mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 17:34:43 +00:00
424 lines
12 KiB
Nim
424 lines
12 KiB
Nim
#
|
|
#
|
|
# Nim's Runtime Library
|
|
# (c) Copyright 2012 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
# string & sequence handling procedures needed by the code generator
|
|
|
|
# strings are dynamically resized, have a length field
|
|
# and are zero-terminated, so they can be casted to C
|
|
# strings easily
|
|
# we don't use refcounts because that's a behaviour
|
|
# the programmer may not want
|
|
|
|
proc resize(old: int): int {.inline.} =
|
|
if old <= 0: result = 4
|
|
elif old < 65536: result = old * 2
|
|
else: result = old * 3 div 2 # for large arrays * 3/2 is better
|
|
|
|
proc cmpStrings(a, b: NimString): int {.inline, compilerProc.} =
|
|
if a == b: return 0
|
|
if a == nil: return -1
|
|
if b == nil: return 1
|
|
return c_strcmp(a.data, b.data)
|
|
|
|
proc eqStrings(a, b: NimString): bool {.inline, compilerProc.} =
|
|
if a == b: return true
|
|
if a == nil or b == nil: return false
|
|
return a.len == b.len and
|
|
c_memcmp(a.data, b.data, a.len) == 0'i32
|
|
|
|
when declared(allocAtomic):
|
|
template allocStr(size: expr): expr =
|
|
cast[NimString](allocAtomic(size))
|
|
|
|
template allocStrNoInit(size: expr): expr =
|
|
cast[NimString](boehmAllocAtomic(size))
|
|
else:
|
|
template allocStr(size: expr): expr =
|
|
cast[NimString](newObj(addr(strDesc), size))
|
|
|
|
template allocStrNoInit(size: expr): expr =
|
|
cast[NimString](newObjNoInit(addr(strDesc), size))
|
|
|
|
proc rawNewStringNoInit(space: int): NimString {.compilerProc.} =
|
|
var s = space
|
|
if s < 7: s = 7
|
|
result = allocStrNoInit(sizeof(TGenericSeq) + s + 1)
|
|
result.reserved = s
|
|
|
|
proc rawNewString(space: int): NimString {.compilerProc.} =
|
|
var s = space
|
|
if s < 7: s = 7
|
|
result = allocStr(sizeof(TGenericSeq) + s + 1)
|
|
result.reserved = s
|
|
|
|
proc mnewString(len: int): NimString {.compilerProc.} =
|
|
result = rawNewString(len)
|
|
result.len = len
|
|
|
|
proc copyStrLast(s: NimString, start, last: int): NimString {.compilerProc.} =
|
|
var start = max(start, 0)
|
|
var len = min(last, s.len-1) - start + 1
|
|
if len > 0:
|
|
result = rawNewStringNoInit(len)
|
|
result.len = len
|
|
c_memcpy(result.data, addr(s.data[start]), len)
|
|
result.data[len] = '\0'
|
|
else:
|
|
result = rawNewString(len)
|
|
|
|
proc copyStr(s: NimString, start: int): NimString {.compilerProc.} =
|
|
result = copyStrLast(s, start, s.len-1)
|
|
|
|
proc toNimStr(str: cstring, len: int): NimString {.compilerProc.} =
|
|
result = rawNewStringNoInit(len)
|
|
result.len = len
|
|
c_memcpy(result.data, str, len + 1)
|
|
|
|
proc cstrToNimstr(str: cstring): NimString {.compilerRtl.} =
|
|
result = toNimStr(str, c_strlen(str))
|
|
|
|
proc copyString(src: NimString): NimString {.compilerRtl.} =
|
|
if src != nil:
|
|
if (src.reserved and seqShallowFlag) != 0:
|
|
result = src
|
|
else:
|
|
result = rawNewStringNoInit(src.len)
|
|
result.len = src.len
|
|
c_memcpy(result.data, src.data, src.len + 1)
|
|
|
|
proc copyStringRC1(src: NimString): NimString {.compilerRtl.} =
|
|
if src != nil:
|
|
when declared(newObjRC1):
|
|
var s = src.len
|
|
if s < 7: s = 7
|
|
result = cast[NimString](newObjRC1(addr(strDesc), sizeof(TGenericSeq) +
|
|
s+1))
|
|
result.reserved = s
|
|
else:
|
|
result = rawNewStringNoInit(src.len)
|
|
result.len = src.len
|
|
c_memcpy(result.data, src.data, src.len + 1)
