Files
Nim/lib/pure/asyncdispatch.nim
Jaremy Creechley 1dc47696c0 Add Zephyr Support (#19003)
* Porting Nim to run on Zephyr.

Includes changes to `std/net`.

Squashed commit of the following:
    tweaking more memory / malloc things
    revert back bitmasks
    tweaking nim to use kernel heap as C malloc doesn't work
    fixing socket polling on zephyr
    cleanup getting maximum sockets for process or for rtos'es
    reorganizing and fixing net for async / system
    merge netlite changes back into nativesockets
    merge netlite changes back into nativesockets
    reverting native sockets back
    tweaking nim / zephyr network
    adding option to run 'net-lite' from linux
    bridging zephyr's max connections
    fixing net errors
    fixing compilation with getAddrString
    fixing compilation with getAddrString
    experimenting with a nativesockets_lite ... getAddrString
    experimenting with a nativesockets_lite ... getAddrString
    experimenting with a nativesockets_lite ... getLocalAddr
    experimenting with a nativesockets_lite ... getLocalAddr
    experimenting with a nativesockets_lite ...
    add note regarding incorrect FreeRTOS Sockadd_in fields
    changing to NIM_STATIC_ASSERT
    cleaning up the static_assert error messages
    cleaning up the static_assert error messages
    setting up static assert ftw!
    testing compile time asserts
    reworking Sockaddr objects to more closely match various platforms
    reworking Sockaddr objects to more closely match various platforms
    reworking Sockaddr objects to more closely match various platforms
    finding missing items (issue  #18684)
    fixup posix constants (issue  #18684)
    adding plumbing for zephyr os (issue  #18684)
    adding plumbing for zephyr os (issue  #18684)

* fixing constant capitalizations

* remove extra debug prints and fix TSa_Family/cint issue

* remove extra debug prints and fix TSa_Family/cint issue

* Porting Nim to run on Zephyr.

Includes changes to `std/net`.

Squashed commit of the following:
    tweaking more memory / malloc things
    revert back bitmasks
    tweaking nim to use kernel heap as C malloc doesn't work
    fixing socket polling on zephyr
    cleanup getting maximum sockets for process or for rtos'es
    reorganizing and fixing net for async / system
    merge netlite changes back into nativesockets
    merge netlite changes back into nativesockets
    reverting native sockets back
    tweaking nim / zephyr network
    adding option to run 'net-lite' from linux
    bridging zephyr's max connections
    fixing net errors
    fixing compilation with getAddrString
    fixing compilation with getAddrString
    experimenting with a nativesockets_lite ... getAddrString
    experimenting with a nativesockets_lite ... getAddrString
    experimenting with a nativesockets_lite ... getLocalAddr
    experimenting with a nativesockets_lite ... getLocalAddr
    experimenting with a nativesockets_lite ...
    add note regarding incorrect FreeRTOS Sockadd_in fields
    changing to NIM_STATIC_ASSERT
    cleaning up the static_assert error messages
    cleaning up the static_assert error messages
    setting up static assert ftw!
    testing compile time asserts
    reworking Sockaddr objects to more closely match various platforms
    reworking Sockaddr objects to more closely match various platforms
    reworking Sockaddr objects to more closely match various platforms
    finding missing items (issue  #18684)
    fixup posix constants (issue  #18684)
    adding plumbing for zephyr os (issue  #18684)
    adding plumbing for zephyr os (issue  #18684)

* fixing constant capitalizations

* remove extra debug prints and fix TSa_Family/cint issue

* remove extra debug prints and fix TSa_Family/cint issue

* fixing PR issues

* Porting Nim to run on Zephyr.

Includes changes to `std/net`.

Squashed commit of the following:
    tweaking more memory / malloc things
    revert back bitmasks
    tweaking nim to use kernel heap as C malloc doesn't work
    fixing socket polling on zephyr
    cleanup getting maximum sockets for process or for rtos'es
    reorganizing and fixing net for async / system
    merge netlite changes back into nativesockets
    merge netlite changes back into nativesockets
    reverting native sockets back
    tweaking nim / zephyr network
    adding option to run 'net-lite' from linux
    bridging zephyr's max connections
    fixing net errors
    fixing compilation with getAddrString
    fixing compilation with getAddrString
    experimenting with a nativesockets_lite ... getAddrString
    experimenting with a nativesockets_lite ... getAddrString
    experimenting with a nativesockets_lite ... getLocalAddr
    experimenting with a nativesockets_lite ... getLocalAddr
    experimenting with a nativesockets_lite ...
    add note regarding incorrect FreeRTOS Sockadd_in fields
    changing to NIM_STATIC_ASSERT
    cleaning up the static_assert error messages
    cleaning up the static_assert error messages
    setting up static assert ftw!
    testing compile time asserts
    reworking Sockaddr objects to more closely match various platforms
    reworking Sockaddr objects to more closely match various platforms
    reworking Sockaddr objects to more closely match various platforms
    finding missing items (issue  #18684)
    fixup posix constants (issue  #18684)
    adding plumbing for zephyr os (issue  #18684)
    adding plumbing for zephyr os (issue  #18684)

* fixing constant capitalizations

* remove extra debug prints and fix TSa_Family/cint issue

* remove extra debug prints and fix TSa_Family/cint issue

* Remerge

* fixing constant capitalizations

* remove extra debug prints and fix TSa_Family/cint issue

* remove extra debug prints and fix TSa_Family/cint issue

* fixing PR issues

* fix maxDescriptors on zephyr/freertos

* move maxDescriptors to selector.nim -- fixes compile issue

* change realloc impl on zephyr to match ansi c behavior

* change realloc impl on zephyr to match ansi c behavior

* force compileOnly mode for tlwip

Co-authored-by: Jaremy J. Creechley <jaremy.creechley@wavebaselabs.com>
Co-authored-by: Jaremy Creechley <jaremy.creechley@panthalassa.com>
(cherry picked from commit 141b76e365)
2022-03-24 13:25:20 +01:00

