mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 09:24:36 +00:00
* squashed work by Zahary
* squashing a ton of useful history... otherwise rebasing on top of upstream Nim after commit 82c009a2cb would be impossible.
* Code review changes; Working test suite (without code reloading enabled)
* - documentation
- implemented the HCR test - almost works...
- fix the issue on Unix where for executable targets the source file for the main module of a project in nimcache was being overwritten with the binary itself (and thus the actual source code was lost)
- fixing embedded paths to shared objects on unix (the "lib" prefix was being prepended to the entire path instead of just the filename)
- other fixes
- removing unnecessary includes since that file is already included in chcks.nim which is in turn included in system.nim (and previously was getting imported in chcks.nim but then system.nim improts something... and that breaks HCR (perhaps it could be fixed but it would be nice not to import anything in system))
* fix for clang & C++ - explicitly casting a function pointer to void*
more stable mangling of parameter names when HCR is on
the length of the static arrays in the DatInit functions is now part of the name of the variables, so when they get resized they get also recreated
more stable mangling for inline functions - no longer depends on the module which first used them
work on the new complicated HCR test - turned surprisingly complex - WIP
test now successfully passes even when re-running `koch test` (previously when the nimcache wasn't cold that lead to errors)
better documentation
calling setStackBottomWith for PreMain
passes over the HcrInit/DatInit/Init calls of all modules are now in the proper order (first all of one type, then all of the next). Also typeinfo globals are registered (created) in a single pass before the DatInit pass (because of the way generic instantiations are handled)
Fix the test suite execution on macOs
fix for being able to query the program arguments when using HCR on posix!
other fixes
* Bugfix: Fix a compilation error in C++ mode when a function pointer
is converted to a raw pointer
* basic documentation for the new hot code reloading semantics
* Add change log entry
* Don't re-execute the top-level statements while reloading JS code
* fix a number of tests broken in a recent bugfix
* Review changes
* Added {.executeOnReload.} pragma that indicates top-level statements
that should be executed on each reload. To make this work, I've modified
the way the `if (hcr_init_) {...}` guards are produced in the init code.
This still needs more work as the new guards seem to be inserted within
the previously generated guards.
This change also removes the need for `lastRegistedGlobal` in nimhcr.
* Implemented the `signatureHash` magic and the `hasModuleChanged` API
depending on it (the actual logic is not imlemented yet).
* Add the "hcr" prefix to all HCR-related symbols in the system module.
Added a new `hotcodereloading` module exporting the high-level API to
the user.
Besides being more hygienic, this was also required in order to make
it possible to use macros in the high-level API. Without the split,
`system` would have to import `macros`, which was going to produce
the well-known init problems.
* Attempted to solve the "GC markers problem".
Crashes were expected with the previous code, because the GC markers
were compiled as normal procs are registered in the GC. When their
module is unloaded, dangling pointers will remain in the GC tables.
To solve this issue, I don't register any GC markers when HCR is on,
but I add them to the HCR globals metadata and I use a single marker
registed in nimhcr during the initialization of the system module that
will be responsible for marking all globals.
* fix a compilation error
* - implemented the hasModuleChanged functionality
- tuples can be returned and broken into different vars in global scope
- added comments for the closnig scopes of the if statements in the init proc
- the new executeOnReload pragma works now!
- other fixes
* finally! fixing this hack in a proper way - declaring the destructor out of line (out of the class body) - we no longer need to forward-declare popCurrentExceptionEx
* Force full module parsing
This is a temporary hack that breaks some tests. I'll investigate
later how these can be fixed.
* tuples are now properly handled when global!
* these comments mess up the codegen in debug mode when $n is not actually a new line (or something like that) - these labels are intended only for GOTO labels anyway...
* "solved" the issue with the .pdb locks on windows when a binary is being debugged and hot code reloading is used at the same time
* fixes after rebasing...
* small fixes for the test
* better handling of globals! no more compiler crashes for locals with the global pragma, also simplified code around loops in global scope which have local vars (actually globals)
* we can now use the global pragma even for ... globals!
* the right output
* lets try those boehm GC tests
* after the test is ran it will be at its starting state - no git modifications
* clarification in the docs
* removed unnecessary line directives for forward declarations of functions - they were causing trouble with hot code reloading when no semantic change propagates to the main module but a line directive got changed and thus the main module had to be recompiled since the .c code had changed
* fixed bug! was inserting duplicate keys into the table and later was removing only 1 copy of all the duplicates (after a few reloads)
* no longer breaking into DatInit code when not supposed to
* fixes after rebasing
* yet more fixes after rebasing
* Update jssys.nim
* Rework the HCR path-handling logic
After reviewing the code more carefully, I've noticed that the old logic
will be broken when the user overrides the '--out:f' compiler option.
Besides fixing this issues, I took the opportunity to implement the
missing '--outdir:d' option.
Other changes:
* ./koch test won't overwrite any HCR and RTL builds located in nim/lib
* HCR and RTL are compiled with --threads:on by default
* Clean up the globals registration logic
* Handle non-flattened top-level stmtlists in JS as well
* The HCR is not supported with the Boehm GC yet
Also fixes some typos and the expected output of the HCR integration test
* The GC marker procs are now properly used as trampolines
* Fix the HCR integration test in release builds
* Fix ./koch tools
* this forward declaration doesn't seem to be necessary, and in fact breaks HCR because a 2nd function pointer is emitted for this externed/rtl func
* the forward declaration I removed in the last commit was actually necessary
* Attempt to make all tests green
* Fix tgenscript
* BAT file for running the HCR integration test on Windows [skip ci]
* Fix the docgen tests
* A final fix for Travis (hopefully)
2087 lines
73 KiB
Nim
2087 lines
73 KiB
Nim
#
|
|
#
|
|
# The Nim Compiler
|
|
# (c) Copyright 2015 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
## This file implements the new evaluation engine for Nim code.
|
|
## An instruction is 1-3 int32s in memory, it is a register based VM.
|
|
|
|
import ast except getstr
|
|
|
|
import
|
|
strutils, astalgo, msgs, vmdef, vmgen, nimsets, types, passes,
|
|
parser, vmdeps, idents, trees, renderer, options, transf, parseutils,
|
|
vmmarshal, gorgeimpl, lineinfos, tables, btrees, macrocacheimpl,
|
|
sighashes
|
|
|
|
from semfold import leValueConv, ordinalValToString
|
|
from evaltempl import evalTemplate
|
|
|
|
from modulegraphs import ModuleGraph, PPassContext
|
|
|
|
const
|
|
traceCode = defined(nimVMDebug)
|
|
|
|
when hasFFI:
|
|
import evalffi
|
|
|
|
type
|
|
TRegisterKind = enum
|
|
rkNone, rkNode, rkInt, rkFloat, rkRegisterAddr, rkNodeAddr
|
|
TFullReg = object # with a custom mark proc, we could use the same
|
|
# data representation as LuaJit (tagged NaNs).
|
|
case kind: TRegisterKind
|
|
of rkNone: nil
|
|
of rkInt: intVal: BiggestInt
|
|
of rkFloat: floatVal: BiggestFloat
|
|
of rkNode: node: PNode
|
|
of rkRegisterAddr: regAddr: ptr TFullReg
|
|
of rkNodeAddr: nodeAddr: ptr PNode
|
|
|
|
PStackFrame* = ref TStackFrame
|
|
TStackFrame* = object
|
|
prc: PSym # current prc; proc that is evaluated
|
|
slots: seq[TFullReg] # parameters passed to the proc + locals;
|
|
# parameters come first
|
|
next: PStackFrame # for stacking
|
|
comesFrom: int
|
|
safePoints: seq[int] # used for exception handling
|
|
# XXX 'break' should perform cleanup actions
|
|
# What does the C backend do for it?
|
|
|
|
proc stackTraceAux(c: PCtx; x: PStackFrame; pc: int; recursionLimit=100) =
|
|
if x != nil:
|
|
if recursionLimit == 0:
|
|
var calls = 0
|
|
var x = x
|
|
while x != nil:
|
|
inc calls
|
|
x = x.next
|
|
msgWriteln(c.config, $calls & " calls omitted\n")
|
|
return
|
|
stackTraceAux(c, x.next, x.comesFrom, recursionLimit-1)
|
|
var info = c.debug[pc]
|
|
# we now use a format similar to the one in lib/system/excpt.nim
|
|
var s = ""
|
|
# todo: factor with quotedFilename
|
|
if optExcessiveStackTrace in c.config.globalOptions:
|
|
s = toFullPath(c.config, info)
|
|
else:
|
|
s = toFilename(c.config, info)
|
|
var line = toLinenumber(info)
|
|
var col = toColumn(info)
|
|
if line > 0:
|
|
add(s, '(')
|
|
add(s, $line)
|
|
add(s, ", ")
|
|
add(s, $(col + ColOffset))
|
|
add(s, ')')
|
|
if x.prc != nil:
|
|
for k in 1..max(1, 25-s.len): add(s, ' ')
|
|
add(s, x.prc.name.s)
|
|
msgWriteln(c.config, s)
|
|
|
|
proc stackTraceImpl(c: PCtx, tos: PStackFrame, pc: int,
|
|
msg: string, lineInfo: TLineInfo) =
|
|
msgWriteln(c.config, "stack trace: (most recent call last)")
|
|
stackTraceAux(c, tos, pc)
|
|
# XXX test if we want 'globalError' for every mode
|
|
if c.mode == emRepl: globalError(c.config, lineInfo, msg)
|
|
else: localError(c.config, lineInfo, msg)
|
|
|
|
template stackTrace(c: PCtx, tos: PStackFrame, pc: int,
|
|
msg: string, lineInfo: TLineInfo) =
|
|
stackTraceImpl(c, tos, pc, msg, lineInfo)
|
|
return
|
|
|
|
template stackTrace(c: PCtx, tos: PStackFrame, pc: int, msg: string) =
|
|
stackTraceImpl(c, tos, pc, msg, c.debug[pc])
|
|
return
|
|
|
|
proc bailOut(c: PCtx; tos: PStackFrame) =
|
|
stackTrace(c, tos, c.exceptionInstr, "unhandled exception: " &
|
|
c.currentExceptionA.sons[3].skipColon.strVal)
|
|
|
|
when not defined(nimComputedGoto):
|
|
{.pragma: computedGoto.}
|
|
|
|
proc myreset(n: var TFullReg) = reset(n)
|
|
|
|
template ensureKind(k: untyped) {.dirty.} =
|
|
if regs[ra].kind != k:
|
|
myreset(regs[ra])
|
|
regs[ra].kind = k
|
|
|
|
template decodeB(k: untyped) {.dirty.} =
|
|
let rb = instr.regB
|
|
ensureKind(k)
|
|
|
|
template decodeBC(k: untyped) {.dirty.} =
|
|
let rb = instr.regB
|
|
let rc = instr.regC
|
|
ensureKind(k)
|
|
|
|
template declBC() {.dirty.} =
|
|
let rb = instr.regB
|
|
let rc = instr.regC
|
|
|
|
template decodeBImm(k: untyped) {.dirty.} =
|
|
let rb = instr.regB
|
|
let imm = instr.regC - byteExcess
|
|
ensureKind(k)
|
|
|
|
template decodeBx(k: untyped) {.dirty.} =
|
|
let rbx = instr.regBx - wordExcess
|
|
ensureKind(k)
|
|
|
|
template move(a, b: untyped) {.dirty.} = system.shallowCopy(a, b)
|
|
# XXX fix minor 'shallowCopy' overloading bug in compiler
|
|
|
|
proc createStrKeepNode(x: var TFullReg; keepNode=true) =
|
|
if x.node.isNil or not keepNode:
|
|
x.node = newNode(nkStrLit)
|
|
elif x.node.kind == nkNilLit and keepNode:
|
|
when defined(useNodeIds):
|
|
let id = x.node.id
|
|
system.reset(x.node[])
|
|
x.node.kind = nkStrLit
|
|
when defined(useNodeIds):
|
|
x.node.id = id
|
|
elif x.node.kind notin {nkStrLit..nkTripleStrLit} or
|
|
nfAllConst in x.node.flags:
|
|
# XXX this is hacky; tests/txmlgen triggers it:
|
|
x.node = newNode(nkStrLit)