|
|
|
|
|
|
proc hashString(s: string): int {.compilerproc.} =
|
|
# the compiler needs exactly the same hash function!
|
|
# this used to be used for efficient generation of string case statements
|
|
var h = 0
|
|
for i in 0..len(s)-1:
|
|
h = h +% ord(s[i])
|
|
h = h +% h shl 10
|
|
h = h xor (h shr 6)
|
|
h = h +% h shl 3
|
|
h = h xor (h shr 11)
|
|
h = h +% h shl 15
|
|
result = h
|
|
|
|
proc addChar(s: NimString, c: char): NimString =
|
|
# is compilerproc!
|
|
result = s
|
|
if result.len >= result.space:
|
|
result.reserved = resize(result.space)
|
|
result = cast[NimString](growObj(result,
|
|
sizeof(TGenericSeq) + result.reserved + 1))
|
|
result.data[result.len] = c
|
|
result.data[result.len+1] = '\0'
|
|
inc(result.len)
|
|
|
|
# These routines should be used like following:
|
|
# <Nim code>
|
|
# s &= "Hello " & name & ", how do you feel?"
|
|
#
|
|
# <generated C code>
|
|
# {
|
|
# s = resizeString(s, 6 + name->len + 17);
|
|
# appendString(s, strLit1);
|
|
# appendString(s, strLit2);
|
|
# appendString(s, strLit3);
|
|
# }
|
|
#
|
|
# <Nim code>
|
|
# s = "Hello " & name & ", how do you feel?"
|
|
#
|
|
# <generated C code>
|
|
# {
|
|
# string tmp0;
|
|
# tmp0 = rawNewString(6 + name->len + 17);
|
|
# appendString(s, strLit1);
|
|
# appendString(s, strLit2);
|
|
# appendString(s, strLit3);
|
|
# s = tmp0;
|
|
# }
|
|
#
|
|
# <Nim code>
|
|
# s = ""
|
|
#
|
|
# <generated C code>
|
|
# s = rawNewString(0);
|
|
|
|
proc resizeString(dest: NimString, addlen: int): NimString {.compilerRtl.} =
|
|
if dest.len + addlen <= dest.space:
|
|
result = dest
|
|
else: # slow path:
|
|
var sp = max(resize(dest.space), dest.len + addlen)
|
|
result = cast[NimString](growObj(dest, sizeof(TGenericSeq) + sp + 1))
|
|
result.reserved = sp
|
|
#result = rawNewString(sp)
|
|
#copyMem(result, dest, dest.len + sizeof(TGenericSeq))
|
|
# DO NOT UPDATE LEN YET: dest.len = newLen
|
|
|
|
proc appendString(dest, src: NimString) {.compilerproc, inline.} =
|
|
c_memcpy(addr(dest.data[dest.len]), src.data, src.len + 1)
|
|
inc(dest.len, src.len)
|
|
|
|
proc appendChar(dest: NimString, c: char) {.compilerproc, inline.} =
|
|
dest.data[dest.len] = c
|
|
dest.data[dest.len+1] = '\0'
|
|
inc(dest.len)
|
|
|
|
proc setLengthStr(s: NimString, newLen: int): NimString {.compilerRtl.} =
|
|
var n = max(newLen, 0)
|
|
if n <= s.space:
|
|
result = s
|
|
else:
|
|
result = resizeString(s, n)
|
|
result.len = n
|
|
result.data[n] = '\0'
|
|
|
|
# ----------------- sequences ----------------------------------------------
|
|
|
|
proc incrSeq(seq: PGenericSeq, elemSize: int): PGenericSeq {.compilerProc.} =
|
|
# increments the length by one:
|
|
# this is needed for supporting ``add``;
|
|
#
|
|
# add(seq, x) generates:
|
|
# seq = incrSeq(seq, sizeof(x));
|
|
# seq[seq->len-1] = x;
|
|
result = seq
|
|
if result.len >= result.space:
|
|
result.reserved = resize(result.space)
|
|
result = cast[PGenericSeq](growObj(result, elemSize * result.reserved +
|
|
GenericSeqSize))
|
|
inc(result.len)
|
|
|
|
proc setLengthSeq(seq: PGenericSeq, elemSize, newLen: int): PGenericSeq {.