1990 lines
74 KiB
Nim

#
#
# Nim's Runtime Library
# (c) Copyright 2015 Dominik Picheta
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements asynchronous IO. This includes a dispatcher,
## a `Future` type implementation, and an `async` macro which allows
## asynchronous code to be written in a synchronous style with the `await`
## keyword.
##
## The dispatcher acts as a kind of event loop. You must call `poll` on it
## (or a function which does so for you such as `waitFor` or `runForever`)
## in order to poll for any outstanding events. The underlying implementation
## is based on epoll on Linux, IO Completion Ports on Windows and select on
## other operating systems.
##
## The `poll` function will not, on its own, return any events. Instead
## an appropriate `Future` object will be completed. A `Future` is a
## type which holds a value which is not yet available, but which *may* be
## available in the future. You can check whether a future is finished
## by using the `finished` function. When a future is finished it means that
## either the value that it holds is now available or it holds an error instead.
## The latter situation occurs when the operation to complete a future fails
## with an exception. You can distinguish between the two situations with the
## `failed` function.
##
## Future objects can also store a callback procedure which will be called
## automatically once the future completes.
##
## Futures therefore can be thought of as an implementation of the proactor
## pattern. In this
## pattern you make a request for an action, and once that action is fulfilled
## a future is completed with the result of that action. Requests can be
## made by calling the appropriate functions. For example: calling the `recv`
## function will create a request for some data to be read from a socket. The
## future which the `recv` function returns will then complete once the
## requested amount of data is read **or** an exception occurs.
##
## Code to read some data from a socket may look something like this:
##
## .. code-block:: Nim
## var future = socket.recv(100)
## future.addCallback(
## proc () =
## echo(future.read)
## )
##
## All asynchronous functions returning a `Future` will not block. They
## will not however return immediately. An asynchronous function will have
## code which will be executed before an asynchronous request is made, in most
## cases this code sets up the request.
##
## In the above example, the `recv` function will return a brand new
## `Future` instance once the request for data to be read from the socket
## is made. This `Future` instance will complete once the requested amount
## of data is read, in this case it is 100 bytes. The second line sets a
## callback on this future which will be called once the future completes.
## All the callback does is write the data stored in the future to `stdout`.
## The `read` function is used for this and it checks whether the future
## completes with an error for you (if it did, it will simply raise the
## error), if there is no error, however, it returns the value of the future.
##
## Asynchronous procedures
## =======================
##
## Asynchronous procedures remove the pain of working with callbacks. They do
## this by allowing you to write asynchronous code the same way as you would
## write synchronous code.
##
## An asynchronous procedure is marked using the `{.async.}` pragma.
## When marking a procedure with the `{.async.}` pragma it must have a
## `Future[T]` return type or no return type at all. If you do not specify
## a return type then `Future[void]` is assumed.
##
## Inside asynchronous procedures `await` can be used to call any
## procedures which return a
## `Future`; this includes asynchronous procedures. When a procedure is
## "awaited", the asynchronous procedure it is awaited in will
## suspend its execution
## until the awaited procedure's Future completes. At which point the
## asynchronous procedure will resume its execution. During the period
## when an asynchronous procedure is suspended other asynchronous procedures
## will be run by the dispatcher.
##
## The `await` call may be used in many contexts. It can be used on the right
## hand side of a variable declaration: `var data = await socket.recv(100)`,
## in which case the variable will be set to the value of the future
## automatically. It can be used to await a `Future` object, and it can
## be used to await a procedure returning a `Future[void]`:
## `await socket.send("foobar")`.
##
## If an awaited future completes with an error, then `await` will re-raise
## this error. To avoid this, you can use the `yield` keyword instead of
## `await`. The following section shows different ways that you can handle
## exceptions in async procs.
##
## Handling Exceptions
## -------------------
##
## The most reliable way to handle exceptions is to use `yield` on a future
## then check the future's `failed` property. For example:
##
## .. code-block:: Nim
## var future = sock.recv(100)
## yield future
## if future.failed:
## # Handle exception
##
## The `async` procedures also offer limited support for the try statement.
##
## .. code-block:: Nim
## try:
## let data = await sock.recv(100)
## echo("Received ", data)
## except:
## # Handle exception
##
## Unfortunately the semantics of the try statement may not always be correct,
## and occasionally the compilation may fail altogether.
## As such it is better to use the former style when possible.
##
##
## Discarding futures
## ==================
##
## Futures should **never** be discarded. This is because they may contain
## errors. If you do not care for the result of a Future then you should
## use the `asyncCheck` procedure instead of the `discard` keyword. Note
## however that this does not wait for completion, and you should use
## `waitFor` for that purpose.
##
## Examples
## ========
##
## For examples take a look at the documentation for the modules implementing
## asynchronous IO. A good place to start is the
## `asyncnet module <asyncnet.html>`_.
##
## Investigating pending futures
## =============================
##
## It's possible to get into a situation where an async proc, or more accurately
## a `Future[T]` gets stuck and
## never completes. This can happen for various reasons and can cause serious
## memory leaks. When this occurs it's hard to identify the procedure that is
## stuck.
##
## Thankfully there is a mechanism which tracks the count of each pending future.
## All you need to do to enable it is compile with `-d:futureLogging` and
## use the `getFuturesInProgress` procedure to get the list of pending futures
## together with the stack traces to the moment of their creation.
##
## You may also find it useful to use this
## `prometheus package <https://github.com/dom96/prometheus>`_ which will log
## the pending futures into prometheus, allowing you to analyse them via a nice
## graph.
##
##
##
## Limitations/Bugs
## ================
##
## * The effect system (`raises: []`) does not work with async procedures.
##
##
## Multiple async backend support
## ==============================
##
## Thanks to its powerful macro support, Nim allows ``async``/``await`` to be
## implemented in libraries with only minimal support from the language - as
## such, multiple ``async`` libraries exist, including ``asyncdispatch`` and
## ``chronos``, and more may come to be developed in the future.
##
## Libraries built on top of async/await may wish to support multiple async
## backends - the best way to do so is to create separate modules for each backend
## that may be imported side-by-side.
##
## An alternative way is to select backend using a global compile flag - this
## method makes it difficult to compose applications that use both backends as may
## happen with transitive dependencies, but may be appropriate in some cases -
## libraries choosing this path should call the flag `asyncBackend`, allowing
## applications to choose the backend with `-d:asyncBackend=<backend_name>`.
##
## Known `async` backends include:
##
## * `none` - ``-d:asyncBackend=none`` - disable ``async`` support completely
## * `asyncdispatch <https://nim-lang.org/docs/asyncdispatch.html> -``-d:asyncBackend=asyncdispatch``
## * `chronos <https://github.com/status-im/nim-chronos/>` - ``-d:asyncBackend=chronos``
##
## ``none`` can be used when a library supports both a synchronous and
## asynchronous API, to disable the latter.
import os, tables, strutils, times, heapqueue, options, asyncstreams
import options, math, std/monotimes
import asyncfutures except callSoon
import nativesockets, net, deques
export Port, SocketFlag
export asyncfutures except callSoon
export asyncstreams
# TODO: Check if yielded future is nil and throw a more meaningful exception
type
PDispatcherBase = ref object of RootRef
timers*: HeapQueue[tuple[finishAt: MonoTime, fut: Future[void]]]
callbacks*: Deque[proc () {.gcsafe.}]
proc processTimers(
p: PDispatcherBase, didSomeWork: var bool
): Option[int] {.inline.} =
# Pop the timers in the order in which they will expire (smaller `finishAt`).
var count = p.timers.len
let t = getMonoTime()
while count > 0 and t >= p.timers[0].finishAt:
p.timers.pop().fut.complete()
dec count
didSomeWork = true
# Return the number of milliseconds in which the next timer will expire.
if p.timers.len == 0: return
