.tags: [], raises: [], benign.},
zonedTimeFromAdjTimeImpl: proc (adjTime: Time): ZonedTime
{.tags: [], raises: [], benign.}
): owned Timezone =
## Create a new `Timezone`.
##
## `zonedTimeFromTimeImpl` and `zonedTimeFromAdjTimeImpl` is used
## as the underlying implementations for `zonedTimeFromTime` and
## `zonedTimeFromAdjTime`.
##
## If possible, the name parameter should match the name used in the
## tz database. If the timezone doesn't exist in the tz database, or if the
## timezone name is unknown, then any string that describes the timezone
## unambiguously can be used. Note that the timezones name is used for
## checking equality!
runnableExamples:
proc utcTzInfo(time: Time): ZonedTime =
ZonedTime(utcOffset: 0, isDst: false, time: time)
let utc = newTimezone("Etc/UTC", utcTzInfo, utcTzInfo)
Timezone(
name: name,
zonedTimeFromTimeImpl: zonedTimeFromTimeImpl,
zonedTimeFromAdjTimeImpl: zonedTimeFromAdjTimeImpl
)
proc name*(zone: Timezone): string =
## The name of the timezone.
##
## If possible, the name will be the name used in the tz database.
## If the timezone doesn't exist in the tz database, or if the timezone
## name is unknown, then any string that describes the timezone
## unambiguously might be used. For example, the string "LOCAL" is used
## for the systems local timezone.
##
## See also: https://en.wikipedia.org/wiki/Tz_database
zone.name
proc zonedTimeFromTime*(zone: Timezone, time: Time): ZonedTime =
## Returns the `ZonedTime` for some point in time.
zone.zonedTimeFromTimeImpl(time)
proc zonedTimeFromAdjTime*(zone: Timezone, adjTime: Time): ZonedTime =
## Returns the `ZonedTime` for some local time.
##
## Note that the `Time` argument does not represent a point in time, it
## represent a local time! E.g if `adjTime` is `fromUnix(0)`, it should be
## interpreted as 1970-01-01T00:00:00 in the `zone` timezone, not in UTC.
zone.zonedTimeFromAdjTimeImpl(adjTime)
proc `$`*(zone: Timezone): string =
## Returns the name of the timezone.
if zone != nil: result = zone.name
proc `==`*(zone1, zone2: Timezone): bool =
## Two `Timezone`'s are considered equal if their name is equal.
runnableExamples:
doAssert local() == local()
doAssert local() != utc()
if system.`==`(zone1, zone2):
return true
if zone1.isNil or zone2.isNil:
return false
zone1.name == zone2.name
proc inZone*(time: Time, zone: Timezone): DateTime
{.tags: [], raises: [], benign.} =
## Convert `time` into a `DateTime` using `zone` as the timezone.
result = initDateTime(zone.zonedTimeFromTime(time), zone)
proc inZone*(dt: DateTime, zone: Timezone): DateTime
{.tags: [], raises: [], benign.} =
## Returns a `DateTime` representing the same point in time as `dt` but
## using `zone` as the timezone.
assertDateTimeInitialized dt
dt.toTime.inZone(zone)
proc toAdjTime(dt: DateTime): Time =
let epochDay = toEpochDay(dt.monthday, dt.month, dt.year)
var seconds = epochDay * secondsInDay
seconds.inc dt.hour * secondsInHour
seconds.inc dt.minute * secondsInMin
seconds.inc dt.second
result = initTime(seconds, dt.nanosecond)
when defined(js):
proc localZonedTimeFromTime(time: Time): ZonedTime {.benign.} =
let jsDate = newDate(time.seconds * 1000)
let offset = jsDate.getTimezoneOffset() * secondsInMin
result.time = time
result.utcOffset = offset
result.isDst = false
proc localZonedTimeFromAdjTime(adjTime: Time): ZonedTime {.benign.} =
let utcDate = newDate(adjTime.seconds * 1000)
let localDate = newDate(utcDate.getUTCFullYear(), utcDate.getUTCMonth(),
utcDate.getUTCDate(), utcDate.getUTCHours(), utcDate.getUTCMinutes(),
utcDate.getUTCSeconds(), 0)
# This is as dumb as it looks - JS doesn't support years in the range
# 0-99 in the constructor because they are assumed to be 19xx...
# Because JS doesn't support timezone history,
# it doesn't really matter in practice.
if utcDate.getUTCFullYear() in 0 .. 99:
localDate.setFullYear(utcDate.getUTCFullYear())
result.utcOffset = localDate.getTimezoneOffset() * secondsInMin
result.time = adjTime + initDuration(seconds = result.utcOffset)
result.isDst = false
else:
proc toAdjUnix(tm: Tm): int64 =
let epochDay = toEpochDay(tm.tm_mday, (tm.tm_mon + 1).Month,
tm.tm_year.int + 1900)
result = epochDay * secondsInDay
result.inc tm.tm_hour * secondsInHour
result.inc tm.tm_min * 60
result.inc tm.tm_sec
proc getLocalOffsetAndDst(unix: int64): tuple[offset: int, dst: bool] =
# Windows can't handle unix < 0, so we fall back to unix = 0.
# FIXME: This should be improved by falling back to the WinAPI instead.
when defined(windows):
if unix < 0:
var a = 0.CTime
let tmPtr = localtime(a)
if not tmPtr.isNil:
let tm = tmPtr[]
return ((0 - tm.toAdjUnix).int, false)
return (0, false)
# In case of a 32-bit time_t, we fallback to the closest available
# timezone information.
var a = clamp(unix, low(CTime).int64, high(CTime).int64).CTime
let tmPtr = localtime(a)
if not tmPtr.isNil:
let tm = tmPtr[]
return ((a.int64 - tm.toAdjUnix).int, tm.tm_isdst > 0)
return (0, false)
proc localZonedTimeFromTime(time: Time): ZonedTime {.benign.} =
let (offset, dst) = getLocalOffsetAndDst(time.seconds)
result.time = time
result.utcOffset = offset
result.isDst = dst
proc localZonedTimeFromAdjTime(adjTime: Time): ZonedTime {.benign.} =
var adjUnix = adjTime.seconds
let past = adjUnix - secondsInDay
let (pastOffset, _) = getLocalOffsetAndDst(past)
let future = adjUnix + secondsInDay
let (futureOffset, _) = getLocalOffsetAndDst(future)
var utcOffset: int
if pastOffset == futureOffset:
utcOffset = pastOffset.int
else:
if pastOffset > futureOffset:
adjUnix -= secondsInHour
adjUnix += pastOffset
utcOffset = getLocalOffsetAndDst(adjUnix).offset
# This extra roundtrip is needed to normalize any impossible datetimes
# as a result of offset changes (normally due to dst)
let utcUnix = adjTime.seconds + utcOffset
let (finalOffset, dst) = getLocalOffsetAndDst(utcUnix)
result.time = initTime(utcUnix, adjTime.nanosecond)
result.utcOffset = finalOffset
result.isDst = dst
proc utcTzInfo(time: Time): ZonedTime =
ZonedTime(utcOffset: 0, isDst: false, time: time)