|
|
compilerRtl.} =
|
|
result = seq
|
|
if result.space < newLen:
|
|
result.reserved = max(resize(result.space), newLen)
|
|
result = cast[PGenericSeq](growObj(result, elemSize * result.reserved +
|
|
GenericSeqSize))
|
|
elif newLen < result.len:
|
|
# we need to decref here, otherwise the GC leaks!
|
|
when not defined(boehmGC) and not defined(nogc) and
|
|
not defined(gcMarkAndSweep):
|
|
when compileOption("gc", "v2"):
|
|
for i in newLen..result.len-1:
|
|
let len0 = gch.tempStack.len
|
|
forAllChildrenAux(cast[pointer](cast[ByteAddress](result) +%
|
|
GenericSeqSize +% (i*%elemSize)),
|
|
extGetCellType(result).base, waPush)
|
|
let len1 = gch.tempStack.len
|
|
for i in len0 .. <len1:
|
|
doDecRef(gch.tempStack.d[i], LocalHeap, MaybeCyclic)
|
|
gch.tempStack.len = len0
|
|
else:
|
|
for i in newLen..result.len-1:
|
|
forAllChildrenAux(cast[pointer](cast[ByteAddress](result) +%
|
|
GenericSeqSize +% (i*%elemSize)),
|
|
extGetCellType(result).base, waZctDecRef)
|
|
|
|
# XXX: zeroing out the memory can still result in crashes if a wiped-out
|
|
# cell is aliased by another pointer (ie proc parameter or a let variable).
|
|
# This is a tought problem, because even if we don't zeroMem here, in the
|
|
# presence of user defined destructors, the user will expect the cell to be
|
|
# "destroyed" thus creating the same problem. We can destoy the cell in the
|
|
# finalizer of the sequence, but this makes destruction non-deterministic.
|
|
zeroMem(cast[pointer](cast[ByteAddress](result) +% GenericSeqSize +%
|
|
(newLen*%elemSize)), (result.len-%newLen) *% elemSize)
|
|
result.len = newLen
|
|
|
|
# --------------- other string routines ----------------------------------
|
|
proc nimIntToStr(x: int): string {.compilerRtl.} =
|
|
result = newString(sizeof(x)*4)
|
|
var i = 0
|
|
var y = x
|
|
while true:
|
|
var d = y div 10
|
|
result[i] = chr(abs(int(y - d*10)) + ord('0'))
|
|
inc(i)
|
|
y = d
|
|
if y == 0: break
|
|
if x < 0:
|
|
result[i] = '-'
|
|
inc(i)
|
|
setLen(result, i)
|
|
# mirror the string:
|
|
for j in 0..i div 2 - 1:
|
|
swap(result[j], result[i-j-1])
|
|
|
|
proc nimFloatToStr(f: float): string {.compilerproc.} =
|
|
var buf: array[0..64, char]
|
|
var n: int = c_sprintf(buf, "%.16g", f)
|
|
var hasDot = false
|
|
for i in 0..n-1:
|
|
if buf[i] == ',':
|
|
buf[i] = '.'
|
|
hasDot = true
|
|
elif buf[i] in {'a'..'z', 'A'..'Z', '.'}:
|
|
hasDot = true
|
|
if not hasDot:
|
|
buf[n] = '.'
|
|
buf[n+1] = '0'
|
|
buf[n+2] = '\0'
|
|
# On Windows nice numbers like '1.#INF', '-1.#INF' or '1.#NAN' are produced.
|
|
# We want to get rid of these here:
|
|
if buf[n-1] == 'N':
|
|
result = "nan"
|
|
elif buf[n-1] == 'F':
|
|
if buf[0] == '-':
|
|
result = "-inf"
|
|
else:
|
|
result = "inf"
|
|
else:
|
|
result = $buf
|
|
|
|
proc strtod(buf: cstring, endptr: ptr cstring): float64 {.importc,
|
|
header: "<stdlib.h>", noSideEffect.}
|
|
|
|
var decimalPoint: char
|
|
|
|
proc getDecimalPoint(): char =
|
|
result = decimalPoint
|
|
if result == '\0':
|
|
if strtod("0,5", nil) == 0.5: result = ','
|
|
else: result = '.'