let millisecs = (p.timers[0].finishAt - getMonoTime()).inMilliseconds
return some(millisecs.int + 1)
proc processPendingCallbacks(p: PDispatcherBase; didSomeWork: var bool) =
while p.callbacks.len > 0:
var cb = p.callbacks.popFirst()
cb()
didSomeWork = true
proc adjustTimeout(
p: PDispatcherBase, pollTimeout: int, nextTimer: Option[int]
): int {.inline.} =
if p.callbacks.len != 0:
return 0
if nextTimer.isNone() or pollTimeout == -1:
return pollTimeout
result = max(nextTimer.get(), 0)
result = min(pollTimeout, result)
proc callSoon*(cbproc: proc () {.gcsafe.}) {.gcsafe.}
## Schedule `cbproc` to be called as soon as possible.
## The callback is called when control returns to the event loop.
proc initCallSoonProc =
if asyncfutures.getCallSoonProc().isNil:
asyncfutures.setCallSoonProc(callSoon)
template implementSetInheritable() {.dirty.} =
when declared(setInheritable):
proc setInheritable*(fd: AsyncFD, inheritable: bool): bool =
## Control whether a file handle can be inherited by child processes.
## Returns `true` on success.
##
## This procedure is not guaranteed to be available for all platforms.
## Test for availability with `declared() <system.html#declared,untyped>`_.
fd.FileHandle.setInheritable(inheritable)
when defined(windows) or defined(nimdoc):
import winlean, sets, hashes
type
CompletionKey = ULONG_PTR
CompletionData* = object
fd*: AsyncFD # TODO: Rename this.
cb*: owned(proc (fd: AsyncFD, bytesTransferred: DWORD,
errcode: OSErrorCode) {.closure, gcsafe.})
cell*: ForeignCell # we need this `cell` to protect our `cb` environment,
# when using RegisterWaitForSingleObject, because
# waiting is done in different thread.
PDispatcher* = ref object of PDispatcherBase
ioPort: Handle
handles*: HashSet[AsyncFD] # Export handles so that an external library can register them.
CustomObj = object of OVERLAPPED
data*: CompletionData
CustomRef* = ref CustomObj
AsyncFD* = distinct int
PostCallbackData = object
ioPort: Handle
handleFd: AsyncFD
waitFd: Handle
ovl: owned CustomRef
PostCallbackDataPtr = ptr PostCallbackData
AsyncEventImpl = object
hEvent: Handle
hWaiter: Handle
pcd: PostCallbackDataPtr
AsyncEvent* = ptr AsyncEventImpl
Callback* = proc (fd: AsyncFD): bool {.closure, gcsafe.}
proc hash(x: AsyncFD): Hash {.borrow.}
proc `==`*(x: AsyncFD, y: AsyncFD): bool {.borrow.}
proc newDispatcher*(): owned PDispatcher =
## Creates a new Dispatcher instance.
new result
result.ioPort = createIoCompletionPort(INVALID_HANDLE_VALUE, 0, 0, 1)
result.handles = initHashSet[AsyncFD]()
result.timers.clear()
result.callbacks = initDeque[proc () {.closure, gcsafe.}](64)
var gDisp{.threadvar.}: owned PDispatcher ## Global dispatcher
proc setGlobalDispatcher*(disp: sink PDispatcher) =
if not gDisp.isNil:
assert gDisp.callbacks.len == 0
gDisp = disp
initCallSoonProc()
proc getGlobalDispatcher*(): PDispatcher =
if gDisp.isNil:
setGlobalDispatcher(newDispatcher())
result = gDisp
proc getIoHandler*(disp: PDispatcher): Handle =
## Returns the underlying IO Completion Port handle (Windows) or selector
## (Unix) for the specified dispatcher.
return disp.ioPort
proc register*(fd: AsyncFD) =
## Registers `fd` with the dispatcher.
let p = getGlobalDispatcher()
if createIoCompletionPort(fd.Handle, p.ioPort,
cast[CompletionKey](fd), 1) == 0:
raiseOSError(osLastError())
p.handles.incl(fd)
proc verifyPresence(fd: AsyncFD) =
## Ensures that file descriptor has been registered with the dispatcher.
## Raises ValueError if `fd` has not been registered.
let p = getGlobalDispatcher()
if fd notin p.handles:
raise newException(ValueError,
"Operation performed on a socket which has not been registered with" &
" the dispatcher yet.")
proc hasPendingOperations*(): bool =
## Returns `true` if the global dispatcher has pending operations.
let p = getGlobalDispatcher()
p.handles.len != 0 or p.timers.len != 0 or p.callbacks.len != 0
proc runOnce(timeout = 500): bool =
let p = getGlobalDispatcher()
if p.handles.len == 0 and p.timers.len == 0 and p.callbacks.len == 0:
raise newException(ValueError,
"No handles or timers registered in dispatcher.")
result = false
let nextTimer = processTimers(p, result)
let at = adjustTimeout(p, timeout, nextTimer)
var llTimeout =
if at == -1: winlean.INFINITE
else: at.int32
var lpNumberOfBytesTransferred: DWORD
var lpCompletionKey: ULONG_PTR
var customOverlapped: CustomRef
let res = getQueuedCompletionStatus(p.ioPort,
addr lpNumberOfBytesTransferred, addr lpCompletionKey,
cast[ptr POVERLAPPED](addr customOverlapped), llTimeout).bool
result = true
# For 'gcDestructors' the destructor of 'customOverlapped' will
# be called at the end and we are the only owner here. This means
# We do not have to 'GC_unref(customOverlapped)' because the destructor
# does that for us.
# http://stackoverflow.com/a/12277264/492186
# TODO: http://www.serverframework.com/handling-multiple-pending-socket-read-and-write-operations.html
if res:
# This is useful for ensuring the reliability of the overlapped struct.
assert customOverlapped.data.fd == lpCompletionKey.AsyncFD
customOverlapped.data.cb(customOverlapped.data.fd,
lpNumberOfBytesTransferred, OSErrorCode(-1))
# If cell.data != nil, then system.protect(rawEnv(cb)) was called,
# so we need to dispose our `cb` environment, because it is not needed
# anymore.
if customOverlapped.data.cell.data != nil:
system.dispose(customOverlapped.data.cell)
when not defined(gcDestructors):
GC_unref(customOverlapped)
else:
let errCode = osLastError()
if customOverlapped != nil:
assert customOverlapped.data.fd == lpCompletionKey.AsyncFD
customOverlapped.data.cb(customOverlapped.data.fd,
lpNumberOfBytesTransferred, errCode)
if customOverlapped.data.cell.data != nil:
system.dispose(customOverlapped.data.cell)
when not defined(gcDestructors):
GC_unref(customOverlapped)
else:
if errCode.int32 == WAIT_TIMEOUT:
# Timed out
result = false
else: raiseOSError(errCode)
# Timer processing.
discard processTimers(p, result)
# Callback queue processing
processPendingCallbacks(p, result)
var acceptEx: WSAPROC_ACCEPTEX
var connectEx: WSAPROC_CONNECTEX
var getAcceptExSockAddrs: WSAPROC_GETACCEPTEXSOCKADDRS
proc initPointer(s: SocketHandle, fun: var pointer, guid: var GUID): bool =
# Ref: https://github.com/powdahound/twisted/blob/master/twisted/internet/iocpreactor/iocpsupport/winsock_pointers.c
var bytesRet: DWORD
fun = nil
result = WSAIoctl(s, SIO_GET_EXTENSION_FUNCTION_POINTER, addr guid,
sizeof(GUID).DWORD, addr fun, sizeof(pointer).DWORD,
addr bytesRet, nil, nil) == 0
proc initAll() =
let dummySock = createNativeSocket()
if dummySock == INVALID_SOCKET:
raiseOSError(osLastError())
var fun: pointer = nil
if not initPointer(dummySock, fun, WSAID_CONNECTEX):
raiseOSError(osLastError())
connectEx = cast[WSAPROC_CONNECTEX](fun)
if not initPointer(dummySock, fun, WSAID_ACCEPTEX):
raiseOSError(osLastError())
acceptEx = cast[WSAPROC_ACCEPTEX](fun)
if not initPointer(dummySock, fun, WSAID_GETACCEPTEXSOCKADDRS):
raiseOSError(osLastError())
getAcceptExSockAddrs = cast[WSAPROC_GETACCEPTEXSOCKADDRS](fun)
close(dummySock)
proc newCustom*(): CustomRef =
result = CustomRef() # 0
GC_ref(result) # 1 prevent destructor from doing a premature free.
# destructor of newCustom's caller --> 0. This means
# Windows holds a ref for us with RC == 0 (single owner).
# This is passed back to us in the IO completion port.
proc recv*(socket: AsyncFD, size: int,
flags = {SocketFlag.SafeDisconn}): owned(Future[string]) =
## Reads **up to** `size` bytes from `socket`. Returned future will
## complete once all the data requested is read, a part of the data has been
## read, or the socket has disconnected in which case the future will
## complete with a value of `""`.
##
## .. warning:: The `Peek` socket flag is not supported on Windows.
# Things to note:
# * When WSARecv completes immediately then `bytesReceived` is very
# unreliable.
# * Still need to implement message-oriented socket disconnection,
# '\0' in the message currently signifies a socket disconnect. Who
# knows what will happen when someone sends that to our socket.
verifyPresence(socket)
assert SocketFlag.Peek notin flags, "Peek not supported on Windows."
var retFuture = newFuture[string]("recv")
var dataBuf: TWSABuf
dataBuf.buf = cast[cstring](alloc0(size))
dataBuf.len = size.ULONG
var bytesReceived: DWORD
var flagsio = flags.toOSFlags().DWORD
var ol = newCustom()
ol.data = CompletionData(fd: socket, cb:
proc (fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) =
if not retFuture.finished:
if errcode == OSErrorCode(-1):
if bytesCount == 0 and dataBuf.buf[0] == '\0':
retFuture.complete("")
else:
var data = newString(bytesCount)
assert bytesCount <= size
copyMem(addr data[0], addr dataBuf.buf[0], bytesCount)
retFuture.complete($data)
else:
if flags.isDisconnectionError(errcode):
retFuture.complete("")
else:
retFuture.fail(newException(OSError, osErrorMsg(errcode)))
if dataBuf.buf != nil:
dealloc dataBuf.buf
dataBuf.buf = nil
)
let ret = WSARecv(socket.SocketHandle, addr dataBuf, 1, addr bytesReceived,
addr flagsio, cast[POVERLAPPED](ol), nil)
if ret == -1:
let err = osLastError()
if err.int32 != ERROR_IO_PENDING:
if dataBuf.buf != nil:
dealloc dataBuf.buf
dataBuf.buf = nil
GC_unref(ol)
if flags.isDisconnectionError(err):
retFuture.complete("")
else:
retFuture.fail(newException(OSError, osErrorMsg(err)))