var utcInstance {.threadvar.}: Timezone
var localInstance {.threadvar.}: Timezone
proc utc*(): Timezone =
## Get the `Timezone` implementation for the UTC timezone.
runnableExamples:
doAssert now().utc.timezone == utc()
doAssert utc().name == "Etc/UTC"
if utcInstance.isNil:
utcInstance = newTimezone("Etc/UTC", utcTzInfo, utcTzInfo)
result = utcInstance
proc local*(): Timezone =
## Get the `Timezone` implementation for the local timezone.
runnableExamples:
doAssert now().timezone == local()
doAssert local().name == "LOCAL"
if localInstance.isNil:
localInstance = newTimezone("LOCAL", localZonedTimeFromTime,
localZonedTimeFromAdjTime)
result = localInstance
proc utc*(dt: DateTime): DateTime =
## Shorthand for `dt.inZone(utc())`.
dt.inZone(utc())
proc local*(dt: DateTime): DateTime =
## Shorthand for `dt.inZone(local())`.
dt.inZone(local())
proc utc*(t: Time): DateTime =
## Shorthand for `t.inZone(utc())`.
t.inZone(utc())
proc local*(t: Time): DateTime =
## Shorthand for `t.inZone(local())`.
t.inZone(local())
proc now*(): DateTime {.tags: [TimeEffect], benign.} =
## Get the current time as a `DateTime` in the local timezone.
## Shorthand for `getTime().local`.
##
## .. warning:: Unsuitable for benchmarking, use `monotimes.getMonoTime` or
## `cpuTime` instead, depending on the use case.
getTime().local
proc initDateTime*(monthday: MonthdayRange, month: Month, year: int,
hour: HourRange, minute: MinuteRange, second: SecondRange,
nanosecond: NanosecondRange,
zone: Timezone = local()): DateTime =
## Create a new `DateTime <#DateTime>`_ in the specified timezone.
runnableExamples:
let dt1 = initDateTime(30, mMar, 2017, 00, 00, 00, 00, utc())
doAssert $dt1 == "2017-03-30T00:00:00Z"
assertValidDate monthday, month, year
let dt = DateTime(
monthdayZero: monthday,
year: year,
monthZero: month.int,
hour: hour,
minute: minute,
second: second,
nanosecond: nanosecond
)
result = initDateTime(zone.zonedTimeFromAdjTime(dt.toAdjTime), zone)
proc initDateTime*(monthday: MonthdayRange, month: Month, year: int,
hour: HourRange, minute: MinuteRange, second: SecondRange,
zone: Timezone = local()): DateTime =
## Create a new `DateTime <#DateTime>`_ in the specified timezone.
runnableExamples:
let dt1 = initDateTime(30, mMar, 2017, 00, 00, 00, utc())
doAssert $dt1 == "2017-03-30T00:00:00Z"
initDateTime(monthday, month, year, hour, minute, second, 0, zone)
proc `+`*(dt: DateTime, dur: Duration): DateTime =
runnableExamples:
let dt = initDateTime(30, mMar, 2017, 00, 00, 00, utc())
let dur = initDuration(hours = 5)
doAssert $(dt + dur) == "2017-03-30T05:00:00Z"
(dt.toTime + dur).inZone(dt.timezone)
proc `-`*(dt: DateTime, dur: Duration): DateTime =
runnableExamples:
let dt = initDateTime(30, mMar, 2017, 00, 00, 00, utc())
let dur = initDuration(days = 5)
doAssert $(dt - dur) == "2017-03-25T00:00:00Z"
(dt.toTime - dur).inZone(dt.timezone)
proc `-`*(dt1, dt2: DateTime): Duration =
## Compute the duration between `dt1` and `dt2`.
runnableExamples:
let dt1 = initDateTime(30, mMar, 2017, 00, 00, 00, utc())
let dt2 = initDateTime(25, mMar, 2017, 00, 00, 00, utc())
doAssert dt1 - dt2 == initDuration(days = 5)
dt1.toTime - dt2.toTime
proc `<`*(a, b: DateTime): bool =
## Returns true if `a` happened before `b`.
return a.toTime < b.toTime
proc `<=`*(a, b: DateTime): bool =
## Returns true if `a` happened before or at the same time as `b`.
return a.toTime <= b.toTime
proc `==`*(a, b: DateTime): bool =
## Returns true if `a` and `b` represent the same point in time.
if not a.isInitialized: not b.isInitialized
elif not b.isInitialized: false
else: a.toTime == b.toTime
proc `+=`*(a: var DateTime, b: Duration) =
a = a + b
proc `-=`*(a: var DateTime, b: Duration) =
a = a - b
proc getDateStr*(dt = now()): string {.rtl, extern: "nt$1", tags: [TimeEffect].} =
## Gets the current local date as a string of the format `YYYY-MM-DD`.
runnableExamples:
echo getDateStr(now() - 1.months)
assertDateTimeInitialized dt
result = $dt.year & '-' & intToStr(dt.monthZero, 2) &
'-' & intToStr(dt.monthday, 2)
proc getClockStr*(dt = now()): string {.rtl, extern: "nt$1", tags: [TimeEffect].} =
## Gets the current local clock time as a string of the format `HH:mm:ss`.
runnableExamples:
echo getClockStr(now() - 1.hours)
assertDateTimeInitialized dt
result = intToStr(dt.hour, 2) & ':' & intToStr(dt.minute, 2) &
':' & intToStr(dt.second, 2)
#
# TimeFormat
#
when defined(nimHasStyleChecks):
{.push styleChecks: off.}
type
DateTimeLocale* = object
MMM*: array[mJan..mDec, string]
MMMM*: array[mJan..mDec, string]
ddd*: array[dMon..dSun, string]
dddd*: array[dMon..dSun, string]
when defined(nimHasStyleChecks):
{.pop.}
type
AmPm = enum
apUnknown, apAm, apPm
Era = enum
eraUnknown, eraAd, eraBc
ParsedTime = object
amPm: AmPm
era: Era
year: Option[int]
month: Option[int]
monthday: Option[int]
utcOffset: Option[int]