|
|
# It not only hackey, it is also wrong for tgentemplate. The primary
|
|
# cause of bugs like these is that the VM does not properly distinguish
|
|
# between variable defintions (var foo = e) and variable updates (foo = e).
|
|
|
|
include vmhooks
|
|
|
|
template createStr(x) =
|
|
x.node = newNode(nkStrLit)
|
|
|
|
template createSet(x) =
|
|
x.node = newNode(nkCurly)
|
|
|
|
proc moveConst(x: var TFullReg, y: TFullReg) =
|
|
if x.kind != y.kind:
|
|
myreset(x)
|
|
x.kind = y.kind
|
|
case x.kind
|
|
of rkNone: discard
|
|
of rkInt: x.intVal = y.intVal
|
|
of rkFloat: x.floatVal = y.floatVal
|
|
of rkNode: x.node = y.node
|
|
of rkRegisterAddr: x.regAddr = y.regAddr
|
|
of rkNodeAddr: x.nodeAddr = y.nodeAddr
|
|
|
|
# this seems to be the best way to model the reference semantics
|
|
# of system.NimNode:
|
|
template asgnRef(x, y: untyped) = moveConst(x, y)
|
|
|
|
proc copyValue(src: PNode): PNode =
|
|
if src == nil or nfIsRef in src.flags:
|
|
return src
|
|
result = newNode(src.kind)
|
|
result.info = src.info
|
|
result.typ = src.typ
|
|
result.flags = src.flags * PersistentNodeFlags
|
|
result.comment = src.comment
|
|
when defined(useNodeIds):
|
|
if result.id == nodeIdToDebug:
|
|
echo "COMES FROM ", src.id
|
|
case src.kind
|
|
of nkCharLit..nkUInt64Lit: result.intVal = src.intVal
|
|
of nkFloatLit..nkFloat128Lit: result.floatVal = src.floatVal
|
|
of nkSym: result.sym = src.sym
|
|
of nkIdent: result.ident = src.ident
|
|
of nkStrLit..nkTripleStrLit: result.strVal = src.strVal
|
|
else:
|
|
newSeq(result.sons, sonsLen(src))
|
|
for i in countup(0, sonsLen(src) - 1):
|
|
result.sons[i] = copyValue(src.sons[i])
|
|
|
|
proc asgnComplex(x: var TFullReg, y: TFullReg) =
|
|
if x.kind != y.kind:
|
|
myreset(x)
|
|
x.kind = y.kind
|
|
case x.kind
|
|
of rkNone: discard
|
|
of rkInt: x.intVal = y.intVal
|
|
of rkFloat: x.floatVal = y.floatVal
|
|
of rkNode: x.node = copyValue(y.node)
|
|
of rkRegisterAddr: x.regAddr = y.regAddr
|
|
of rkNodeAddr: x.nodeAddr = y.nodeAddr
|
|
|
|
proc writeField(n: var PNode, x: TFullReg) =
|
|
case x.kind
|
|
of rkNone: discard
|
|
of rkInt: n.intVal = x.intVal
|
|
of rkFloat: n.floatVal = x.floatVal
|
|
of rkNode: n = copyValue(x.node)
|
|
of rkRegisterAddr: writeField(n, x.regAddr[])
|
|
of rkNodeAddr: n = x.nodeAddr[]
|
|
|
|
proc putIntoReg(dest: var TFullReg; n: PNode) =
|
|
case n.kind
|
|
of nkStrLit..nkTripleStrLit:
|
|
dest.kind = rkNode
|
|
createStr(dest)
|
|
dest.node.strVal = n.strVal
|
|
of nkCharLit..nkUInt64Lit:
|
|
dest.kind = rkInt
|
|
dest.intVal = n.intVal
|
|
of nkFloatLit..nkFloat128Lit:
|
|
dest.kind = rkFloat
|
|
dest.floatVal = n.floatVal
|
|
else:
|
|
dest.kind = rkNode
|
|
dest.node = n
|
|
|
|
proc regToNode(x: TFullReg): PNode =
|
|
case x.kind
|
|
of rkNone: result = newNode(nkEmpty)
|
|
of rkInt: result = newNode(nkIntLit); result.intVal = x.intVal
|
|
of rkFloat: result = newNode(nkFloatLit); result.floatVal = x.floatVal
|
|
of rkNode: result = x.node
|
|
of rkRegisterAddr: result = regToNode(x.regAddr[])
|
|
of rkNodeAddr: result = x.nodeAddr[]
|
|
|
|
template getstr(a: untyped): untyped =
|
|
(if a.kind == rkNode: a.node.strVal else: $chr(int(a.intVal)))
|
|
|
|
proc pushSafePoint(f: PStackFrame; pc: int) =
|
|
when not defined(nimNoNilSeqs):
|
|
if f.safePoints.isNil: f.safePoints = @[]
|
|
f.safePoints.add(pc)
|
|
|
|
proc popSafePoint(f: PStackFrame) =
|
|
discard f.safePoints.pop()
|
|
|
|
type
|
|
ExceptionGoto = enum
|
|
ExceptionGotoHandler,
|
|
ExceptionGotoFinally,
|
|
ExceptionGotoUnhandled
|
|
|
|
proc findExceptionHandler(c: PCtx, f: PStackFrame, exc: PNode):
|
|
tuple[why: ExceptionGoto, where: int] =
|
|
let raisedType = exc.typ.skipTypes(abstractPtrs)
|
|
|
|
while f.safePoints.len > 0:
|
|
var pc = f.safePoints.pop()
|
|
|
|
var matched = false
|
|
var pcEndExcept = pc
|
|
|
|
# Scan the chain of exceptions starting at pc.
|
|
# The structure is the following:
|
|
# pc - opcExcept, <end of this block>
|
|
# - opcExcept, <pattern1>
|
|
# - opcExcept, <pattern2>
|
|
# ...
|
|
# - opcExcept, <patternN>
|
|
# - Exception handler body
|
|
# - ... more opcExcept blocks may follow
|
|
# - ... an optional opcFinally block may follow
|
|
#
|
|
# Note that the exception handler body already contains a jump to the
|
|
# finally block or, if that's not present, to the point where the execution
|
|
# should continue.
|
|
# Also note that opcFinally blocks are the last in the chain.
|
|
while c.code[pc].opcode == opcExcept:
|
|
# Where this Except block ends
|
|
pcEndExcept = pc + c.code[pc].regBx - wordExcess
|
|
inc pc
|
|
|
|
# A series of opcExcept follows for each exception type matched
|
|
while c.code[pc].opcode == opcExcept:
|
|
let excIndex = c.code[pc].regBx - wordExcess
|
|
let exceptType =
|
|
if excIndex > 0: c.types[excIndex].skipTypes(abstractPtrs)
|
|
else: nil
|
|
|
|
# echo typeToString(exceptType), " ", typeToString(raisedType)
|
|
|
|
# Determine if the exception type matches the pattern
|
|
if exceptType.isNil or inheritanceDiff(raisedType, exceptType) <= 0:
|
|
matched = true
|
|
break
|
|
|
|
inc pc
|
|
|
|
# Skip any further ``except`` pattern and find the first instruction of
|
|
# the handler body
|
|
while c.code[pc].opcode == opcExcept:
|
|
inc pc
|
|
|
|
if matched:
|
|
break
|
|
|
|
# If no handler in this chain is able to catch this exception we check if
|
|
# the "parent" chains are able to. If this chain ends with a `finally`
|
|
# block we must execute it before continuing.
|
|
pc = pcEndExcept
|
|
|
|
# Where the handler body starts
|
|
let pcBody = pc
|
|
|
|
if matched:
|
|
return (ExceptionGotoHandler, pcBody)
|
|
elif c.code[pc].opcode == opcFinally:
|
|
# The +1 here is here because we don't want to execute it since we've
|
|
# already pop'd this statepoint from the stack.
|
|
return (ExceptionGotoFinally, pc + 1)
|
|
|
|
return (ExceptionGotoUnhandled, 0)