elif ret == 0:
# Request completed immediately.
if bytesReceived != 0:
var data = newString(bytesReceived)
assert bytesReceived <= size
copyMem(addr data[0], addr dataBuf.buf[0], bytesReceived)
retFuture.complete($data)
else:
if hasOverlappedIoCompleted(cast[POVERLAPPED](ol)):
retFuture.complete("")
return retFuture
proc recvInto*(socket: AsyncFD, buf: pointer, size: int,
flags = {SocketFlag.SafeDisconn}): owned(Future[int]) =
## Reads **up to** `size` bytes from `socket` into `buf`, which must
## at least be of that size. Returned future will complete once all the
## data requested is read, a part of the data has been read, or the socket
## has disconnected in which case the future will complete with a value of
## `0`.
##
## .. warning:: The `Peek` socket flag is not supported on Windows.
# Things to note:
# * When WSARecv completes immediately then `bytesReceived` is very
# unreliable.
# * Still need to implement message-oriented socket disconnection,
# '\0' in the message currently signifies a socket disconnect. Who
# knows what will happen when someone sends that to our socket.
verifyPresence(socket)
assert SocketFlag.Peek notin flags, "Peek not supported on Windows."
var retFuture = newFuture[int]("recvInto")
#buf[] = '\0'
var dataBuf: TWSABuf
dataBuf.buf = cast[cstring](buf)
dataBuf.len = size.ULONG
var bytesReceived: DWORD
var flagsio = flags.toOSFlags().DWORD
var ol = newCustom()
ol.data = CompletionData(fd: socket, cb:
proc (fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) =
if not retFuture.finished:
if errcode == OSErrorCode(-1):
retFuture.complete(bytesCount)
else:
if flags.isDisconnectionError(errcode):
retFuture.complete(0)
else:
retFuture.fail(newException(OSError, osErrorMsg(errcode)))
if dataBuf.buf != nil:
dataBuf.buf = nil
)
let ret = WSARecv(socket.SocketHandle, addr dataBuf, 1, addr bytesReceived,
addr flagsio, cast[POVERLAPPED](ol), nil)
if ret == -1:
let err = osLastError()
if err.int32 != ERROR_IO_PENDING:
if dataBuf.buf != nil:
dataBuf.buf = nil
GC_unref(ol)
if flags.isDisconnectionError(err):
retFuture.complete(0)
else:
retFuture.fail(newException(OSError, osErrorMsg(err)))
elif ret == 0:
# Request completed immediately.
if bytesReceived != 0:
assert bytesReceived <= size
retFuture.complete(bytesReceived)
else:
if hasOverlappedIoCompleted(cast[POVERLAPPED](ol)):
retFuture.complete(bytesReceived)
return retFuture
proc send*(socket: AsyncFD, buf: pointer, size: int,
flags = {SocketFlag.SafeDisconn}): owned(Future[void]) =
## Sends `size` bytes from `buf` to `socket`. The returned future
## will complete once all data has been sent.
##
## .. warning:: Use it with caution. If `buf` refers to GC'ed object,
## you must use GC_ref/GC_unref calls to avoid early freeing of the buffer.
verifyPresence(socket)
var retFuture = newFuture[void]("send")
var dataBuf: TWSABuf
dataBuf.buf = cast[cstring](buf)
dataBuf.len = size.ULONG
var bytesReceived, lowFlags: DWORD
var ol = newCustom()
ol.data = CompletionData(fd: socket, cb:
proc (fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) =
if not retFuture.finished:
if errcode == OSErrorCode(-1):
retFuture.complete()
else:
if flags.isDisconnectionError(errcode):
retFuture.complete()
else:
retFuture.fail(newOSError(errcode))
)
let ret = WSASend(socket.SocketHandle, addr dataBuf, 1, addr bytesReceived,
lowFlags, cast[POVERLAPPED](ol), nil)
if ret == -1:
let err = osLastError()
if err.int32 != ERROR_IO_PENDING:
GC_unref(ol)
if flags.isDisconnectionError(err):
retFuture.complete()
else:
retFuture.fail(newException(OSError, osErrorMsg(err)))
else:
retFuture.complete()
# We don't deallocate `ol` here because even though this completed
# immediately poll will still be notified about its completion and it will
# free `ol`.
return retFuture
proc sendTo*(socket: AsyncFD, data: pointer, size: int, saddr: ptr SockAddr,
saddrLen: SockLen,
flags = {SocketFlag.SafeDisconn}): owned(Future[void]) =
## Sends `data` to specified destination `saddr`, using
## socket `socket`. The returned future will complete once all data
## has been sent.
verifyPresence(socket)
var retFuture = newFuture[void]("sendTo")
var dataBuf: TWSABuf
dataBuf.buf = cast[cstring](data)
dataBuf.len = size.ULONG
var bytesSent = 0.DWORD
var lowFlags = 0.DWORD
# we will preserve address in our stack
var staddr: array[128, char] # SOCKADDR_STORAGE size is 128 bytes
var stalen: cint = cint(saddrLen)
zeroMem(addr(staddr[0]), 128)
copyMem(addr(staddr[0]), saddr, saddrLen)
var ol = newCustom()
ol.data = CompletionData(fd: socket, cb:
proc (fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) =
if not retFuture.finished:
if errcode == OSErrorCode(-1):
retFuture.complete()
else:
retFuture.fail(newException(OSError, osErrorMsg(errcode)))
)
let ret = WSASendTo(socket.SocketHandle, addr dataBuf, 1, addr bytesSent,
lowFlags, cast[ptr SockAddr](addr(staddr[0])),
stalen, cast[POVERLAPPED](ol), nil)
if ret == -1:
let err = osLastError()
if err.int32 != ERROR_IO_PENDING:
GC_unref(ol)
retFuture.fail(newException(OSError, osErrorMsg(err)))
else:
retFuture.complete()
# We don't deallocate `ol` here because even though this completed
# immediately poll will still be notified about its completion and it will
# free `ol`.
return retFuture
proc recvFromInto*(socket: AsyncFD, data: pointer, size: int,
saddr: ptr SockAddr, saddrLen: ptr SockLen,
flags = {SocketFlag.SafeDisconn}): owned(Future[int]) =
## Receives a datagram data from `socket` into `buf`, which must
## be at least of size `size`, address of datagram's sender will be
## stored into `saddr` and `saddrLen`. Returned future will complete
## once one datagram has been received, and will return size of packet
## received.
verifyPresence(socket)
var retFuture = newFuture[int]("recvFromInto")
var dataBuf = TWSABuf(buf: cast[cstring](data), len: size.ULONG)
var bytesReceived = 0.DWORD
var lowFlags = 0.DWORD
var ol = newCustom()
ol.data = CompletionData(fd: socket, cb:
proc (fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) =
if not retFuture.finished:
if errcode == OSErrorCode(-1):
assert bytesCount <= size
retFuture.complete(bytesCount)
else:
# datagram sockets don't have disconnection,
# so we can just raise an exception
retFuture.fail(newException(OSError, osErrorMsg(errcode)))
)
let res = WSARecvFrom(socket.SocketHandle, addr dataBuf, 1,
addr bytesReceived, addr lowFlags,
saddr, cast[ptr cint](saddrLen),
cast[POVERLAPPED](ol), nil)
if res == -1:
let err = osLastError()
if err.int32 != ERROR_IO_PENDING:
GC_unref(ol)
retFuture.fail(newException(OSError, osErrorMsg(err)))
else:
# Request completed immediately.
if bytesReceived != 0:
assert bytesReceived <= size
retFuture.complete(bytesReceived)
else:
if hasOverlappedIoCompleted(cast[POVERLAPPED](ol)):
retFuture.complete(bytesReceived)
return retFuture
proc acceptAddr*(socket: AsyncFD, flags = {SocketFlag.SafeDisconn},
inheritable = defined(nimInheritHandles)):
owned(Future[tuple[address: string, client: AsyncFD]]) {.gcsafe.} =
## Accepts a new connection. Returns a future containing the client socket
## corresponding to that connection and the remote address of the client.
## The future will complete when the connection is successfully accepted.
##
## The resulting client socket is automatically registered to the
## dispatcher.
##
## If `inheritable` is false (the default), the resulting client socket will
## not be inheritable by child processes.
##
## The `accept` call may result in an error if the connecting socket
## disconnects during the duration of the `accept`. If the `SafeDisconn`
## flag is specified then this error will not be raised and instead
## accept will be called again.
verifyPresence(socket)
var retFuture = newFuture[tuple[address: string, client: AsyncFD]]("acceptAddr")
var clientSock = createNativeSocket(inheritable = inheritable)
if clientSock == osInvalidSocket: raiseOSError(osLastError())
const lpOutputLen = 1024
var lpOutputBuf = newString(lpOutputLen)
var dwBytesReceived: DWORD
let dwReceiveDataLength = 0.DWORD # We don't want any data to be read.
let dwLocalAddressLength = DWORD(sizeof(Sockaddr_in6) + 16)
let dwRemoteAddressLength = DWORD(sizeof(Sockaddr_in6) + 16)
template failAccept(errcode) =
if flags.isDisconnectionError(errcode):
var newAcceptFut = acceptAddr(socket, flags)
newAcceptFut.callback =
proc () =
if newAcceptFut.failed:
retFuture.fail(newAcceptFut.readError)
else:
retFuture.complete(newAcceptFut.read)
else:
retFuture.fail(newException(OSError, osErrorMsg(errcode)))
template completeAccept() {.dirty.} =
var listenSock = socket
let setoptRet = setsockopt(clientSock, SOL_SOCKET,
SO_UPDATE_ACCEPT_CONTEXT, addr listenSock,
sizeof(listenSock).SockLen)
if setoptRet != 0:
let errcode = osLastError()
discard clientSock.closesocket()
failAccept(errcode)
else:
var localSockaddr, remoteSockaddr: ptr SockAddr
var localLen, remoteLen: int32
getAcceptExSockAddrs(addr lpOutputBuf[0], dwReceiveDataLength,
dwLocalAddressLength, dwRemoteAddressLength,
addr localSockaddr, addr localLen,
addr remoteSockaddr, addr remoteLen)
try:
let address = getAddrString(remoteSockaddr)
register(clientSock.AsyncFD)
retFuture.complete((address: address, client: clientSock.AsyncFD))
except:
# getAddrString may raise
clientSock.close()
retFuture.fail(getCurrentException())
var ol = newCustom()
ol.data = CompletionData(fd: socket, cb:
proc (fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) {.gcsafe.} =
if not retFuture.finished:
if errcode == OSErrorCode(-1):
completeAccept()
else:
failAccept(errcode)
)
# http://msdn.microsoft.com/en-us/library/windows/desktop/ms737524%28v=vs.85%29.aspx
let ret = acceptEx(socket.SocketHandle, clientSock, addr lpOutputBuf[0],
dwReceiveDataLength,
dwLocalAddressLength,
dwRemoteAddressLength,
addr dwBytesReceived, cast[POVERLAPPED](ol))
if not ret:
let err = osLastError()
if err.int32 != ERROR_IO_PENDING:
failAccept(err)
GC_unref(ol)
else:
completeAccept()
# We don't deallocate `ol` here because even though this completed
# immediately poll will still be notified about its completion and it will
# free `ol`.
return retFuture
implementSetInheritable()
proc closeSocket*(socket: AsyncFD) =
## Closes a socket and ensures that it is unregistered.
socket.SocketHandle.close()
getGlobalDispatcher().handles.excl(socket)
proc unregister*(fd: AsyncFD) =
## Unregisters `fd`.
getGlobalDispatcher().handles.excl(fd)
proc contains*(disp: PDispatcher, fd: AsyncFD): bool =
return fd in disp.handles
{.push stackTrace: off.}
proc waitableCallback(param: pointer,
timerOrWaitFired: WINBOOL) {.stdcall.} =
var p = cast[PostCallbackDataPtr](param)
discard postQueuedCompletionStatus(p.ioPort, timerOrWaitFired.DWORD,
ULONG_PTR(p.handleFd),
cast[pointer](p.ovl))
{.pop.}
proc registerWaitableEvent(fd: AsyncFD, cb: Callback; mask: DWORD) =
let p = getGlobalDispatcher()
var flags = (WT_EXECUTEINWAITTHREAD or WT_EXECUTEONLYONCE).DWORD
var hEvent = wsaCreateEvent()
if hEvent == 0:
raiseOSError(osLastError())
var pcd = cast[PostCallbackDataPtr](allocShared0(sizeof(PostCallbackData)))
pcd.ioPort = p.ioPort
pcd.handleFd = fd
var ol = newCustom()
ol.data = CompletionData(fd: fd, cb:
proc(fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) {.gcsafe.} =
# we excluding our `fd` because cb(fd) can register own handler
# for this `fd`
p.handles.excl(fd)
# unregisterWait() is called before callback, because appropriate
# winsockets function can re-enable event.
# https://msdn.microsoft.com/en-us/library/windows/desktop/ms741576(v=vs.85).aspx
if unregisterWait(pcd.waitFd) == 0:
let err = osLastError()
if err.int32 != ERROR_IO_PENDING:
deallocShared(cast[pointer](pcd))
discard wsaCloseEvent(hEvent)
raiseOSError(err)
if cb(fd):
# callback returned `true`, so we free all allocated resources
deallocShared(cast[pointer](pcd))
if not wsaCloseEvent(hEvent):
raiseOSError(osLastError())
# pcd.ovl will be unrefed in poll().
else:
# callback returned `false` we need to continue
if p.handles.contains(fd):
# new callback was already registered with `fd`, so we free all
# allocated resources. This happens because in callback `cb`
# addRead/addWrite was called with same `fd`.
deallocShared(cast[pointer](pcd))
if not wsaCloseEvent(hEvent):
raiseOSError(osLastError())
else:
# we need to include `fd` again
p.handles.incl(fd)
# and register WaitForSingleObject again
if not registerWaitForSingleObject(addr(pcd.waitFd), hEvent,
cast[WAITORTIMERCALLBACK](waitableCallback),
cast[pointer](pcd), INFINITE, flags):
# pcd.ovl will be unrefed in poll()
let err = osLastError()
deallocShared(cast[pointer](pcd))
discard wsaCloseEvent(hEvent)
raiseOSError(err)
else:
# we incref `pcd.ovl` and `protect` callback one more time,
# because it will be unrefed and disposed in `poll()` after
# callback finishes.
GC_ref(pcd.ovl)
pcd.ovl.data.cell = system.protect(rawEnv(pcd.ovl.data.cb))
)
# We need to protect our callback environment value, so GC will not free it
# accidentally.
ol.data.cell = system.protect(rawEnv(ol.data.cb))
# This is main part of `hacky way` is using WSAEventSelect, so `hEvent`
# will be signaled when appropriate `mask` events will be triggered.
if wsaEventSelect(fd.SocketHandle, hEvent, mask) != 0:
let err = osLastError()
GC_unref(ol)
deallocShared(cast[pointer](pcd))
discard wsaCloseEvent(hEvent)
raiseOSError(err)
pcd.ovl = ol
if not registerWaitForSingleObject(addr(pcd.waitFd), hEvent,
cast[WAITORTIMERCALLBACK](waitableCallback),
cast[pointer](pcd), INFINITE, flags):
let err = osLastError()
GC_unref(ol)
deallocShared(cast[pointer](pcd))
discard wsaCloseEvent(hEvent)
raiseOSError(err)
p.handles.incl(fd)
proc addRead*(fd: AsyncFD, cb: Callback) =
## Start watching the file descriptor for read availability and then call
## the callback `cb`.
##
## This is not `pure` mechanism for Windows Completion Ports (IOCP),
## so if you can avoid it, please do it. Use `addRead` only if really
## need it (main usecase is adaptation of unix-like libraries to be
## asynchronous on Windows).
##
## If you use this function, you don't need to use asyncdispatch.recv()
## or asyncdispatch.accept(), because they are using IOCP, please use
## nativesockets.recv() and nativesockets.accept() instead.
##
## Be sure your callback `cb` returns `true`, if you want to remove
## watch of `read` notifications, and `false`, if you want to continue
## receiving notifications.
registerWaitableEvent(fd, cb, FD_READ or FD_ACCEPT or FD_OOB or FD_CLOSE)
proc addWrite*(fd: AsyncFD, cb: Callback) =
## Start watching the file descriptor for write availability and then call
## the callback `cb`.
##
## This is not `pure` mechanism for Windows Completion Ports (IOCP),
## so if you can avoid it, please do it. Use `addWrite` only if really
## need it (main usecase is adaptation of unix-like libraries to be
## asynchronous on Windows).
##
## If you use this function, you don't need to use asyncdispatch.send()
## or asyncdispatch.connect(), because they are using IOCP, please use
## nativesockets.send() and nativesockets.connect() instead.
##
## Be sure your callback `cb` returns `true`, if you want to remove
## watch of `write` notifications, and `false`, if you want to continue
## receiving notifications.
registerWaitableEvent(fd, cb, FD_WRITE or FD_CONNECT or FD_CLOSE)
template registerWaitableHandle(p, hEvent, flags, pcd, timeout,
handleCallback) =
let handleFD = AsyncFD(hEvent)
pcd.ioPort = p.ioPort
pcd.handleFd = handleFD
var ol = newCustom()
ol.data.fd = handleFD
ol.data.cb = handleCallback
# We need to protect our callback environment value, so GC will not free it
# accidentally.
ol.data.cell = system.protect(rawEnv(ol.data.cb))
pcd.ovl = ol
if not registerWaitForSingleObject(addr(pcd.waitFd), hEvent,
cast[WAITORTIMERCALLBACK](waitableCallback),
cast[pointer](pcd), timeout.DWORD, flags):
let err = osLastError()
GC_unref(ol)
deallocShared(cast[pointer](pcd))
discard closeHandle(hEvent)
raiseOSError(err)
p.handles.incl(handleFD)
template closeWaitable(handle: untyped) =
let waitFd = pcd.waitFd
deallocShared(cast[pointer](pcd))
p.handles.excl(fd)
if unregisterWait(waitFd) == 0:
let err = osLastError()
if err.int32 != ERROR_IO_PENDING:
discard closeHandle(handle)
raiseOSError(err)
if closeHandle(handle) == 0:
raiseOSError(osLastError())
proc addTimer*(timeout: int, oneshot: bool, cb: Callback) =
## Registers callback `cb` to be called when timer expired.
##
## Parameters:
##
## * `timeout` - timeout value in milliseconds.
## * `oneshot`
## * `true` - generate only one timeout event
## * `false` - generate timeout events periodically
doAssert(timeout > 0)
let p = getGlobalDispatcher()
var hEvent = createEvent(nil, 1, 0, nil)
if hEvent == INVALID_HANDLE_VALUE:
raiseOSError(osLastError())
var pcd = cast[PostCallbackDataPtr](allocShared0(sizeof(PostCallbackData)))
var flags = WT_EXECUTEINWAITTHREAD.DWORD
if oneshot: flags = flags or WT_EXECUTEONLYONCE
proc timercb(fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) =
let res = cb(fd)
if res or oneshot:
closeWaitable(hEvent)
else:
# if callback returned `false`, then it wants to be called again, so
# we need to ref and protect `pcd.ovl` again, because it will be
# unrefed and disposed in `poll()`.
GC_ref(pcd.ovl)
pcd.ovl.data.cell = system.protect(rawEnv(pcd.ovl.data.cb))
registerWaitableHandle(p, hEvent, flags, pcd, timeout, timercb)
proc addProcess*(pid: int, cb: Callback) =
## Registers callback `cb` to be called when process with process ID
## `pid` exited.
const NULL = Handle(0)
let p = getGlobalDispatcher()
let procFlags = SYNCHRONIZE
var hProcess = openProcess(procFlags, 0, pid.DWORD)
if hProcess == NULL:
raiseOSError(osLastError())
var pcd = cast[PostCallbackDataPtr](allocShared0(sizeof(PostCallbackData)))
var flags = WT_EXECUTEINWAITTHREAD.DWORD or WT_EXECUTEONLYONCE.DWORD
proc proccb(fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) =
closeWaitable(hProcess)
discard cb(fd)
registerWaitableHandle(p, hProcess, flags, pcd, INFINITE, proccb)
proc newAsyncEvent*(): AsyncEvent =
## Creates a new thread-safe `AsyncEvent` object.
##
## New `AsyncEvent` object is not automatically registered with
## dispatcher like `AsyncSocket`.
var sa = SECURITY_ATTRIBUTES(
nLength: sizeof(SECURITY_ATTRIBUTES).cint,
bInheritHandle: 1
)
var event = createEvent(addr(sa), 0'i32, 0'i32, nil)
if event == INVALID_HANDLE_VALUE:
raiseOSError(osLastError())
result = cast[AsyncEvent](allocShared0(sizeof(AsyncEventImpl)))
result.hEvent = event
proc trigger*(ev: AsyncEvent) =
## Set event `ev` to signaled state.
if setEvent(ev.hEvent) == 0:
raiseOSError(osLastError())
proc unregister*(ev: AsyncEvent) =
## Unregisters event `ev`.
doAssert(ev.hWaiter != 0, "Event is not registered in the queue!")
let p = getGlobalDispatcher()