# '0' as default for these work fine
# so no need for `Option`.
hour: int
minute: int
second: int
nanosecond: int
FormatTokenKind = enum
tkPattern, tkLiteral
FormatPattern {.pure.} = enum
d, dd, ddd, dddd
h, hh, H, HH
m, mm, M, MM, MMM, MMMM
s, ss
fff, ffffff, fffffffff
t, tt
yy, yyyy
YYYY
uuuu
UUUU
z, zz, zzz, zzzz
ZZZ, ZZZZ
g
# This is a special value used to mark literal format values.
# See the doc comment for `TimeFormat.patterns`.
Lit
TimeFormat* = object ## Represents a format for parsing and printing
## time types.
##
## To create a new `TimeFormat` use `initTimeFormat proc
## <#initTimeFormat,string>`_.
patterns: seq[byte] ## \
## Contains the patterns encoded as bytes.
## Literal values are encoded in a special way.
## They start with `Lit.byte`, then the length of the literal, then the
## raw char values of the literal. For example, the literal `foo` would
## be encoded as `@[Lit.byte, 3.byte, 'f'.byte, 'o'.byte, 'o'.byte]`.
formatStr: string
TimeParseError* = object of ValueError ## \
## Raised when parsing input using a `TimeFormat` fails.
TimeFormatParseError* = object of ValueError ## \
## Raised when parsing a `TimeFormat` string fails.
const
DefaultLocale* = DateTimeLocale(
MMM: ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct",
"Nov", "Dec"],
MMMM: ["January", "February", "March", "April", "May", "June", "July",
"August", "September", "October", "November", "December"],
ddd: ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"],
dddd: ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday",
"Sunday"],
)
FormatLiterals = {' ', '-', '/', ':', '(', ')', '[', ']', ','}
proc `$`*(f: TimeFormat): string =
## Returns the format string that was used to construct `f`.
runnableExamples:
let f = initTimeFormat("yyyy-MM-dd")
doAssert $f == "yyyy-MM-dd"
f.formatStr
proc raiseParseException(f: TimeFormat, input: string, msg: string) =
raise newException(TimeParseError,
"Failed to parse '" & input & "' with format '" & $f &
"'. " & msg)
proc parseInt(s: string, b: var int, start = 0, maxLen = int.high,
allowSign = false): int =
var sign = -1
var i = start
let stop = start + min(s.high - start + 1, maxLen) - 1
if allowSign and i <= stop:
if s[i] == '+':
inc(i)
elif s[i] == '-':
inc(i)
sign = 1
if i <= stop and s[i] in {'0'..'9'}:
b = 0
while i <= stop and s[i] in {'0'..'9'}:
let c = ord(s[i]) - ord('0')
if b >= (low(int) + c) div 10:
b = b * 10 - c
else:
return 0
inc(i)
if sign == -1 and b == low(int):
return 0
b = b * sign
result = i - start
iterator tokens(f: string): tuple[kind: FormatTokenKind, token: string] =
var i = 0
var currToken = ""
template yieldCurrToken() =
if currToken.len != 0:
yield (tkPattern, currToken)
currToken = ""
while i < f.len:
case f[i]
of '\'':
yieldCurrToken()
if i.succ < f.len and f[i.succ] == '\'':
yield (tkLiteral, "'")
i.inc 2
else:
var token = ""
inc(i) # Skip '
while i < f.len and f[i] != '\'':
token.add f[i]
i.inc
if i > f.high:
raise newException(TimeFormatParseError,
"Unclosed ' in time format string. " &
"For a literal ', use ''.")
i.inc
yield (tkLiteral, token)
of FormatLiterals:
yieldCurrToken()
yield (tkLiteral, $f[i])
i.inc
else:
# Check if the letter being added matches previous accumulated buffer.
if currToken.len == 0 or currToken[0] == f[i]:
currToken.add(f[i])
i.inc
else:
yield (tkPattern, currToken)
currToken = $f[i]
i.inc
yieldCurrToken()
proc stringToPattern(str: string): FormatPattern =
case str
of "d": result = d
of "dd": result = dd
of "ddd": result = ddd
of "dddd": result = dddd
of "h": result = h
of "hh": result = hh
of "H": result = H
of "HH": result = HH
of "m": result = m
of "mm": result = mm
of "M": result = M
of "MM": result = MM
of "MMM": result = MMM
of "MMMM": result = MMMM
of "s": result = s
of "ss": result = ss
of "fff": result = fff
of "ffffff": result = ffffff
of "fffffffff": result = fffffffff
of "t": result = t
of "tt": result = tt
of "yy": result = yy
of "yyyy": result = yyyy
of "YYYY": result = YYYY
of "uuuu": result = uuuu
of "UUUU": result = UUUU
of "z": result = z
of "zz": result = zz
of "zzz": result = zzz
of "zzzz": result = zzzz
of "ZZZ": result = ZZZ
of "ZZZZ": result = ZZZZ
of "g": result = g
else: raise newException(TimeFormatParseError,
"'" & str & "' is not a valid pattern")
proc initTimeFormat*(format: string): TimeFormat =
## Construct a new time format for parsing & formatting time types.
##
## See `Parsing and formatting dates`_ for documentation of the
## `format` argument.
runnableExamples:
let f = initTimeFormat("yyyy-MM-dd")
doAssert "2000-01-01" == "2000-01-01".parse(f).format(f)
result.formatStr = format
result.patterns = @[]
for kind, token in format.tokens:
case kind
of tkLiteral:
case token
else:
result.patterns.add(FormatPattern.Lit.byte)
if token.len > 255:
raise newException(TimeFormatParseError,
"Format literal is to long:" & token)
result.patterns.add(token.len.byte)
for c in token:
result.patterns.add(c.byte)
of tkPattern:
result.patterns.add(stringToPattern(token).byte)
proc formatPattern(dt: DateTime, pattern: FormatPattern, result: var string,
loc: DateTimeLocale) =
template yearOfEra(dt: DateTime): int =
if dt.year <= 0: abs(dt.year) + 1 else: dt.year
case pattern
of d:
result.add $dt.monthday
of dd:
result.add dt.monthday.intToStr(2)
of ddd:
result.add loc.ddd[dt.weekday]
of dddd:
result.add loc.dddd[dt.weekday]
of h:
result.add(
if dt.hour == 0: "12"
elif dt.hour > 12: $(dt.hour - 12)
else: $dt.hour
)
of hh:
result.add(
if dt.hour == 0: "12"
elif dt.hour > 12: (dt.hour - 12).intToStr(2)
else: dt.hour.intToStr(2)
)
of H:
result.add $dt.hour
of HH:
result.add dt.hour.intToStr(2)
of m:
result.add $dt.minute
of mm:
result.add dt.minute.intToStr(2)
of M:
result.add $ord(dt.month)
of MM:
result.add ord(dt.month).intToStr(2)
of MMM:
result.add loc.MMM[dt.month]
of MMMM:
result.add loc.MMMM[dt.month]
of s:
result.add $dt.second
of ss:
result.add dt.second.intToStr(2)
of fff:
result.add(intToStr(convert(Nanoseconds, Milliseconds, dt.nanosecond), 3))
of ffffff:
result.add(intToStr(convert(Nanoseconds, Microseconds, dt.nanosecond), 6))
of fffffffff:
result.add(intToStr(dt.nanosecond, 9))
of t:
result.add if dt.hour >= 12: "P" else: "A"
of tt:
result.add if dt.hour >= 12: "PM" else: "AM"
of yy:
result.add (dt.yearOfEra mod 100).intToStr(2)
of yyyy:
let year = dt.yearOfEra
if year < 10000:
result.add year.intToStr(4)
else:
result.add '+' & $year
of YYYY:
if dt.year < 1:
result.add $(abs(dt.year) + 1)
else:
result.add $dt.year
of uuuu:
let year = dt.year
if year < 10000 or year < 0:
result.add year.intToStr(4)
else:
result.add '+' & $year
of UUUU:
result.add $dt.year
of z, zz, zzz, zzzz, ZZZ, ZZZZ:
if dt.timezone != nil and dt.timezone.name == "Etc/UTC":
result.add 'Z'
else:
result.add if -dt.utcOffset >= 0: '+' else: '-'
let absOffset = abs(dt.utcOffset)
case pattern:
of z:
result.add $(absOffset div 3600)
of zz:
result.add (absOffset div 3600).intToStr(2)
of zzz, ZZZ:
let h = (absOffset div 3600).intToStr(2)
let m = ((absOffset div 60) mod 60).intToStr(2)
let sep = if pattern == zzz: ":" else: ""
result.add h & sep & m
of zzzz, ZZZZ:
let absOffset = abs(dt.utcOffset)
let h = (absOffset div 3600).intToStr(2)
let m = ((absOffset div 60) mod 60).intToStr(2)
let s = (absOffset mod 60).intToStr(2)
let sep = if pattern == zzzz: ":" else: ""
result.add h & sep & m & sep & s
else: assert false
of g:
result.add if dt.year < 1: "BC" else: "AD"
of Lit: assert false # Can't happen
proc parsePattern(input: string, pattern: FormatPattern, i: var int,
parsed: var ParsedTime, loc: DateTimeLocale): bool =
template takeInt(allowedWidth: Slice[int], allowSign = false): int =
var sv = 0
var pd = parseInt(input, sv, i, allowedWidth.b, allowSign)
if pd < allowedWidth.a:
return false
i.inc pd
sv
template contains[T](t: typedesc[T], i: int): bool =
i in low(t)..high(t)
result = true
case pattern
of d:
let monthday = takeInt(1..2)
parsed.monthday = some(monthday)
result = monthday in MonthdayRange
of dd:
let monthday = takeInt(2..2)
parsed.monthday = some(monthday)
result = monthday in MonthdayRange
of ddd:
result = false
for v in loc.ddd:
if input.substr(i, i+v.len-1).cmpIgnoreCase(v) == 0:
result = true
i.inc v.len
break
of dddd:
result = false
for v in loc.dddd:
if input.substr(i, i+v.len-1).cmpIgnoreCase(v) == 0:
result = true
i.inc v.len
break
of h, H:
parsed.hour = takeInt(1..2)
result = parsed.hour in HourRange
of hh, HH:
parsed.hour = takeInt(2..2)
result = parsed.hour in HourRange
of m:
parsed.minute = takeInt(1..2)
result = parsed.hour in MinuteRange
of mm:
parsed.minute = takeInt(2..2)
result = parsed.hour in MinuteRange
of M:
let month = takeInt(1..2)
result = month in 1..12
parsed.month = some(month)
of MM:
let month = takeInt(2..2)
result = month in 1..12
parsed.month = some(month)
of MMM:
result = false
for n, v in loc.MMM:
if input.substr(i, i+v.len-1).cmpIgnoreCase(v) == 0:
result = true
i.inc v.len
parsed.month = some(n.int)
break
of MMMM:
result = false
for n, v in loc.MMMM:
if input.substr(i, i+v.len-1).cmpIgnoreCase(v) == 0:
result = true
i.inc v.len
parsed.month = some(n.int)
break
of s:
parsed.second = takeInt(1..2)
of ss:
parsed.second = takeInt(2..2)
of fff, ffffff, fffffffff:
let len = ($pattern).len
let v = takeInt(len..len)
parsed.nanosecond = v * 10^(9 - len)
result = parsed.nanosecond in NanosecondRange
of t:
case input[i]:
of 'P':
parsed.amPm = apPm
of 'A':
parsed.amPm = apAm
else:
result = false
i.inc 1
of tt:
if input.substr(i, i+1).cmpIgnoreCase("AM") == 0:
parsed.amPm = apAm
i.inc 2
elif input.substr(i, i+1).cmpIgnoreCase("PM") == 0:
parsed.amPm = apPm
i.inc 2
else:
result = false
of yy:
# Assumes current century
var year = takeInt(2..2)
var thisCen = now().year div 100
parsed.year = some(thisCen*100 + year)
result = year > 0
of yyyy:
let year =
if input[i] in {'+', '-'}:
takeInt(4..high(int), allowSign = true)
else:
takeInt(4..4)
result = year > 0
parsed.year = some(year)
of YYYY:
let year = takeInt(1..high(int))
parsed.year = some(year)
result = year > 0
of uuuu:
let year =
if input[i] in {'+', '-'}:
takeInt(4..high(int), allowSign = true)
else:
takeInt(4..4)
parsed.year = some(year)
of UUUU:
parsed.year = some(takeInt(1..high(int), allowSign = true))
of z, zz, zzz, zzzz, ZZZ, ZZZZ:
case input[i]
of '+', '-':
let sign = if input[i] == '-': 1 else: -1
i.inc
var offset = 0
case pattern
of z:
offset = takeInt(1..2) * 3600
of zz:
offset = takeInt(2..2) * 3600
of zzz, ZZZ:
offset.inc takeInt(2..2) * 3600
if pattern == zzz:
if input[i] != ':':
return false
i.inc
offset.inc takeInt(2..2) * 60
of zzzz, ZZZZ:
offset.inc takeInt(2..2) * 3600
if pattern == zzzz:
if input[i] != ':':
return false
i.inc
offset.inc takeInt(2..2) * 60
if pattern == zzzz:
if input[i] != ':':
return false
i.inc
offset.inc takeInt(2..2)
else: assert false
parsed.utcOffset = some(offset * sign)
of 'Z':
parsed.utcOffset = some(0)
i.inc
else:
result = false
of g:
if input.substr(i, i+1).cmpIgnoreCase("BC") == 0:
parsed.era = eraBc
i.inc 2
elif input.substr(i, i+1).cmpIgnoreCase("AD") == 0:
parsed.era = eraAd
i.inc 2
else:
result = false
of Lit: doAssert false, "Can't happen"
proc toDateTime(p: ParsedTime, zone: Timezone, f: TimeFormat,
input: string): DateTime =
var year = p.year.get(0)
var month = p.month.get(1).Month
var monthday = p.monthday.get(1)
year =
case p.era
of eraUnknown:
year
of eraBc:
if year < 1:
raiseParseException(f, input,
"Expected year to be positive " &
"(use 'UUUU' or 'uuuu' for negative years).")