|
|
|
|
proc cleanUpOnReturn(c: PCtx; f: PStackFrame): int =
|
|
# Walk up the chain of safepoints and return the PC of the first `finally`
|
|
# block we find or -1 if no such block is found.
|
|
# Note that the safepoint is removed once the function returns!
|
|
result = -1
|
|
|
|
# Traverse the stack starting from the end in order to execute the blocks in
|
|
# the inteded order
|
|
for i in 1 .. f.safePoints.len:
|
|
var pc = f.safePoints[^i]
|
|
# Skip the `except` blocks
|
|
while c.code[pc].opcode == opcExcept:
|
|
pc += c.code[pc].regBx - wordExcess
|
|
if c.code[pc].opcode == opcFinally:
|
|
discard f.safePoints.pop
|
|
return pc + 1
|
|
|
|
proc opConv(c: PCtx; dest: var TFullReg, src: TFullReg, desttyp, srctyp: PType): bool =
|
|
if desttyp.kind == tyString:
|
|
if dest.kind != rkNode:
|
|
myreset(dest)
|
|
dest.kind = rkNode
|
|
dest.node = newNode(nkStrLit)
|
|
let styp = srctyp.skipTypes(abstractRange)
|
|
case styp.kind
|
|
of tyEnum:
|
|
let n = styp.n
|
|
let x = src.intVal.int
|
|
if x <% n.len and (let f = n.sons[x].sym; f.position == x):
|
|
dest.node.strVal = if f.ast.isNil: f.name.s else: f.ast.strVal
|
|
else:
|
|
for i in 0..<n.len:
|
|
if n.sons[i].kind != nkSym: internalError(c.config, "opConv for enum")
|
|
let f = n.sons[i].sym
|
|
if f.position == x:
|
|
dest.node.strVal = if f.ast.isNil: f.name.s else: f.ast.strVal
|
|
return
|
|
dest.node.strVal = styp.sym.name.s & " " & $x
|
|
of tyInt..tyInt64:
|
|
dest.node.strVal = $src.intVal
|
|
of tyUInt..tyUInt64:
|
|
dest.node.strVal = $uint64(src.intVal)
|
|
of tyBool:
|
|
dest.node.strVal = if src.intVal == 0: "false" else: "true"
|
|
of tyFloat..tyFloat128:
|
|
dest.node.strVal = $src.floatVal
|
|
of tyString:
|
|
dest.node.strVal = src.node.strVal
|
|
of tyCString:
|
|
if src.node.kind == nkBracket:
|
|
# Array of chars
|
|
var strVal = ""
|
|
for son in src.node.sons:
|
|
let c = char(son.intVal)
|
|
if c == '\0': break
|
|
strVal.add(c)
|
|
dest.node.strVal = strVal
|
|
else:
|
|
dest.node.strVal = src.node.strVal
|
|
of tyChar:
|
|
dest.node.strVal = $chr(src.intVal)
|
|
else:
|
|
internalError(c.config, "cannot convert to string " & desttyp.typeToString)
|
|
else:
|
|
case skipTypes(desttyp, abstractRange).kind
|
|
of tyInt..tyInt64:
|
|
if dest.kind != rkInt:
|
|
myreset(dest); dest.kind = rkInt
|
|
case skipTypes(srctyp, abstractRange).kind
|
|
of tyFloat..tyFloat64:
|
|
dest.intVal = int(src.floatVal)
|
|
else:
|
|
dest.intVal = src.intVal
|
|
if dest.intVal < firstOrd(c.config, desttyp) or dest.intVal > lastOrd(c.config, desttyp):
|
|
return true
|
|
of tyUInt..tyUInt64:
|
|
if dest.kind != rkInt:
|
|
myreset(dest); dest.kind = rkInt
|
|
case skipTypes(srctyp, abstractRange).kind
|
|
of tyFloat..tyFloat64:
|
|
dest.intVal = int(src.floatVal)
|
|
else:
|
|
let srcDist = (sizeof(src.intVal) - srctyp.size) * 8
|
|
let destDist = (sizeof(dest.intVal) - desttyp.size) * 8
|
|
when system.cpuEndian == bigEndian:
|
|
dest.intVal = (src.intVal shr srcDist) shl srcDist
|
|
dest.intVal = (dest.intVal shr destDist) shl destDist
|
|
else:
|
|
dest.intVal = (src.intVal shl srcDist) shr srcDist
|
|
dest.intVal = (dest.intVal shl destDist) shr destDist
|
|
of tyFloat..tyFloat64:
|
|
if dest.kind != rkFloat:
|
|
myreset(dest); dest.kind = rkFloat
|
|
case skipTypes(srctyp, abstractRange).kind
|
|
of tyInt..tyInt64, tyUInt..tyUInt64, tyEnum, tyBool, tyChar:
|
|
dest.floatVal = toBiggestFloat(src.intVal)
|
|
else:
|
|
dest.floatVal = src.floatVal
|
|
of tyObject:
|
|
if srctyp.skipTypes(abstractRange).kind != tyObject:
|
|
internalError(c.config, "invalid object-to-object conversion")
|
|
# A object-to-object conversion is essentially a no-op
|
|
moveConst(dest, src)
|
|
else:
|
|
asgnComplex(dest, src)
|
|
|
|
proc compile(c: PCtx, s: PSym): int =
|
|
result = vmgen.genProc(c, s)
|
|
when debugEchoCode: c.echoCode result
|
|
#c.echoCode
|
|
|
|
template handleJmpBack() {.dirty.} =
|
|
if c.loopIterations <= 0:
|
|
if allowInfiniteLoops in c.features:
|
|
c.loopIterations = MaxLoopIterations
|
|
else:
|
|
msgWriteln(c.config, "stack trace: (most recent call last)")
|
|
stackTraceAux(c, tos, pc)
|
|
globalError(c.config, c.debug[pc], errTooManyIterations)
|
|
dec(c.loopIterations)
|
|
|
|
proc recSetFlagIsRef(arg: PNode) =
|
|
arg.flags.incl(nfIsRef)
|
|
for i in 0 ..< arg.safeLen:
|
|
arg.sons[i].recSetFlagIsRef
|
|
|
|
proc setLenSeq(c: PCtx; node: PNode; newLen: int; info: TLineInfo) =
|
|
let typ = node.typ.skipTypes(abstractInst+{tyRange}-{tyTypeDesc})
|
|
let oldLen = node.len
|
|
setLen(node.sons, newLen)
|
|
if oldLen < newLen:
|
|
for i in oldLen ..< newLen:
|
|
node.sons[i] = getNullValue(typ.sons[0], info, c.config)
|
|
|
|
const
|
|
errNilAccess = "attempt to access a nil address"
|
|
errOverOrUnderflow = "over- or underflow"
|
|
errConstantDivisionByZero = "division by zero"
|
|
errIllegalConvFromXtoY = "illegal conversion from '$1' to '$2'"
|
|
errTooManyIterations = "interpretation requires too many iterations; " &
|
|
"if you are sure this is not a bug in your code edit " &
|
|
"compiler/vmdef.MaxLoopIterations and rebuild the compiler"
|
|
errFieldXNotFound = "node lacks field: "