p.handles.excl(AsyncFD(ev.hEvent))
if unregisterWait(ev.hWaiter) == 0:
let err = osLastError()
if err.int32 != ERROR_IO_PENDING:
raiseOSError(err)
ev.hWaiter = 0
proc close*(ev: AsyncEvent) =
## Closes event `ev`.
let res = closeHandle(ev.hEvent)
deallocShared(cast[pointer](ev))
if res == 0:
raiseOSError(osLastError())
proc addEvent*(ev: AsyncEvent, cb: Callback) =
## Registers callback `cb` to be called when `ev` will be signaled
doAssert(ev.hWaiter == 0, "Event is already registered in the queue!")
let p = getGlobalDispatcher()
let hEvent = ev.hEvent
var pcd = cast[PostCallbackDataPtr](allocShared0(sizeof(PostCallbackData)))
var flags = WT_EXECUTEINWAITTHREAD.DWORD
proc eventcb(fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) =
if ev.hWaiter != 0:
if cb(fd):
# we need this check to avoid exception, if `unregister(event)` was
# called in callback.
deallocShared(cast[pointer](pcd))
if ev.hWaiter != 0:
unregister(ev)
else:
# if callback returned `false`, then it wants to be called again, so
# we need to ref and protect `pcd.ovl` again, because it will be
# unrefed and disposed in `poll()`.
GC_ref(pcd.ovl)
pcd.ovl.data.cell = system.protect(rawEnv(pcd.ovl.data.cb))
else:
# if ev.hWaiter == 0, then event was unregistered before `poll()` call.
deallocShared(cast[pointer](pcd))
registerWaitableHandle(p, hEvent, flags, pcd, INFINITE, eventcb)
ev.hWaiter = pcd.waitFd
initAll()
else:
import selectors
from posix import EINTR, EAGAIN, EINPROGRESS, EWOULDBLOCK, MSG_PEEK,
MSG_NOSIGNAL
when declared(posix.accept4):
from posix import accept4, SOCK_CLOEXEC
const
InitCallbackListSize = 4 # initial size of callbacks sequence,
# associated with file/socket descriptor.
InitDelayedCallbackListSize = 64 # initial size of delayed callbacks
# queue.
type
AsyncFD* = distinct cint
Callback* = proc (fd: AsyncFD): bool {.closure, gcsafe.}
AsyncData = object
readList: seq[Callback]
writeList: seq[Callback]
AsyncEvent* = distinct SelectEvent
PDispatcher* = ref object of PDispatcherBase
selector: Selector[AsyncData]
proc `==`*(x, y: AsyncFD): bool {.borrow.}
proc `==`*(x, y: AsyncEvent): bool {.borrow.}
template newAsyncData(): AsyncData =
AsyncData(
readList: newSeqOfCap[Callback](InitCallbackListSize),
writeList: newSeqOfCap[Callback](InitCallbackListSize)
)
proc newDispatcher*(): owned(PDispatcher) =
new result
result.selector = newSelector[AsyncData]()
result.timers.clear()
result.callbacks = initDeque[proc () {.closure, gcsafe.}](InitDelayedCallbackListSize)
var gDisp{.threadvar.}: owned PDispatcher ## Global dispatcher
proc setGlobalDispatcher*(disp: owned PDispatcher) =
if not gDisp.isNil:
assert gDisp.callbacks.len == 0
gDisp = disp
initCallSoonProc()
proc getGlobalDispatcher*(): PDispatcher =
if gDisp.isNil:
setGlobalDispatcher(newDispatcher())
result = gDisp
proc getIoHandler*(disp: PDispatcher): Selector[AsyncData] =
return disp.selector
proc register*(fd: AsyncFD) =
let p = getGlobalDispatcher()
var data = newAsyncData()
p.selector.registerHandle(fd.SocketHandle, {}, data)
proc unregister*(fd: AsyncFD) =
getGlobalDispatcher().selector.unregister(fd.SocketHandle)
proc unregister*(ev: AsyncEvent) =
getGlobalDispatcher().selector.unregister(SelectEvent(ev))
proc contains*(disp: PDispatcher, fd: AsyncFD): bool =
return fd.SocketHandle in disp.selector
proc addRead*(fd: AsyncFD, cb: Callback) =
let p = getGlobalDispatcher()
var newEvents = {Event.Read}
withData(p.selector, fd.SocketHandle, adata) do:
adata.readList.add(cb)
newEvents.incl(Event.Read)
if len(adata.writeList) != 0: newEvents.incl(Event.Write)
do:
raise newException(ValueError, "File descriptor not registered.")
p.selector.updateHandle(fd.SocketHandle, newEvents)
proc addWrite*(fd: AsyncFD, cb: Callback) =
let p = getGlobalDispatcher()
var newEvents = {Event.Write}
withData(p.selector, fd.SocketHandle, adata) do:
adata.writeList.add(cb)
newEvents.incl(Event.Write)
if len(adata.readList) != 0: newEvents.incl(Event.Read)
do:
raise newException(ValueError, "File descriptor not registered.")
p.selector.updateHandle(fd.SocketHandle, newEvents)
proc hasPendingOperations*(): bool =
let p = getGlobalDispatcher()
not p.selector.isEmpty() or p.timers.len != 0 or p.callbacks.len != 0
proc prependSeq(dest: var seq[Callback]; src: sink seq[Callback]) =
var old = move dest
dest = src
for i in 0..high(old):
dest.add(move old[i])
proc processBasicCallbacks(
fd: AsyncFD, event: Event
): tuple[readCbListCount, writeCbListCount: int] =
# Process pending descriptor and AsyncEvent callbacks.
#
# Invoke every callback stored in `rwlist`, until one
# returns `false` (which means callback wants to stay
# alive). In such case all remaining callbacks will be added
# to `rwlist` again, in the order they have been inserted.
#
# `rwlist` associated with file descriptor MUST BE emptied before
# dispatching callback (See https://github.com/nim-lang/Nim/issues/5128),
# or it can be possible to fall into endless cycle.
var curList: seq[Callback]
let selector = getGlobalDispatcher().selector
withData(selector, fd.int, fdData):
case event
of Event.Read:
#shallowCopy(curList, fdData.readList)
curList = move fdData.readList
fdData.readList = newSeqOfCap[Callback](InitCallbackListSize)
of Event.Write:
#shallowCopy(curList, fdData.writeList)
curList = move fdData.writeList
fdData.writeList = newSeqOfCap[Callback](InitCallbackListSize)
else:
assert false, "Cannot process callbacks for " & $event
let newLength = max(len(curList), InitCallbackListSize)
var newList = newSeqOfCap[Callback](newLength)
var eventsExtinguished = false
for cb in curList:
if eventsExtinguished:
newList.add(cb)
elif not cb(fd):
# Callback wants to be called again.
newList.add(cb)
# This callback has returned with EAGAIN, so we don't need to
# call any other callbacks as they are all waiting for the same event
# on the same fd.
# We do need to ensure they are called again though.
eventsExtinguished = true
withData(selector, fd.int, fdData) do:
# Descriptor is still present in the queue.
case event
of Event.Read: prependSeq(fdData.readList, newList)
of Event.Write: prependSeq(fdData.writeList, newList)
else:
assert false, "Cannot process callbacks for " & $event
result.readCbListCount = len(fdData.readList)
result.writeCbListCount = len(fdData.writeList)
do:
# Descriptor was unregistered in callback via `unregister()`.
result.readCbListCount = -1
result.writeCbListCount = -1
proc processCustomCallbacks(p: PDispatcher; fd: AsyncFD) =
# Process pending custom event callbacks. Custom events are
# {Event.Timer, Event.Signal, Event.Process, Event.Vnode}.
# There can be only one callback registered with one descriptor,
# so there is no need to iterate over list.
var curList: seq[Callback]
withData(p.selector, fd.int, adata) do:
curList = move adata.readList
adata.readList = newSeqOfCap[Callback](InitCallbackListSize)
let newLength = len(curList)
var newList = newSeqOfCap[Callback](newLength)
var cb = curList[0]
if not cb(fd):
newList.add(cb)
withData(p.selector, fd.int, adata) do:
# descriptor still present in queue.
adata.readList = newList & adata.readList
if len(adata.readList) == 0:
# if no callbacks registered with descriptor, unregister it.
p.selector.unregister(fd.int)
do:
# descriptor was unregistered in callback via `unregister()`.
discard
implementSetInheritable()
proc closeSocket*(sock: AsyncFD) =
let selector = getGlobalDispatcher().selector
if sock.SocketHandle notin selector:
raise newException(ValueError, "File descriptor not registered.")
let data = selector.getData(sock.SocketHandle)
sock.unregister()
sock.SocketHandle.close()
# We need to unblock the read and write callbacks which could still be
# waiting for the socket to become readable and/or writeable.
for cb in data.readList & data.writeList:
if not cb(sock):
raise newException(
ValueError, "Expecting async operations to stop when fd has closed."
)
proc runOnce(timeout = 500): bool =
let p = getGlobalDispatcher()
if p.selector.isEmpty() and p.timers.len == 0 and p.callbacks.len == 0:
raise newException(ValueError,
"No handles or timers registered in dispatcher.")
result = false
var keys: array[64, ReadyKey]
let nextTimer = processTimers(p, result)
var count =
p.selector.selectInto(adjustTimeout(p, timeout, nextTimer), keys)
for i in 0..<count:
let fd = keys[i].fd.AsyncFD
let events = keys[i].events
var (readCbListCount, writeCbListCount) = (0, 0)
if Event.Read in events or events == {Event.Error}:
(readCbListCount, writeCbListCount) =
processBasicCallbacks(fd, Event.Read)
result = true
if Event.Write in events or events == {Event.Error}:
(readCbListCount, writeCbListCount) =
processBasicCallbacks(fd, Event.Write)
result = true
var isCustomEvent = false
if Event.User in events:
(readCbListCount, writeCbListCount) =
processBasicCallbacks(fd, Event.Read)
isCustomEvent = true
if readCbListCount == 0:
p.selector.unregister(fd.int)
result = true
when ioselSupportedPlatform:
const customSet = {Event.Timer, Event.Signal, Event.Process,
Event.Vnode}
if (customSet * events) != {}:
isCustomEvent = true
processCustomCallbacks(p, fd)
result = true
# because state `data` can be modified in callback we need to update
# descriptor events with currently registered callbacks.
if not isCustomEvent and (readCbListCount != -1 and writeCbListCount != -1):
var newEvents: set[Event] = {}
if readCbListCount > 0: incl(newEvents, Event.Read)