|
|
# yes this is threadsafe in practice, spare me:
|
|
decimalPoint = result
|
|
|
|
const
|
|
IdentChars = {'a'..'z', 'A'..'Z', '0'..'9', '_'}
|
|
|
|
proc nimParseBiggestFloat(s: string, number: var BiggestFloat,
|
|
start = 0): int {.compilerProc.} =
|
|
# This routine leverages `strtod()` for the non-trivial task of
|
|
# parsing floating point numbers correctly. Because `strtod()` is
|
|
# locale-dependent with respect to the radix character, we create
|
|
# a copy where the decimal point is replaced with the locale's
|
|
# radix character.
|
|
var
|
|
i = start
|
|
sign = 1.0
|
|
t: array[500, char] # flaviu says: 325 is the longest reasonable literal
|
|
ti = 0
|
|
hasdigits = false
|
|
|
|
template addToBuf(c) =
|
|
if ti < t.high:
|
|
t[ti] = c; inc(ti)
|
|
|
|
# Sign?
|
|
if s[i] == '+' or s[i] == '-':
|
|
if s[i] == '-':
|
|
sign = -1.0
|
|
t[ti] = s[i]
|
|
inc(i); inc(ti)
|
|
|
|
# NaN?
|
|
if s[i] == 'N' or s[i] == 'n':
|
|
if s[i+1] == 'A' or s[i+1] == 'a':
|
|
if s[i+2] == 'N' or s[i+2] == 'n':
|
|
if s[i+3] notin IdentChars:
|
|
number = NaN
|
|
return i+3 - start
|
|
return 0
|
|
|
|
# Inf?
|
|
if s[i] == 'I' or s[i] == 'i':
|
|
if s[i+1] == 'N' or s[i+1] == 'n':
|
|
if s[i+2] == 'F' or s[i+2] == 'f':
|
|
if s[i+3] notin IdentChars:
|
|
number = Inf*sign
|
|
return i+3 - start
|
|
return 0
|
|
|
|
# Integer part?
|
|
while s[i] in {'0'..'9'}:
|
|
hasdigits = true
|
|
addToBuf(s[i])
|
|
inc(i);
|
|
while s[i] == '_': inc(i)
|
|
|
|
# Fractional part?
|
|
if s[i] == '.':
|
|
addToBuf(getDecimalPoint())
|
|
inc(i)
|
|
while s[i] in {'0'..'9'}:
|
|
hasdigits = true
|
|
addToBuf(s[i])
|
|
inc(i)
|
|
while s[i] == '_': inc(i)
|
|
if not hasdigits:
|
|
return 0
|
|
|
|
# Exponent?
|
|
if s[i] in {'e', 'E'}:
|
|
addToBuf(s[i])
|
|
inc(i)
|
|
if s[i] in {'+', '-'}:
|
|
addToBuf(s[i])
|
|
inc(i)
|
|
if s[i] notin {'0'..'9'}:
|
|
return 0
|
|
while s[i] in {'0'..'9'}:
|
|
addToBuf(s[i])
|
|
inc(i)
|
|
while s[i] == '_': inc(i)
|
|
number = strtod(t, nil)
|
|
result = i - start
|
|
|
|
proc nimInt64ToStr(x: int64): string {.compilerRtl.} =
|
|
result = newString(sizeof(x)*4)
|
|
var i = 0
|
|
var y = x
|
|
while true:
|
|
var d = y div 10
|
|
result[i] = chr(abs(int(y - d*10)) + ord('0'))
|
|
inc(i)
|
|
y = d
|
|
if y == 0: break
|
|
if x < 0:
|
|
result[i] = '-'
|
|
inc(i)
|
|
setLen(result, i)
|
|
# mirror the string:
|
|
for j in 0..i div 2 - 1:
|
|
swap(result[j], result[i-j-1])
|
|
|
|
proc nimBoolToStr(x: bool): string {.compilerRtl.} =
|
|
return if x: "true" else: "false"
|
|
|
|
proc nimCharToStr(x: char): string {.compilerRtl.} =
|
|
result = newString(1)
|
|
result[0] = x
|
|
|
|
proc binaryStrSearch(x: openArray[string], y: string): int {.compilerproc.} =
|
|
var
|
|
a = 0
|
|
b = len(x)
|
|
while a < b:
|
|
var mid = (a + b) div 2
|
|
if x[mid] < y:
|
|
a = mid + 1
|
|
else:
|
|
b = mid
|
|
if a < len(x) and x[a] == y:
|
|
result = a
|
|
else:
|
|
result = -1
|