|
|
|
|
proc rawExecute(c: PCtx, start: int, tos: PStackFrame): TFullReg =
|
|
var pc = start
|
|
var tos = tos
|
|
# Used to keep track of where the execution is resumed.
|
|
var savedPC = -1
|
|
var savedFrame: PStackFrame
|
|
var regs: seq[TFullReg] # alias to tos.slots for performance
|
|
move(regs, tos.slots)
|
|
#echo "NEW RUN ------------------------"
|
|
while true:
|
|
#{.computedGoto.}
|
|
let instr = c.code[pc]
|
|
let ra = instr.regA
|
|
|
|
when traceCode:
|
|
template regDescr(name, r): string =
|
|
let kind = if r < regs.len: $regs[r].kind else: ""
|
|
let ret = name & ": " & $r & " " & $kind
|
|
alignLeft(ret, 15)
|
|
echo "PC:$pc $opcode $ra $rb $rc" % [
|
|
"pc", $pc, "opcode", alignLeft($c.code[pc].opcode, 15),
|
|
"ra", regDescr("ra", ra), "rb", regDescr("rb", instr.regB),
|
|
"rc", regDescr("rc", instr.regC)]
|
|
|
|
case instr.opcode
|
|
of opcEof: return regs[ra]
|
|
of opcRet:
|
|
let newPc = c.cleanUpOnReturn(tos)
|
|
# Perform any cleanup action before returning
|
|
if newPc < 0:
|
|
pc = tos.comesFrom
|
|
tos = tos.next
|
|
let retVal = regs[0]
|
|
if tos.isNil:
|
|
return retVal
|
|
|
|
move(regs, tos.slots)
|
|
assert c.code[pc].opcode in {opcIndCall, opcIndCallAsgn}
|
|
if c.code[pc].opcode == opcIndCallAsgn:
|
|
regs[c.code[pc].regA] = retVal
|
|
else:
|
|
savedPC = pc
|
|
savedFrame = tos
|
|
# The -1 is needed because at the end of the loop we increment `pc`
|
|
pc = newPc - 1
|
|
of opcYldYoid: assert false
|
|
of opcYldVal: assert false
|
|
of opcAsgnInt:
|
|
decodeB(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal
|
|
of opcAsgnStr:
|
|
decodeBC(rkNode)
|
|
createStrKeepNode regs[ra], rc != 0
|
|
regs[ra].node.strVal = regs[rb].node.strVal
|
|
of opcAsgnFloat:
|
|
decodeB(rkFloat)
|
|
regs[ra].floatVal = regs[rb].floatVal
|
|
of opcAsgnIntFromFloat32:
|
|
let rb = instr.regB
|
|
ensureKind(rkInt)
|
|
regs[ra].intVal = cast[int32](float32(regs[rb].floatVal))
|
|
of opcAsgnIntFromFloat64:
|
|
let rb = instr.regB
|
|
ensureKind(rkInt)
|
|
regs[ra].intVal = cast[int64](regs[rb].floatVal)
|
|
of opcAsgnFloat32FromInt:
|
|
let rb = instr.regB
|
|
ensureKind(rkFloat)
|
|
regs[ra].floatVal = cast[float32](int32(regs[rb].intVal))
|
|
of opcAsgnFloat64FromInt:
|
|
let rb = instr.regB
|
|
ensureKind(rkFloat)
|
|
regs[ra].floatVal = cast[float64](int64(regs[rb].intVal))
|
|
of opcAsgnComplex:
|
|
asgnComplex(regs[ra], regs[instr.regB])
|
|
of opcAsgnRef:
|
|
asgnRef(regs[ra], regs[instr.regB])
|
|
of opcNodeToReg:
|
|
let ra = instr.regA
|
|
let rb = instr.regB
|
|
# opcDeref might already have loaded it into a register. XXX Let's hope
|
|
# this is still correct this way:
|
|
if regs[rb].kind != rkNode:
|
|
regs[ra] = regs[rb]
|
|
else:
|
|
assert regs[rb].kind == rkNode
|
|
let nb = regs[rb].node
|
|
case nb.kind
|
|
of nkCharLit..nkUInt64Lit:
|
|
ensureKind(rkInt)
|
|
regs[ra].intVal = nb.intVal
|
|
of nkFloatLit..nkFloat64Lit:
|
|
ensureKind(rkFloat)
|
|
regs[ra].floatVal = nb.floatVal
|
|
else:
|
|
ensureKind(rkNode)
|
|
regs[ra].node = nb
|
|
of opcLdArr:
|
|
# a = b[c]
|
|
decodeBC(rkNode)
|
|
if regs[rc].intVal > high(int):
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(regs[rc].intVal, high(int)))
|
|
let idx = regs[rc].intVal.int
|
|
let src = regs[rb].node
|
|
if src.kind in {nkStrLit..nkTripleStrLit}:
|
|
if idx <% src.strVal.len:
|
|
regs[ra].node = newNodeI(nkCharLit, c.debug[pc])
|
|
regs[ra].node.intVal = src.strVal[idx].ord
|
|
else:
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.strVal.len-1))
|
|
elif src.kind notin {nkEmpty..nkFloat128Lit} and idx <% src.len:
|
|
regs[ra].node = src.sons[idx]
|
|
else:
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.len-1))
|
|
of opcLdStrIdx:
|
|
decodeBC(rkInt)
|
|
let idx = regs[rc].intVal.int
|
|
let s = regs[rb].node.strVal
|
|
if idx <% s.len:
|
|
regs[ra].intVal = s[idx].ord
|
|
elif idx == s.len and optLaxStrings in c.config.options:
|
|
regs[ra].intVal = 0
|
|
else:
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(idx, s.len-1))
|
|
of opcWrArr:
|
|
# a[b] = c
|
|
decodeBC(rkNode)
|
|
let idx = regs[rb].intVal.int
|
|
let arr = regs[ra].node
|
|
if arr.kind in {nkStrLit..nkTripleStrLit}:
|
|
if idx <% arr.strVal.len:
|
|
arr.strVal[idx] = chr(regs[rc].intVal)
|
|
else:
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(idx, arr.strVal.len-1))
|
|
elif idx <% arr.len:
|
|
writeField(arr.sons[idx], regs[rc])
|
|
else:
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(idx, arr.len-1))
|
|
of opcLdObj:
|
|
# a = b.c
|
|
decodeBC(rkNode)
|
|
let src = regs[rb].node
|
|
case src.kind
|
|
of nkEmpty..nkNilLit:
|
|
stackTrace(c, tos, pc, errNilAccess)
|
|
of nkObjConstr:
|
|
let n = src.sons[rc + 1].skipColon
|
|
regs[ra].node = n
|
|
else:
|
|
let n = src.sons[rc]
|
|
regs[ra].node = n
|
|
of opcWrObj:
|
|
# a.b = c
|
|
decodeBC(rkNode)
|
|
let shiftedRb = rb + ord(regs[ra].node.kind == nkObjConstr)
|
|
let dest = regs[ra].node
|
|
if dest.kind == nkNilLit:
|
|
stackTrace(c, tos, pc, errNilAccess)
|
|
elif dest.sons[shiftedRb].kind == nkExprColonExpr:
|
|
writeField(dest.sons[shiftedRb].sons[1], regs[rc])
|
|
else:
|
|
writeField(dest.sons[shiftedRb], regs[rc])
|
|
of opcWrStrIdx:
|
|
decodeBC(rkNode)
|
|
let idx = regs[rb].intVal.int
|
|
if idx <% regs[ra].node.strVal.len:
|
|
regs[ra].node.strVal[idx] = chr(regs[rc].intVal)
|
|
else:
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(idx, regs[ra].node.strVal.len-1))
|
|
of opcAddrReg:
|
|
decodeB(rkRegisterAddr)
|
|
regs[ra].regAddr = addr(regs[rb])
|
|
of opcAddrNode:
|
|
decodeB(rkNodeAddr)
|
|
if regs[rb].kind == rkNode:
|
|
regs[ra].nodeAddr = addr(regs[rb].node)
|
|
else:
|
|
stackTrace(c, tos, pc, "limited VM support for 'addr'")
|
|
of opcLdDeref:
|
|
# a = b[]
|
|
let ra = instr.regA
|
|
let rb = instr.regB
|
|
case regs[rb].kind
|
|
of rkNodeAddr:
|
|
ensureKind(rkNode)
|
|
regs[ra].node = regs[rb].nodeAddr[]
|
|
of rkRegisterAddr:
|
|
ensureKind(regs[rb].regAddr.kind)
|
|
regs[ra] = regs[rb].regAddr[]
|
|
of rkNode:
|
|
if regs[rb].node.kind == nkNilLit:
|
|
stackTrace(c, tos, pc, errNilAccess)
|
|
if regs[rb].node.kind == nkRefTy:
|
|
regs[ra].node = regs[rb].node.sons[0]
|
|
else:
|
|
ensureKind(rkNode)
|
|
regs[ra].node = regs[rb].node
|
|
else:
|
|
stackTrace(c, tos, pc, errNilAccess)
|
|
of opcWrDeref:
|
|
# a[] = c; b unused
|
|
let ra = instr.regA
|
|
let rc = instr.regC
|
|
case regs[ra].kind
|
|
of rkNodeAddr:
|
|
let n = regs[rc].regToNode
|
|
# `var object` parameters are sent as rkNodeAddr. When they are mutated
|
|
# vmgen generates opcWrDeref, which means that we must dereference
|
|
# twice.
|
|
# TODO: This should likely be handled differently in vmgen.
|
|
if (nfIsRef notin regs[ra].nodeAddr[].flags and
|
|
nfIsRef notin n.flags):
|
|
regs[ra].nodeAddr[][] = n[]
|
|
else:
|
|
regs[ra].nodeAddr[] = n
|
|
of rkRegisterAddr: regs[ra].regAddr[] = regs[rc]
|
|
of rkNode:
|
|
if regs[ra].node.kind == nkNilLit:
|
|
stackTrace(c, tos, pc, errNilAccess)
|
|
assert nfIsRef in regs[ra].node.flags
|
|
regs[ra].node[] = regs[rc].regToNode[]
|
|
regs[ra].node.flags.incl nfIsRef
|
|
else: stackTrace(c, tos, pc, errNilAccess)
|
|
of opcAddInt:
|
|
decodeBC(rkInt)
|
|
let
|
|
bVal = regs[rb].intVal
|
|
cVal = regs[rc].intVal
|
|
sum = bVal +% cVal
|
|
if (sum xor bVal) >= 0 or (sum xor cVal) >= 0:
|
|
regs[ra].intVal = sum
|
|
else:
|
|
stackTrace(c, tos, pc, errOverOrUnderflow)
|
|
of opcAddImmInt:
|
|
decodeBImm(rkInt)
|
|
#message(c.config, c.debug[pc], warnUser, "came here")
|
|
#debug regs[rb].node
|
|
let
|
|
bVal = regs[rb].intVal
|
|
cVal = imm
|
|
sum = bVal +% cVal
|
|
if (sum xor bVal) >= 0 or (sum xor cVal) >= 0:
|
|
regs[ra].intVal = sum
|
|
else:
|
|
stackTrace(c, tos, pc, errOverOrUnderflow)
|
|
of opcSubInt:
|
|
decodeBC(rkInt)
|
|
let
|
|
bVal = regs[rb].intVal
|
|
cVal = regs[rc].intVal
|
|
diff = bVal -% cVal
|
|
if (diff xor bVal) >= 0 or (diff xor not cVal) >= 0:
|
|
regs[ra].intVal = diff
|
|
else:
|
|
stackTrace(c, tos, pc, errOverOrUnderflow)
|
|
of opcSubImmInt:
|
|
decodeBImm(rkInt)
|
|
let
|
|
bVal = regs[rb].intVal
|
|
cVal = imm
|
|
diff = bVal -% cVal
|
|
if (diff xor bVal) >= 0 or (diff xor not cVal) >= 0:
|
|
regs[ra].intVal = diff
|
|
else:
|
|
stackTrace(c, tos, pc, errOverOrUnderflow)
|
|
of opcLenSeq:
|
|
decodeBImm(rkInt)
|
|
#assert regs[rb].kind == nkBracket
|
|
let high = (imm and 1) # discard flags
|
|
if (imm and nimNodeFlag) != 0:
|
|
# used by mNLen (NimNode.len)
|
|
regs[ra].intVal = regs[rb].node.safeLen - high
|
|
else:
|
|
# safeArrLen also return string node len
|
|
# used when string is passed as openArray in VM
|
|
regs[ra].intVal = regs[rb].node.safeArrLen - high
|
|
of opcLenStr:
|
|
decodeBImm(rkInt)
|
|
assert regs[rb].kind == rkNode
|
|
regs[ra].intVal = regs[rb].node.strVal.len - imm
|
|
of opcIncl:
|
|
decodeB(rkNode)
|
|
let b = regs[rb].regToNode
|
|
if not inSet(regs[ra].node, b):
|
|
addSon(regs[ra].node, copyTree(b))
|
|
of opcInclRange:
|
|
decodeBC(rkNode)
|
|
var r = newNode(nkRange)
|
|
r.add regs[rb].regToNode
|
|
r.add regs[rc].regToNode
|
|
addSon(regs[ra].node, r.copyTree)
|
|
of opcExcl:
|
|
decodeB(rkNode)
|
|
var b = newNodeIT(nkCurly, regs[ra].node.info, regs[ra].node.typ)
|
|
addSon(b, regs[rb].regToNode)
|
|
var r = diffSets(c.config, regs[ra].node, b)
|
|
discardSons(regs[ra].node)
|
|
for i in countup(0, sonsLen(r) - 1): addSon(regs[ra].node, r.sons[i])
|
|
of opcCard:
|
|
decodeB(rkInt)
|
|
regs[ra].intVal = nimsets.cardSet(c.config, regs[rb].node)
|
|
of opcMulInt:
|
|
decodeBC(rkInt)
|
|
let
|
|
bVal = regs[rb].intVal
|
|
cVal = regs[rc].intVal
|
|
product = bVal *% cVal
|
|
floatProd = toBiggestFloat(bVal) * toBiggestFloat(cVal)
|
|
resAsFloat = toBiggestFloat(product)
|
|
if resAsFloat == floatProd:
|
|
regs[ra].intVal = product
|
|
elif 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd):
|
|
regs[ra].intVal = product
|
|
else:
|
|
stackTrace(c, tos, pc, errOverOrUnderflow)
|
|
of opcDivInt:
|
|
decodeBC(rkInt)
|
|
if regs[rc].intVal == 0: stackTrace(c, tos, pc, errConstantDivisionByZero)
|
|
else: regs[ra].intVal = regs[rb].intVal div regs[rc].intVal
|
|
of opcModInt:
|
|
decodeBC(rkInt)
|
|
if regs[rc].intVal == 0: stackTrace(c, tos, pc, errConstantDivisionByZero)
|
|
else: regs[ra].intVal = regs[rb].intVal mod regs[rc].intVal
|
|
of opcAddFloat:
|
|
decodeBC(rkFloat)
|
|
regs[ra].floatVal = regs[rb].floatVal + regs[rc].floatVal
|
|
of opcSubFloat:
|
|
decodeBC(rkFloat)
|
|
regs[ra].floatVal = regs[rb].floatVal - regs[rc].floatVal
|
|
of opcMulFloat:
|
|
decodeBC(rkFloat)
|
|
regs[ra].floatVal = regs[rb].floatVal * regs[rc].floatVal
|
|
of opcDivFloat:
|
|
decodeBC(rkFloat)
|
|
regs[ra].floatVal = regs[rb].floatVal / regs[rc].floatVal
|
|
of opcShrInt:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal shr regs[rc].intVal
|
|
of opcShlInt:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal shl regs[rc].intVal
|
|
of opcAshrInt:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ashr(regs[rb].intVal, regs[rc].intVal)
|
|
of opcBitandInt:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal and regs[rc].intVal
|
|