if writeCbListCount > 0: incl(newEvents, Event.Write)
p.selector.updateHandle(SocketHandle(fd), newEvents)
# Timer processing.
discard processTimers(p, result)
# Callback queue processing
processPendingCallbacks(p, result)
proc recv*(socket: AsyncFD, size: int,
flags = {SocketFlag.SafeDisconn}): owned(Future[string]) =
var retFuture = newFuture[string]("recv")
var readBuffer = newString(size)
proc cb(sock: AsyncFD): bool =
result = true
let res = recv(sock.SocketHandle, addr readBuffer[0], size.cint,
flags.toOSFlags())
if res < 0:
let lastError = osLastError()
if lastError.int32 != EINTR and lastError.int32 != EWOULDBLOCK and
lastError.int32 != EAGAIN:
if flags.isDisconnectionError(lastError):
retFuture.complete("")
else:
retFuture.fail(newException(OSError, osErrorMsg(lastError)))
else:
result = false # We still want this callback to be called.
elif res == 0:
# Disconnected
retFuture.complete("")
else:
readBuffer.setLen(res)
retFuture.complete(readBuffer)
# TODO: The following causes a massive slowdown.
#if not cb(socket):
addRead(socket, cb)
return retFuture
proc recvInto*(socket: AsyncFD, buf: pointer, size: int,
flags = {SocketFlag.SafeDisconn}): owned(Future[int]) =
var retFuture = newFuture[int]("recvInto")
proc cb(sock: AsyncFD): bool =
result = true
let res = recv(sock.SocketHandle, buf, size.cint,
flags.toOSFlags())
if res < 0:
let lastError = osLastError()
if lastError.int32 != EINTR and lastError.int32 != EWOULDBLOCK and
lastError.int32 != EAGAIN:
if flags.isDisconnectionError(lastError):
retFuture.complete(0)
else:
retFuture.fail(newException(OSError, osErrorMsg(lastError)))
else:
result = false # We still want this callback to be called.
else:
retFuture.complete(res)
# TODO: The following causes a massive slowdown.
#if not cb(socket):
addRead(socket, cb)
return retFuture
proc send*(socket: AsyncFD, buf: pointer, size: int,
flags = {SocketFlag.SafeDisconn}): owned(Future[void]) =
var retFuture = newFuture[void]("send")
var written = 0
proc cb(sock: AsyncFD): bool =
result = true
let netSize = size-written
var d = cast[cstring](buf)
let res = send(sock.SocketHandle, addr d[written], netSize.cint,
MSG_NOSIGNAL)
if res < 0:
let lastError = osLastError()
if lastError.int32 != EINTR and
lastError.int32 != EWOULDBLOCK and
lastError.int32 != EAGAIN:
if flags.isDisconnectionError(lastError):
retFuture.complete()
else:
retFuture.fail(newOSError(lastError))
else:
result = false # We still want this callback to be called.
else:
written.inc(res)
if res != netSize:
result = false # We still have data to send.
else:
retFuture.complete()
# TODO: The following causes crashes.
#if not cb(socket):
addWrite(socket, cb)
return retFuture
proc sendTo*(socket: AsyncFD, data: pointer, size: int, saddr: ptr SockAddr,
saddrLen: SockLen,
flags = {SocketFlag.SafeDisconn}): owned(Future[void]) =
## Sends `data` of size `size` in bytes to specified destination
## (`saddr` of size `saddrLen` in bytes, using socket `socket`.
## The returned future will complete once all data has been sent.
var retFuture = newFuture[void]("sendTo")
# we will preserve address in our stack
var staddr: array[128, char] # SOCKADDR_STORAGE size is 128 bytes
var stalen = saddrLen
zeroMem(addr(staddr[0]), 128)
copyMem(addr(staddr[0]), saddr, saddrLen)
proc cb(sock: AsyncFD): bool =
result = true
let res = sendto(sock.SocketHandle, data, size, MSG_NOSIGNAL,
cast[ptr SockAddr](addr(staddr[0])), stalen)
if res < 0:
let lastError = osLastError()
if lastError.int32 != EINTR and lastError.int32 != EWOULDBLOCK and
lastError.int32 != EAGAIN:
retFuture.fail(newException(OSError, osErrorMsg(lastError)))
else:
result = false # We still want this callback to be called.
else:
retFuture.complete()
addWrite(socket, cb)
return retFuture
proc recvFromInto*(socket: AsyncFD, data: pointer, size: int,
saddr: ptr SockAddr, saddrLen: ptr SockLen,
flags = {SocketFlag.SafeDisconn}): owned(Future[int]) =
## Receives a datagram data from `socket` into `data`, which must
## be at least of size `size` in bytes, address of datagram's sender
## will be stored into `saddr` and `saddrLen`. Returned future will
## complete once one datagram has been received, and will return size
## of packet received.
var retFuture = newFuture[int]("recvFromInto")
proc cb(sock: AsyncFD): bool =
result = true
let res = recvfrom(sock.SocketHandle, data, size.cint, flags.toOSFlags(),
saddr, saddrLen)
if res < 0:
let lastError = osLastError()
if lastError.int32 != EINTR and lastError.int32 != EWOULDBLOCK and
lastError.int32 != EAGAIN:
retFuture.fail(newException(OSError, osErrorMsg(lastError)))
else:
result = false
else:
retFuture.complete(res)
addRead(socket, cb)
return retFuture
proc acceptAddr*(socket: AsyncFD, flags = {SocketFlag.SafeDisconn},
inheritable = defined(nimInheritHandles)):
owned(Future[tuple[address: string, client: AsyncFD]]) =
var retFuture = newFuture[tuple[address: string,
client: AsyncFD]]("acceptAddr")
proc cb(sock: AsyncFD): bool =
result = true
var sockAddress: Sockaddr_storage
var addrLen = sizeof(sockAddress).SockLen
var client =
when declared(accept4):
accept4(sock.SocketHandle, cast[ptr SockAddr](addr(sockAddress)),
addr(addrLen), if inheritable: 0 else: SOCK_CLOEXEC)
else:
accept(sock.SocketHandle, cast[ptr SockAddr](addr(sockAddress)),
addr(addrLen))
when declared(setInheritable) and not declared(accept4):
if client != osInvalidSocket and not setInheritable(client, inheritable):
# Set failure first because close() itself can fail,
# altering osLastError().
retFuture.fail(newOSError(osLastError()))
close client
return false
if client == osInvalidSocket:
let lastError = osLastError()
assert lastError.int32 != EWOULDBLOCK and lastError.int32 != EAGAIN
if lastError.int32 == EINTR:
return false
else:
if flags.isDisconnectionError(lastError):
return false
else:
retFuture.fail(newException(OSError, osErrorMsg(lastError)))
else:
try:
let address = getAddrString(cast[ptr SockAddr](addr sockAddress))
register(client.AsyncFD)
retFuture.complete((address, client.AsyncFD))
except:
# getAddrString may raise
client.close()
retFuture.fail(getCurrentException())
addRead(socket, cb)
return retFuture
when ioselSupportedPlatform:
proc addTimer*(timeout: int, oneshot: bool, cb: Callback) =
## Start watching for timeout expiration, and then call the
## callback `cb`.
## `timeout` - time in milliseconds,
## `oneshot` - if `true` only one event will be dispatched,
## if `false` continuous events every `timeout` milliseconds.
let p = getGlobalDispatcher()
var data = newAsyncData()
data.readList.add(cb)
p.selector.registerTimer(timeout, oneshot, data)
proc addSignal*(signal: int, cb: Callback) =
## Start watching signal `signal`, and when signal appears, call the
## callback `cb`.
let p = getGlobalDispatcher()
var data = newAsyncData()
data.readList.add(cb)
p.selector.registerSignal(signal, data)
proc addProcess*(pid: int, cb: Callback) =
## Start watching for process exit with pid `pid`, and then call
## the callback `cb`.
let p = getGlobalDispatcher()
var data = newAsyncData()
data.readList.add(cb)
p.selector.registerProcess(pid, data)
proc newAsyncEvent*(): AsyncEvent =
## Creates new `AsyncEvent`.
result = AsyncEvent(newSelectEvent())
proc trigger*(ev: AsyncEvent) =
## Sets new `AsyncEvent` to signaled state.
trigger(SelectEvent(ev))
proc close*(ev: AsyncEvent) =
## Closes `AsyncEvent`
close(SelectEvent(ev))
proc addEvent*(ev: AsyncEvent, cb: Callback) =
## Start watching for event `ev`, and call callback `cb`, when
## ev will be set to signaled state.
let p = getGlobalDispatcher()
var data = newAsyncData()
data.readList.add(cb)
p.selector.registerEvent(SelectEvent(ev), data)
proc drain*(timeout = 500) =
## Waits for completion of **all** events and processes them. Raises `ValueError`
## if there are no pending operations. In contrast to `poll` this
## processes as many events as are available until the timeout has elapsed.
var curTimeout = timeout
let start = now()
while hasPendingOperations():
discard runOnce(curTimeout)
curTimeout -= (now() - start).inMilliseconds.int
if curTimeout < 0:
break
proc poll*(timeout = 500) =
## Waits for completion events and processes them. Raises `ValueError`
## if there are no pending operations. This runs the underlying OS
## `epoll`:idx: or `kqueue`:idx: primitive only once.
discard runOnce(timeout)
template createAsyncNativeSocketImpl(domain, sockType, protocol: untyped,
inheritable = defined(nimInheritHandles)) =
let handle = createNativeSocket(domain, sockType, protocol, inheritable)
if handle == osInvalidSocket:
return osInvalidSocket.AsyncFD
handle.setBlocking(false)
when defined(macosx) and not defined(nimdoc):
handle.setSockOptInt(SOL_SOCKET, SO_NOSIGPIPE, 1)
result = handle.AsyncFD
register(result)
proc createAsyncNativeSocket*(domain: cint, sockType: cint,
protocol: cint,
inheritable = defined(nimInheritHandles)): AsyncFD =
createAsyncNativeSocketImpl(domain, sockType, protocol, inheritable)
proc createAsyncNativeSocket*(domain: Domain = Domain.AF_INET,
sockType: SockType = SOCK_STREAM,
protocol: Protocol = IPPROTO_TCP,
inheritable = defined(nimInheritHandles)): AsyncFD =
createAsyncNativeSocketImpl(domain, sockType, protocol, inheritable)
when defined(windows) or defined(nimdoc):
proc bindToDomain(handle: SocketHandle, domain: Domain) =