-year + 1
of eraAd:
if year < 1:
raiseParseException(f, input,
"Expected year to be positive " &
"(use 'UUUU' or 'uuuu' for negative years).")
year
let hour =
case p.amPm
of apUnknown:
p.hour
of apAm:
if p.hour notin 1..12:
raiseParseException(f, input,
"AM/PM time must be in the interval 1..12")
if p.hour == 12: 0 else: p.hour
of apPm:
if p.hour notin 1..12:
raiseParseException(f, input,
"AM/PM time must be in the interval 1..12")
if p.hour == 12: p.hour else: p.hour + 12
let minute = p.minute
let second = p.second
let nanosecond = p.nanosecond
if monthday > getDaysInMonth(month, year):
raiseParseException(f, input,
$year & "-" & ord(month).intToStr(2) &
"-" & $monthday & " is not a valid date")
if p.utcOffset.isNone:
# No timezone parsed - assume timezone is `zone`
result = initDateTime(monthday, month, year, hour, minute, second, nanosecond, zone)
else:
# Otherwise convert to `zone`
result = (initDateTime(monthday, month, year, hour, minute, second, nanosecond, utc()).toTime +
initDuration(seconds = p.utcOffset.get())).inZone(zone)
proc format*(dt: DateTime, f: TimeFormat,
loc: DateTimeLocale = DefaultLocale): string {.raises: [].} =
## Format `dt` using the format specified by `f`.
runnableExamples:
let f = initTimeFormat("yyyy-MM-dd")
let dt = initDateTime(01, mJan, 2000, 00, 00, 00, utc())
doAssert "2000-01-01" == dt.format(f)
assertDateTimeInitialized dt
result = ""
var idx = 0
while idx <= f.patterns.high:
case f.patterns[idx].FormatPattern
of Lit:
idx.inc
let len = f.patterns[idx]
for i in 1'u8..len:
idx.inc
result.add f.patterns[idx].char
idx.inc
else:
formatPattern(dt, f.patterns[idx].FormatPattern, result = result, loc = loc)
idx.inc
proc format*(dt: DateTime, f: string, loc: DateTimeLocale = DefaultLocale): string
{.raises: [TimeFormatParseError].} =
## Shorthand for constructing a `TimeFormat` and using it to format `dt`.
##
## See `Parsing and formatting dates`_ for documentation of the
## `format` argument.
runnableExamples:
let dt = initDateTime(01, mJan, 2000, 00, 00, 00, utc())
doAssert "2000-01-01" == format(dt, "yyyy-MM-dd")
let dtFormat = initTimeFormat(f)
result = dt.format(dtFormat, loc)
proc format*(dt: DateTime, f: static[string]): string {.raises: [].} =
## Overload that validates `format` at compile time.
const f2 = initTimeFormat(f)
result = dt.format(f2)
proc formatValue*(result: var string; value: DateTime, specifier: string) =
## adapter for strformat. Not intended to be called directly.
result.add format(value,
if specifier.len == 0: "yyyy-MM-dd'T'HH:mm:sszzz" else: specifier)
proc format*(time: Time, f: string, zone: Timezone = local()): string
{.raises: [TimeFormatParseError].} =
## Shorthand for constructing a `TimeFormat` and using it to format
## `time`. Will use the timezone specified by `zone`.
##
## See `Parsing and formatting dates`_ for documentation of the
## `f` argument.
runnableExamples:
var dt = initDateTime(01, mJan, 1970, 00, 00, 00, utc())
var tm = dt.toTime()
doAssert format(tm, "yyyy-MM-dd'T'HH:mm:ss", utc()) == "1970-01-01T00:00:00"
time.inZone(zone).format(f)
proc format*(time: Time, f: static[string], zone: Timezone = local()): string
{.raises: [].} =
## Overload that validates `f` at compile time.
const f2 = initTimeFormat(f)
result = time.inZone(zone).format(f2)
template formatValue*(result: var string; value: Time, specifier: string) =
## adapter for `strformat`. Not intended to be called directly.
result.add format(value, specifier)
proc parse*(input: string, f: TimeFormat, zone: Timezone = local(),
loc: DateTimeLocale = DefaultLocale): DateTime
{.raises: [TimeParseError, Defect].} =
## Parses `input` as a `DateTime` using the format specified by `f`.
## If no UTC offset was parsed, then `input` is assumed to be specified in
## the `zone` timezone. If a UTC offset was parsed, the result will be
## converted to the `zone` timezone.
##
## Month and day names from the passed in `loc` are used.
runnableExamples:
let f = initTimeFormat("yyyy-MM-dd")
let dt = initDateTime(01, mJan, 2000, 00, 00, 00, utc())
doAssert dt == "2000-01-01".parse(f, utc())
var inpIdx = 0 # Input index
var patIdx = 0 # Pattern index
var parsed: ParsedTime
while inpIdx <= input.high and patIdx <= f.patterns.high:
let pattern = f.patterns[patIdx].FormatPattern
case pattern
of Lit:
patIdx.inc
let len = f.patterns[patIdx]
patIdx.inc
for _ in 1'u8..len:
if input[inpIdx] != f.patterns[patIdx].char:
raiseParseException(f, input,
"Unexpected character: " & input[inpIdx])
inpIdx.inc
patIdx.inc
else:
if not parsePattern(input, pattern, inpIdx, parsed, loc):
raiseParseException(f, input, "Failed on pattern '" & $pattern & "'")
patIdx.inc
if inpIdx <= input.high:
raiseParseException(f, input,
"Parsing ended but there was still input remaining")
if patIdx <= f.patterns.high:
raiseParseException(f, input,
"Parsing ended but there was still patterns remaining")
result = toDateTime(parsed, zone, f, input)
proc parse*(input, f: string, tz: Timezone = local(),
loc: DateTimeLocale = DefaultLocale): DateTime
{.raises: [TimeParseError, TimeFormatParseError, Defect].} =
## Shorthand for constructing a `TimeFormat` and using it to parse
## `input` as a `DateTime`.
##
## See `Parsing and formatting dates`_ for documentation of the
## `f` argument.
runnableExamples:
let dt = initDateTime(01, mJan, 2000, 00, 00, 00, utc())
doAssert dt == parse("2000-01-01", "yyyy-MM-dd", utc())
let dtFormat = initTimeFormat(f)
result = input.parse(dtFormat, tz, loc = loc)
proc parse*(input: string, f: static[string], zone: Timezone = local(),
loc: DateTimeLocale = DefaultLocale):
DateTime {.raises: [TimeParseError, Defect].} =
## Overload that validates `f` at compile time.
const f2 = initTimeFormat(f)
result = input.parse(f2, zone, loc = loc)