of opcBitorInt:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal or regs[rc].intVal
|
|
of opcBitxorInt:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal xor regs[rc].intVal
|
|
of opcAddu:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal +% regs[rc].intVal
|
|
of opcSubu:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal -% regs[rc].intVal
|
|
of opcMulu:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal *% regs[rc].intVal
|
|
of opcDivu:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal /% regs[rc].intVal
|
|
of opcModu:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal %% regs[rc].intVal
|
|
of opcEqInt:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].intVal == regs[rc].intVal)
|
|
of opcLeInt:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].intVal <= regs[rc].intVal)
|
|
of opcLtInt:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].intVal < regs[rc].intVal)
|
|
of opcEqFloat:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].floatVal == regs[rc].floatVal)
|
|
of opcLeFloat:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].floatVal <= regs[rc].floatVal)
|
|
of opcLtFloat:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].floatVal < regs[rc].floatVal)
|
|
of opcLeu:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].intVal <=% regs[rc].intVal)
|
|
of opcLtu:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].intVal <% regs[rc].intVal)
|
|
of opcEqRef:
|
|
decodeBC(rkInt)
|
|
if regs[rb].kind == rkNodeAddr:
|
|
if regs[rc].kind == rkNodeAddr:
|
|
regs[ra].intVal = ord(regs[rb].nodeAddr == regs[rc].nodeAddr)
|
|
else:
|
|
assert regs[rc].kind == rkNode
|
|
# we know these cannot be equal
|
|
regs[ra].intVal = ord(false)
|
|
elif regs[rc].kind == rkNodeAddr:
|
|
assert regs[rb].kind == rkNode
|
|
# we know these cannot be equal
|
|
regs[ra].intVal = ord(false)
|
|
else:
|
|
regs[ra].intVal = ord((regs[rb].node.kind == nkNilLit and
|
|
regs[rc].node.kind == nkNilLit) or
|
|
regs[rb].node == regs[rc].node)
|
|
of opcEqNimNode:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal =
|
|
ord(exprStructuralEquivalent(regs[rb].node, regs[rc].node,
|
|
strictSymEquality=true))
|
|
of opcSameNodeType:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].node.typ.sameTypeOrNil regs[rc].node.typ)
|
|
of opcXor:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].intVal != regs[rc].intVal)
|
|
of opcNot:
|
|
decodeB(rkInt)
|
|
assert regs[rb].kind == rkInt
|
|
regs[ra].intVal = 1 - regs[rb].intVal
|
|
of opcUnaryMinusInt:
|
|
decodeB(rkInt)
|
|
assert regs[rb].kind == rkInt
|
|
let val = regs[rb].intVal
|
|
if val != int64.low:
|
|
regs[ra].intVal = -val
|
|
else:
|
|
stackTrace(c, tos, pc, errOverOrUnderflow)
|
|
of opcUnaryMinusFloat:
|
|
decodeB(rkFloat)
|
|
assert regs[rb].kind == rkFloat
|
|
regs[ra].floatVal = -regs[rb].floatVal
|
|
of opcBitnotInt:
|
|
decodeB(rkInt)
|
|
assert regs[rb].kind == rkInt
|
|
regs[ra].intVal = not regs[rb].intVal
|
|
of opcEqStr:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].node.strVal == regs[rc].node.strVal)
|
|
of opcLeStr:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].node.strVal <= regs[rc].node.strVal)
|
|
of opcLtStr:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].node.strVal < regs[rc].node.strVal)
|
|
of opcLeSet:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(containsSets(c.config, regs[rb].node, regs[rc].node))
|
|
of opcEqSet:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(equalSets(c.config, regs[rb].node, regs[rc].node))
|
|
of opcLtSet:
|
|
decodeBC(rkInt)
|
|
let a = regs[rb].node
|
|
let b = regs[rc].node
|
|
regs[ra].intVal = ord(containsSets(c.config, a, b) and not equalSets(c.config, a, b))
|
|
of opcMulSet:
|
|
decodeBC(rkNode)
|
|
createSet(regs[ra])
|
|
move(regs[ra].node.sons,
|
|
nimsets.intersectSets(c.config, regs[rb].node, regs[rc].node).sons)
|
|
of opcPlusSet:
|
|
decodeBC(rkNode)
|
|
createSet(regs[ra])
|
|
move(regs[ra].node.sons,
|
|
nimsets.unionSets(c.config, regs[rb].node, regs[rc].node).sons)
|
|
of opcMinusSet:
|
|
decodeBC(rkNode)
|
|
createSet(regs[ra])
|
|
move(regs[ra].node.sons,
|
|
nimsets.diffSets(c.config, regs[rb].node, regs[rc].node).sons)
|
|
of opcSymdiffSet:
|
|
decodeBC(rkNode)
|
|
createSet(regs[ra])
|
|
move(regs[ra].node.sons,
|
|
nimsets.symdiffSets(c.config, regs[rb].node, regs[rc].node).sons)
|
|
of opcConcatStr:
|
|
decodeBC(rkNode)
|
|
createStr regs[ra]
|
|
regs[ra].node.strVal = getstr(regs[rb])
|
|
for i in rb+1..rb+rc-1:
|
|
regs[ra].node.strVal.add getstr(regs[i])
|
|
of opcAddStrCh:
|
|
decodeB(rkNode)
|
|
#createStrKeepNode regs[ra]
|
|
regs[ra].node.strVal.add(regs[rb].intVal.chr)
|
|
of opcAddStrStr:
|
|
decodeB(rkNode)
|
|
#createStrKeepNode regs[ra]
|
|