# Extracted into a separate proc, because connect() on Windows requires
# the socket to be initially bound.
template doBind(saddr) =
if bindAddr(handle, cast[ptr SockAddr](addr(saddr)),
sizeof(saddr).SockLen) < 0'i32:
raiseOSError(osLastError())
if domain == Domain.AF_INET6:
var saddr: Sockaddr_in6
saddr.sin6_family = uint16(toInt(domain))
doBind(saddr)
else:
var saddr: Sockaddr_in
saddr.sin_family = uint16(toInt(domain))
doBind(saddr)
proc doConnect(socket: AsyncFD, addrInfo: ptr AddrInfo): owned(Future[void]) =
let retFuture = newFuture[void]("doConnect")
result = retFuture
var ol = newCustom()
ol.data = CompletionData(fd: socket, cb:
proc (fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) =
if not retFuture.finished:
if errcode == OSErrorCode(-1):
retFuture.complete()
else:
retFuture.fail(newException(OSError, osErrorMsg(errcode)))
)
let ret = connectEx(socket.SocketHandle, addrInfo.ai_addr,
cint(addrInfo.ai_addrlen), nil, 0, nil,
cast[POVERLAPPED](ol))
if ret:
# Request to connect completed immediately.
retFuture.complete()
# We don't deallocate `ol` here because even though this completed
# immediately poll will still be notified about its completion and it
# will free `ol`.
else:
let lastError = osLastError()
if lastError.int32 != ERROR_IO_PENDING:
# With ERROR_IO_PENDING `ol` will be deallocated in `poll`,
# and the future will be completed/failed there, too.
GC_unref(ol)
retFuture.fail(newException(OSError, osErrorMsg(lastError)))
else:
proc doConnect(socket: AsyncFD, addrInfo: ptr AddrInfo): owned(Future[void]) =
let retFuture = newFuture[void]("doConnect")
result = retFuture
proc cb(fd: AsyncFD): bool =
let ret = SocketHandle(fd).getSockOptInt(
cint(SOL_SOCKET), cint(SO_ERROR))
if ret == 0:
# We have connected.
retFuture.complete()
return true
elif ret == EINTR:
# interrupted, keep waiting
return false
else:
retFuture.fail(newException(OSError, osErrorMsg(OSErrorCode(ret))))
return true
let ret = connect(socket.SocketHandle,
addrInfo.ai_addr,
addrInfo.ai_addrlen.SockLen)
if ret == 0:
# Request to connect completed immediately.
retFuture.complete()
else:
let lastError = osLastError()
if lastError.int32 == EINTR or lastError.int32 == EINPROGRESS:
addWrite(socket, cb)
else:
retFuture.fail(newException(OSError, osErrorMsg(lastError)))
template asyncAddrInfoLoop(addrInfo: ptr AddrInfo, fd: untyped,
protocol: Protocol = IPPROTO_RAW) =
## Iterates through the AddrInfo linked list asynchronously
## until the connection can be established.
const shouldCreateFd = not declared(fd)
when shouldCreateFd:
let sockType = protocol.toSockType()
var fdPerDomain: array[low(Domain).ord..high(Domain).ord, AsyncFD]
for i in low(fdPerDomain)..high(fdPerDomain):
fdPerDomain[i] = osInvalidSocket.AsyncFD
template closeUnusedFds(domainToKeep = -1) {.dirty.} =
for i, fd in fdPerDomain:
if fd != osInvalidSocket.AsyncFD and i != domainToKeep:
fd.closeSocket()
var lastException: ref Exception
var curAddrInfo = addrInfo
var domain: Domain
when shouldCreateFd:
var curFd: AsyncFD
else:
var curFd = fd
proc tryNextAddrInfo(fut: Future[void]) {.gcsafe.} =
if fut == nil or fut.failed:
if fut != nil:
lastException = fut.readError()
while curAddrInfo != nil:
let domainOpt = curAddrInfo.ai_family.toKnownDomain()
if domainOpt.isSome:
domain = domainOpt.unsafeGet()
break
curAddrInfo = curAddrInfo.ai_next
if curAddrInfo == nil:
freeaddrinfo(addrInfo)
when shouldCreateFd:
closeUnusedFds()
if lastException != nil:
retFuture.fail(lastException)
else:
retFuture.fail(newException(
IOError, "Couldn't resolve address: " & address))
return
when shouldCreateFd:
curFd = fdPerDomain[ord(domain)]
if curFd == osInvalidSocket.AsyncFD:
try:
curFd = createAsyncNativeSocket(domain, sockType, protocol)
except:
freeaddrinfo(addrInfo)
closeUnusedFds()
raise getCurrentException()
when defined(windows):
curFd.SocketHandle.bindToDomain(domain)
fdPerDomain[ord(domain)] = curFd
doConnect(curFd, curAddrInfo).callback = tryNextAddrInfo
curAddrInfo = curAddrInfo.ai_next
else:
freeaddrinfo(addrInfo)
when shouldCreateFd:
closeUnusedFds(ord(domain))
retFuture.complete(curFd)
else:
retFuture.complete()
tryNextAddrInfo(nil)
proc dial*(address: string, port: Port,
protocol: Protocol = IPPROTO_TCP): owned(Future[AsyncFD]) =
## Establishes connection to the specified `address`:`port` pair via the
## specified protocol. The procedure iterates through possible
## resolutions of the `address` until it succeeds, meaning that it
## seamlessly works with both IPv4 and IPv6.
## Returns the async file descriptor, registered in the dispatcher of
## the current thread, ready to send or receive data.
let retFuture = newFuture[AsyncFD]("dial")
result = retFuture
let sockType = protocol.toSockType()
let aiList = getAddrInfo(address, port, Domain.AF_UNSPEC, sockType, protocol)
asyncAddrInfoLoop(aiList, noFD, protocol)
proc connect*(socket: AsyncFD, address: string, port: Port,
domain = Domain.AF_INET): owned(Future[void]) =
let retFuture = newFuture[void]("connect")
result = retFuture
when defined(windows):
verifyPresence(socket)
else:
assert getSockDomain(socket.SocketHandle) == domain
let aiList = getAddrInfo(address, port, domain)
when defined(windows):
socket.SocketHandle.bindToDomain(domain)
asyncAddrInfoLoop(aiList, socket)
proc sleepAsync*(ms: int | float): owned(Future[void]) =
## Suspends the execution of the current async procedure for the next
## `ms` milliseconds.
var retFuture = newFuture[void]("sleepAsync")
let p = getGlobalDispatcher()
when ms is int:
p.timers.push((getMonoTime() + initDuration(milliseconds = ms), retFuture))
elif ms is float:
let ns = (ms * 1_000_000).int64
p.timers.push((getMonoTime() + initDuration(nanoseconds = ns), retFuture))
return retFuture
proc withTimeout*[T](fut: Future[T], timeout: int): owned(Future[bool]) =
## Returns a future which will complete once `fut` completes or after
## `timeout` milliseconds has elapsed.
##
## If `fut` completes first the returned future will hold true,
## otherwise, if `timeout` milliseconds has elapsed first, the returned
## future will hold false.
var retFuture = newFuture[bool]("asyncdispatch.`withTimeout`")
var timeoutFuture = sleepAsync(timeout)
fut.callback =
proc () =
if not retFuture.finished:
if fut.failed:
retFuture.fail(fut.error)
else:
retFuture.complete(true)
timeoutFuture.callback =
proc () =
if not retFuture.finished: retFuture.complete(false)
return retFuture
proc accept*(socket: AsyncFD,
flags = {SocketFlag.SafeDisconn},
inheritable = defined(nimInheritHandles)): owned(Future[AsyncFD]) =
## Accepts a new connection. Returns a future containing the client socket
## corresponding to that connection.
##
## If `inheritable` is false (the default), the resulting client socket
## will not be inheritable by child processes.
##
## The future will complete when the connection is successfully accepted.
var retFut = newFuture[AsyncFD]("accept")
var fut = acceptAddr(socket, flags, inheritable)
fut.callback =
proc (future: Future[tuple[address: string, client: AsyncFD]]) =
assert future.finished
if future.failed:
retFut.fail(future.error)
else:
retFut.complete(future.read.client)
return retFut
proc keepAlive(x: string) =
discard "mark 'x' as escaping so that it is put into a closure for us to keep the data alive"
proc send*(socket: AsyncFD, data: string,
flags = {SocketFlag.SafeDisconn}): owned(Future[void]) =
## Sends `data` to `socket`. The returned future will complete once all
## data has been sent.
var retFuture = newFuture[void]("send")
if data.len > 0:
let sendFut = socket.send(unsafeAddr data[0], data.len, flags)
sendFut.callback =
proc () =
keepAlive(data)
if sendFut.failed:
retFuture.fail(sendFut.error)
else:
retFuture.complete()
else:
retFuture.complete()
return retFuture
# -- Await Macro
include asyncmacro
proc readAll*(future: FutureStream[string]): owned(Future[string]) {.async.} =
## Returns a future that will complete when all the string data from the
## specified future stream is retrieved.
result = ""
while true:
let (hasValue, value) = await future.read()
if hasValue:
result.add(value)
else:
break
proc callSoon(cbproc: proc () {.gcsafe.}) =
getGlobalDispatcher().callbacks.addLast(cbproc)
proc runForever*() =
## Begins a never ending global dispatcher poll loop.
while true:
poll()
proc waitFor*[T](fut: Future[T]): T =
## **Blocks** the current thread until the specified future completes.
while not fut.finished:
poll()
fut.read
proc activeDescriptors*(): int {.inline.} =
## Returns the current number of active file descriptors for the current
## event loop. This is a cheap operation that does not involve a system call.
when defined(windows):
result = getGlobalDispatcher().handles.len
elif not defined(nimdoc):
result = getGlobalDispatcher().selector.count
when defined(posix):
import posix
when defined(linux) or defined(windows) or defined(macosx) or defined(bsd) or
defined(zephyr) or defined(freertos):
proc maxDescriptors*(): int {.raises: OSError.} =
## Returns the maximum number of active file descriptors for the current
## process. This involves a system call. For now `maxDescriptors` is
## supported on the following OSes: Windows, Linux, OSX, BSD.
when defined(windows):
result = 16_700_000
elif defined(zephyr) or defined(freertos):
result = FD_MAX
else:
var fdLim: RLimit
if getrlimit(RLIMIT_NOFILE, fdLim) < 0:
raiseOSError(osLastError())
result = int(fdLim.rlim_cur) - 1