proc parseTime*(input, f: string, zone: Timezone): Time
{.raises: [TimeParseError, TimeFormatParseError, Defect].} =
## Shorthand for constructing a `TimeFormat` and using it to parse
## `input` as a `DateTime`, then converting it a `Time`.
##
## See `Parsing and formatting dates`_ for documentation of the
## `format` argument.
runnableExamples:
let tStr = "1970-01-01T00:00:00+00:00"
doAssert parseTime(tStr, "yyyy-MM-dd'T'HH:mm:sszzz", utc()) == fromUnix(0)
parse(input, f, zone).toTime()
proc parseTime*(input: string, f: static[string], zone: Timezone): Time
{.raises: [TimeParseError, Defect].} =
## Overload that validates `format` at compile time.
const f2 = initTimeFormat(f)
result = input.parse(f2, zone).toTime()
proc `$`*(dt: DateTime): string {.tags: [], raises: [], benign.} =
## Converts a `DateTime` object to a string representation.
## It uses the format `yyyy-MM-dd'T'HH:mm:sszzz`.
runnableExamples:
let dt = initDateTime(01, mJan, 2000, 12, 00, 00, utc())
doAssert $dt == "2000-01-01T12:00:00Z"
doAssert $default(DateTime) == "Uninitialized DateTime"
if not dt.isInitialized:
result = "Uninitialized DateTime"
else:
result = format(dt, "yyyy-MM-dd'T'HH:mm:sszzz")
proc `$`*(time: Time): string {.tags: [], raises: [], benign.} =
## Converts a `Time` value to a string representation. It will use the local
## time zone and use the format `yyyy-MM-dd'T'HH:mm:sszzz`.
runnableExamples:
let dt = initDateTime(01, mJan, 1970, 00, 00, 00, local())
let tm = dt.toTime()
doAssert $tm == "1970-01-01T00:00:00" & format(dt, "zzz")
$time.local
#
# TimeInterval
#
proc initTimeInterval*(nanoseconds, microseconds, milliseconds,
seconds, minutes, hours,
days, weeks, months, years: int = 0): TimeInterval =
## Creates a new `TimeInterval <#TimeInterval>`_.
##
## This proc doesn't perform any normalization! For example,
## `initTimeInterval(hours = 24)` and `initTimeInterval(days = 1)` are
## not equal.
##
## You can also use the convenience procedures called `milliseconds`,
## `seconds`, `minutes`, `hours`, `days`, `months`, and `years`.
runnableExamples:
let day = initTimeInterval(hours = 24)
let dt = initDateTime(01, mJan, 2000, 12, 00, 00, utc())
doAssert $(dt + day) == "2000-01-02T12:00:00Z"
doAssert initTimeInterval(hours = 24) != initTimeInterval(days = 1)
result.nanoseconds = nanoseconds
result.microseconds = microseconds
result.milliseconds = milliseconds
result.seconds = seconds
result.minutes = minutes
result.hours = hours
result.days = days
result.weeks = weeks
result.months = months
result.years = years
proc `+`*(ti1, ti2: TimeInterval): TimeInterval =
## Adds two `TimeInterval` objects together.
result.nanoseconds = ti1.nanoseconds + ti2.nanoseconds
result.microseconds = ti1.microseconds + ti2.microseconds
result.milliseconds = ti1.milliseconds + ti2.milliseconds
result.seconds = ti1.seconds + ti2.seconds
result.minutes = ti1.minutes + ti2.minutes
result.hours = ti1.hours + ti2.hours
result.days = ti1.days + ti2.days
result.weeks = ti1.weeks + ti2.weeks
result.months = ti1.months + ti2.months
result.years = ti1.years + ti2.years
proc `-`*(ti: TimeInterval): TimeInterval =
## Reverses a time interval
runnableExamples:
let day = -initTimeInterval(hours = 24)
doAssert day.hours == -24
result = TimeInterval(
nanoseconds: -ti.nanoseconds,
microseconds: -ti.microseconds,
milliseconds: -ti.milliseconds,
seconds: -ti.seconds,
minutes: -ti.minutes,
hours: -ti.hours,
days: -ti.days,
weeks: -ti.weeks,
months: -ti.months,
years: -ti.years
)
proc `-`*(ti1, ti2: TimeInterval): TimeInterval =
## Subtracts TimeInterval `ti1` from `ti2`.
##
## Time components are subtracted one-by-one, see output:
runnableExamples:
let ti1 = initTimeInterval(hours = 24)
let ti2 = initTimeInterval(hours = 4)
doAssert (ti1 - ti2) == initTimeInterval(hours = 20)
result = ti1 + (-ti2)
proc `+=`*(a: var TimeInterval, b: TimeInterval) =
a = a + b
proc `-=`*(a: var TimeInterval, b: TimeInterval) =
a = a - b
proc isStaticInterval(interval: TimeInterval): bool =
interval.years == 0 and interval.months == 0 and
interval.days == 0 and interval.weeks == 0
proc evaluateStaticInterval(interval: TimeInterval): Duration =
assert interval.isStaticInterval
initDuration(nanoseconds = interval.nanoseconds,
microseconds = interval.microseconds,
milliseconds = interval.milliseconds,
seconds = interval.seconds,
minutes = interval.minutes,
hours = interval.hours)
proc between*(startDt, endDt: DateTime): TimeInterval =
## Gives the difference between `startDt` and `endDt` as a
## `TimeInterval`. The following guarantees about the result is given:
##
## - All fields will have the same sign.
## - If `startDt.timezone == endDt.timezone`, it is guaranteed that
## `startDt + between(startDt, endDt) == endDt`.
## - If `startDt.timezone != endDt.timezone`, then the result will be
## equivalent to `between(startDt.utc, endDt.utc)`.
runnableExamples:
var a = initDateTime(25, mMar, 2015, 12, 0, 0, utc())
var b = initDateTime(1, mApr, 2017, 15, 0, 15, utc())
var ti = initTimeInterval(years = 2, weeks = 1, hours = 3, seconds = 15)
doAssert between(a, b) == ti
doAssert between(a, b) == -between(b, a)
if startDt.timezone != endDt.timezone:
return between(startDt.utc, endDt.utc)
elif endDt < startDt:
return -between(endDt, startDt)
type Date = tuple[year, month, monthday: int]
var startDate: Date = (startDt.year, startDt.month.ord, startDt.monthday)
var endDate: Date = (endDt.year, endDt.month.ord, endDt.monthday)
# Subtract one day from endDate if time of day is earlier than startDay
# The subtracted day will be counted by fixed units (hour and lower)
# at the end of this proc
if (endDt.hour, endDt.minute, endDt.second, endDt.nanosecond) <
(startDt.hour, startDt.minute, startDt.second, startDt.nanosecond):
if endDate.month == 1 and endDate.monthday == 1:
endDate.year.dec
endDate.monthday = 31
endDate.month = 12
elif endDate.monthday == 1:
endDate.month.dec
endDate.monthday = getDaysInMonth(endDate.month.Month, endDate.year)
else:
endDate.monthday.dec
# Years
result.years = endDate.year - startDate.year - 1
if (startDate.month, startDate.monthday) <= (endDate.month, endDate.monthday):
result.years.inc
startDate.year.inc result.years
# Months
if startDate.year < endDate.year:
result.months.inc 12 - startDate.month # Move to dec
if endDate.month != 1 or (startDate.monthday <= endDate.monthday):
result.months.inc
startDate.year = endDate.year
startDate.month = 1
else:
startDate.month = 12
if startDate.year == endDate.year:
if (startDate.monthday <= endDate.monthday):
result.months.inc endDate.month - startDate.month
startDate.month = endDate.month
elif endDate.month != 1:
let month = endDate.month - 1
let daysInMonth = getDaysInMonth(month.Month, startDate.year)
if daysInMonth < startDate.monthday:
if startDate.monthday - daysInMonth < endDate.monthday:
result.months.inc endDate.month - startDate.month - 1
startDate.month = endDate.month
startDate.monthday = startDate.monthday - daysInMonth
else:
result.months.inc endDate.month - startDate.month - 2
startDate.month = endDate.month - 2
else:
result.months.inc endDate.month - startDate.month - 1
startDate.month = endDate.month - 1
# Days
# This means that start = dec and end = jan
if startDate.year < endDate.year:
result.days.inc 31 - startDate.monthday + endDate.monthday
startDate = endDate
else:
while startDate.month < endDate.month:
let daysInMonth = getDaysInMonth(startDate.month.Month, startDate.year)
result.days.inc daysInMonth - startDate.monthday + 1
startDate.month.inc
startDate.monthday = 1
result.days.inc endDate.monthday - startDate.monthday
result.weeks = result.days div 7
result.days = result.days mod 7
startDate = endDate
# Handle hours, minutes, seconds, milliseconds, microseconds and nanoseconds
let newStartDt = initDateTime(startDate.monthday, startDate.month.Month,
startDate.year, startDt.hour, startDt.minute, startDt.second,
startDt.nanosecond, startDt.timezone)
let dur = endDt - newStartDt
let parts = toParts(dur)
# There can still be a full day in `parts` since `Duration` and `TimeInterval`
# models days differently.
result.hours = parts[Hours].int + parts[Days].int * 24
result.minutes = parts[Minutes].int
result.seconds = parts[Seconds].int
result.milliseconds = parts[Milliseconds].int
result.microseconds = parts[Microseconds].int
result.nanoseconds = parts[Nanoseconds].int
proc toParts*(ti: TimeInterval): TimeIntervalParts =
## Converts a `TimeInterval` into an array consisting of its time units,
## starting with nanoseconds and ending with years.
##
## This procedure is useful for converting `TimeInterval` values to strings.
## E.g. then you need to implement custom interval printing
runnableExamples:
var tp = toParts(initTimeInterval(years = 1, nanoseconds = 123))
doAssert tp[Years] == 1
doAssert tp[Nanoseconds] == 123
var index = 0
for name, value in fieldPairs(ti):
result[index.TimeUnit()] = value
index += 1
proc `$`*(ti: TimeInterval): string =
## Get string representation of `TimeInterval`.
runnableExamples:
doAssert $initTimeInterval(years = 1, nanoseconds = 123) ==
"1 year and 123 nanoseconds"
doAssert $initTimeInterval() == "0 nanoseconds"
var parts: seq[string] = @[]
var tiParts = toParts(ti)
for unit in countdown(Years, Nanoseconds):
if tiParts[unit] != 0:
parts.add(stringifyUnit(tiParts[unit], unit))
result = humanizeParts(parts)
proc nanoseconds*(nanos: int): TimeInterval {.inline.} =
## TimeInterval of `nanos` nanoseconds.
initTimeInterval(nanoseconds = nanos)
proc microseconds*(micros: int): TimeInterval {.inline.} =
## TimeInterval of `micros` microseconds.
initTimeInterval(microseconds = micros)
proc milliseconds*(ms: int): TimeInterval {.inline.} =
## TimeInterval of `ms` milliseconds.
initTimeInterval(milliseconds = ms)
proc seconds*(s: int): TimeInterval {.inline.} =
## TimeInterval of `s` seconds.
##
## `echo getTime() + 5.seconds`
initTimeInterval(seconds = s)
proc minutes*(m: int): TimeInterval {.inline.} =
## TimeInterval of `m` minutes.
##
## `echo getTime() + 5.minutes`
initTimeInterval(minutes = m)
proc hours*(h: int): TimeInterval {.inline.} =
## TimeInterval of `h` hours.
##
## `echo getTime() + 2.hours`
initTimeInterval(hours = h)
proc days*(d: int): TimeInterval {.inline.} =
## TimeInterval of `d` days.
##
## `echo getTime() + 2.days`
initTimeInterval(days = d)
proc weeks*(w: int): TimeInterval {.inline.} =
## TimeInterval of `w` weeks.
##
## `echo getTime() + 2.weeks`
initTimeInterval(weeks = w)
proc months*(m: int): TimeInterval {.inline.} =
## TimeInterval of `m` months.
##
## `echo getTime() + 2.months`
initTimeInterval(months = m)
proc years*(y: int): TimeInterval {.inline.} =
## TimeInterval of `y` years.
##
## `echo getTime() + 2.years`
initTimeInterval(years = y)
proc evaluateInterval(dt: DateTime, interval: TimeInterval):
tuple[adjDur, absDur: Duration] =
## Evaluates how many nanoseconds the interval is worth
## in the context of `dt`.
## The result in split into an adjusted diff and an absolute diff.
var months = interval.years * 12 + interval.months
var curYear = dt.year
var curMonth = dt.month
result = default(tuple[adjDur, absDur: Duration])
# Subtracting
if months < 0:
for mth in countdown(-1 * months, 1):
if curMonth == mJan:
curMonth = mDec
curYear.dec
else:
curMonth.dec()
let days = getDaysInMonth(curMonth, curYear)
result.adjDur = result.adjDur - initDuration(days = days)
# Adding
else:
for mth in 1 .. months:
let days = getDaysInMonth(curMonth, curYear)
result.adjDur = result.adjDur + initDuration(days = days)
if curMonth == mDec:
curMonth = mJan
curYear.inc
else:
curMonth.inc()
result.adjDur = result.adjDur + initDuration(
days = interval.days,
weeks = interval.weeks)
result.absDur = initDuration(
nanoseconds = interval.nanoseconds,
microseconds = interval.microseconds,
milliseconds = interval.milliseconds,
seconds = interval.seconds,
minutes = interval.minutes,
hours = interval.hours)
proc `+`*(dt: DateTime, interval: TimeInterval): DateTime =
## Adds `interval` to `dt`. Components from `interval` are added
## in the order of their size, i.e. first the `years` component, then the
## `months` component and so on. The returned `DateTime` will have the
## same timezone as the input.
##
## Note that when adding months, monthday overflow is allowed. This means that
## if the resulting month doesn't have enough days it, the month will be
## incremented and the monthday will be set to the number of days overflowed.
## So adding one month to `31 October` will result in `31 November`, which
## will overflow and result in `1 December`.
runnableExamples:
let dt = initDateTime(30, mMar, 2017, 00, 00, 00, utc())
doAssert $(dt + 1.months) == "2017-04-30T00:00:00Z"
# This is correct and happens due to monthday overflow.
doAssert $(dt - 1.months) == "2017-03-02T00:00:00Z"
let (adjDur, absDur) = evaluateInterval(dt, interval)
if adjDur != DurationZero:
var zt = dt.timezone.zonedTimeFromAdjTime(dt.toAdjTime + adjDur)
if absDur != DurationZero:
zt = dt.timezone.zonedTimeFromTime(zt.time + absDur)
result = initDateTime(zt, dt.timezone)
else:
result = initDateTime(zt, dt.timezone)
else:
var zt = dt.timezone.zonedTimeFromTime(dt.toTime + absDur)
result = initDateTime(zt, dt.timezone)
proc `-`*(dt: DateTime, interval: TimeInterval): DateTime =
## Subtract `interval` from `dt`. Components from `interval` are
## subtracted in the order of their size, i.e. first the `years` component,
## then the `months` component and so on. The returned `DateTime` will
## have the same timezone as the input.
runnableExamples:
let dt = initDateTime(30, mMar, 2017, 00, 00, 00, utc())
doAssert $(dt - 5.days) == "2017-03-25T00:00:00Z"
dt + (-interval)
proc `+`*(time: Time, interval: TimeInterval): Time =
## Adds `interval` to `time`.
## If `interval` contains any years, months, weeks or days the operation
## is performed in the local timezone.
runnableExamples:
let tm = fromUnix(0)
doAssert tm + 5.seconds == fromUnix(5)
if interval.isStaticInterval:
time + evaluateStaticInterval(interval)
else:
toTime(time.local + interval)
proc `-`*(time: Time, interval: TimeInterval): Time =
## Subtracts `interval` from Time `time`.
## If `interval` contains any years, months, weeks or days the operation
## is performed in the local timezone.
runnableExamples:
let tm = fromUnix(5)
doAssert tm - 5.seconds == fromUnix(0)
if interval.isStaticInterval:
time - evaluateStaticInterval(interval)
else:
toTime(time.local - interval)
proc `+=`*(a: var DateTime, b: TimeInterval) =
a = a + b
proc `-=`*(a: var DateTime, b: TimeInterval) =
a = a - b
proc `+=`*(t: var Time, b: TimeInterval) =
t = t + b
proc `-=`*(t: var Time, b: TimeInterval) =
t = t - b
#
# Other
#
proc epochTime*(): float {.tags: [TimeEffect].} =
## Gets time after the UNIX epoch (1970) in seconds. It is a float
## because sub-second resolution is likely to be supported (depending
## on the hardware/OS).
##
## `getTime` should generally be preferred over this proc.
##
## .. warning:: Unsuitable for benchmarking (but still better than `now`),
## use `monotimes.getMonoTime` or `cpuTime` instead, depending on the use case.
when defined(macosx):
var a {.noinit.}: Timeval
gettimeofday(a)
result = toBiggestFloat(a.tv_sec.int64) + toBiggestFloat(
a.tv_usec)*0.00_0001
elif defined(posix):
var ts {.noinit.}: Timespec
discard clock_gettime(CLOCK_REALTIME, ts)
result = toBiggestFloat(ts.tv_sec.int64) +
toBiggestFloat(ts.tv_nsec.int64) / 1_000_000_000
elif defined(windows):
var f {.noinit.}: winlean.FILETIME
getSystemTimeAsFileTime(f)
var i64 = rdFileTime(f) - epochDiff
var secs = i64 div rateDiff
var subsecs = i64 mod rateDiff
result = toFloat(int(secs)) + toFloat(int(subsecs)) * 0.0000001
elif defined(js):
result = newDate().getTime() / 1000
else:
{.error: "unknown OS".}
when not defined(js):
type
Clock {.importc: "clock_t".} = distinct int
proc getClock(): Clock
{.importc: "clock", header: "<time.h>", tags: [TimeEffect], used, sideEffect.}
var
clocksPerSec {.importc: "CLOCKS_PER_SEC", nodecl, used.}: int
proc cpuTime*(): float {.tags: [TimeEffect].} =
## Gets time spent that the CPU spent to run the current process in
## seconds. This may be more useful for benchmarking than `epochTime`.
## However, it may measure the real time instead (depending on the OS).
## The value of the result has no meaning.
## To generate useful timing values, take the difference between
## the results of two `cpuTime` calls:
runnableExamples:
var t0 = cpuTime()
# some useless work here (calculate fibonacci)
var fib = @[0, 1, 1]
for i in 1..10:
fib.add(fib[^1] + fib[^2])
echo "CPU time [s] ", cpuTime() - t0
echo "Fib is [s] ", fib
## When the flag `--benchmarkVM` is passed to the compiler, this proc is
## also available at compile time
when defined(posix) and not defined(osx) and declared(CLOCK_THREAD_CPUTIME_ID):
# 'clocksPerSec' is a compile-time constant, possibly a
# rather awful one, so use clock_gettime instead
var ts: Timespec
discard clock_gettime(CLOCK_THREAD_CPUTIME_ID, ts)
result = toFloat(ts.tv_sec.int) +
toFloat(ts.tv_nsec.int) / 1_000_000_000
else:
result = toFloat(int(getClock())) / toFloat(clocksPerSec)
#
# Deprecations
#
proc `nanosecond=`*(dt: var DateTime, value: NanosecondRange) {.deprecated: "Deprecated since v1.3.1".} =
dt.nanosecond = value
proc `second=`*(dt: var DateTime, value: SecondRange) {.deprecated: "Deprecated since v1.3.1".} =
dt.second = value
proc `minute=`*(dt: var DateTime, value: MinuteRange) {.deprecated: "Deprecated since v1.3.1".} =
dt.minute = value
proc `hour=`*(dt: var DateTime, value: HourRange) {.deprecated: "Deprecated since v1.3.1".} =
dt.hour = value
proc `monthdayZero=`*(dt: var DateTime, value: int) {.deprecated: "Deprecated since v1.3.1".} =
dt.monthdayZero = value
proc `monthZero=`*(dt: var DateTime, value: int) {.deprecated: "Deprecated since v1.3.1".} =
dt.monthZero = value
proc `year=`*(dt: var DateTime, value: int) {.deprecated: "Deprecated since v1.3.1".} =
dt.year = value
proc `weekday=`*(dt: var DateTime, value: WeekDay) {.deprecated: "Deprecated since v1.3.1".} =
dt.weekday = value
proc `yearday=`*(dt: var DateTime, value: YeardayRange) {.deprecated: "Deprecated since v1.3.1".} =
dt.yearday = value
proc `isDst=`*(dt: var DateTime, value: bool) {.deprecated: "Deprecated since v1.3.1".} =
dt.isDst = value
proc `timezone=`*(dt: var DateTime, value: Timezone) {.deprecated: "Deprecated since v1.3.1".} =
dt.timezone = value
proc `utcOffset=`*(dt: var DateTime, value: int) {.deprecated: "Deprecated since v1.3.1".} =
dt.utcOffset = value