regs[ra].node.strVal.add(regs[rb].node.strVal)
|
|
of opcAddSeqElem:
|
|
decodeB(rkNode)
|
|
if regs[ra].node.kind == nkBracket:
|
|
regs[ra].node.add(copyValue(regs[rb].regToNode))
|
|
else:
|
|
stackTrace(c, tos, pc, errNilAccess)
|
|
of opcGetImpl:
|
|
decodeB(rkNode)
|
|
var a = regs[rb].node
|
|
if a.kind == nkVarTy: a = a[0]
|
|
if a.kind == nkSym:
|
|
regs[ra].node = if a.sym.ast.isNil: newNode(nkNilLit)
|
|
else: copyTree(a.sym.ast)
|
|
regs[ra].node.flags.incl nfIsRef
|
|
else:
|
|
stackTrace(c, tos, pc, "node is not a symbol")
|
|
of opcGetImplTransf:
|
|
decodeB(rkNode)
|
|
let a = regs[rb].node
|
|
if a.kind == nkSym:
|
|
regs[ra].node = if a.sym.ast.isNil: newNode(nkNilLit)
|
|
else:
|
|
let ast = a.sym.ast.shallowCopy
|
|
for i in 0..<a.sym.ast.len:
|
|
ast[i] = a.sym.ast[i]
|
|
ast[bodyPos] = transformBody(c.graph, a.sym)
|
|
ast.copyTree()
|
|
of opcSymOwner:
|
|
decodeB(rkNode)
|
|
let a = regs[rb].node
|
|
if a.kind == nkSym:
|
|
regs[ra].node = if a.sym.owner.isNil: newNode(nkNilLit)
|
|
else: newSymNode(a.sym.skipGenericOwner)
|
|
regs[ra].node.flags.incl nfIsRef
|
|
else:
|
|
stackTrace(c, tos, pc, "node is not a symbol")
|
|
of opcSymIsInstantiationOf:
|
|
decodeBC(rkInt)
|
|
let a = regs[rb].node
|
|
let b = regs[rc].node
|
|
if a.kind == nkSym and a.sym.kind in skProcKinds and
|
|
b.kind == nkSym and b.sym.kind in skProcKinds:
|
|
regs[ra].intVal =
|
|
if sfFromGeneric in a.sym.flags and a.sym.owner == b.sym: 1
|
|
else: 0
|
|
else:
|
|
stackTrace(c, tos, pc, "node is not a proc symbol")
|
|
of opcEcho:
|
|
let rb = instr.regB
|
|
if rb == 1:
|
|
msgWriteln(c.config, regs[ra].node.strVal, {msgStdout})
|
|
else:
|
|
var outp = ""
|
|
for i in ra..ra+rb-1:
|
|
#if regs[i].kind != rkNode: debug regs[i]
|
|
outp.add(regs[i].node.strVal)
|
|
msgWriteln(c.config, outp, {msgStdout})
|
|
of opcContainsSet:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(inSet(regs[rb].node, regs[rc].regToNode))
|
|
of opcSubStr:
|
|
decodeBC(rkNode)
|
|
inc pc
|
|
assert c.code[pc].opcode == opcSubStr
|
|
let rd = c.code[pc].regA
|
|
createStr regs[ra]
|
|
regs[ra].node.strVal = substr(regs[rb].node.strVal,
|
|
regs[rc].intVal.int, regs[rd].intVal.int)
|
|
of opcParseFloat:
|
|
decodeBC(rkInt)
|
|
inc pc
|
|
assert c.code[pc].opcode == opcParseFloat
|
|
let rd = c.code[pc].regA
|
|
var rcAddr = addr(regs[rc])
|
|
if rcAddr.kind == rkRegisterAddr: rcAddr = rcAddr.regAddr
|
|
elif regs[rc].kind != rkFloat:
|
|
myreset(regs[rc])
|
|
regs[rc].kind = rkFloat
|
|
regs[ra].intVal = parseBiggestFloat(regs[rb].node.strVal,
|
|
rcAddr.floatVal, regs[rd].intVal.int)
|
|
of opcRangeChck:
|
|
let rb = instr.regB
|
|
let rc = instr.regC
|
|
if not (leValueConv(regs[rb].regToNode, regs[ra].regToNode) and
|
|
leValueConv(regs[ra].regToNode, regs[rc].regToNode)):
|
|
stackTrace(c, tos, pc,
|
|
errIllegalConvFromXtoY % [
|
|
$regs[ra].regToNode, "[" & $regs[rb].regToNode & ".." & $regs[rc].regToNode & "]"])
|
|
of opcIndCall, opcIndCallAsgn:
|
|
# dest = call regStart, n; where regStart = fn, arg1, ...
|
|
let rb = instr.regB
|
|
let rc = instr.regC
|
|
let bb = regs[rb].node
|
|
let isClosure = bb.kind == nkTupleConstr
|
|
let prc = if not isClosure: bb.sym else: bb.sons[0].sym
|
|
if prc.offset < -1:
|
|
# it's a callback:
|
|
c.callbacks[-prc.offset-2].value(
|
|
VmArgs(ra: ra, rb: rb, rc: rc, slots: cast[pointer](regs),
|
|
currentException: c.currentExceptionA,
|
|
currentLineInfo: c.debug[pc]))
|
|
elif sfImportc in prc.flags:
|
|
if compiletimeFFI notin c.config.features:
|
|
globalError(c.config, c.debug[pc], "VM not allowed to do FFI, see `compiletimeFFI`")
|
|
# we pass 'tos.slots' instead of 'regs' so that the compiler can keep
|
|
# 'regs' in a register:
|
|
when hasFFI:
|
|
let prcValue = c.globals.sons[prc.position-1]
|
|
if prcValue.kind == nkEmpty:
|
|
globalError(c.config, c.debug[pc], "cannot run " & prc.name.s)
|
|
var slots2: TNodeSeq
|
|
slots2.setLen(tos.slots.len)
|
|
for i in 0..<tos.slots.len:
|
|
slots2[i] = regToNode(tos.slots[i])
|
|
let newValue = callForeignFunction(c.config, prcValue, prc.typ, slots2,
|
|
rb+1, rc-1, c.debug[pc])
|
|
if newValue.kind != nkEmpty:
|
|
assert instr.opcode == opcIndCallAsgn
|
|
putIntoReg(regs[ra], newValue)
|
|
else:
|
|
globalError(c.config, c.debug[pc], "VM not built with FFI support")
|
|
elif prc.kind != skTemplate:
|
|
let newPc = compile(c, prc)
|
|
# tricky: a recursion is also a jump back, so we use the same
|
|
# logic as for loops:
|
|
if newPc < pc: handleJmpBack()
|
|
#echo "new pc ", newPc, " calling: ", prc.name.s
|
|
var newFrame = PStackFrame(prc: prc, comesFrom: pc, next: tos)
|
|
newSeq(newFrame.slots, prc.offset+ord(isClosure))
|
|
if not isEmptyType(prc.typ.sons[0]) or prc.kind == skMacro:
|
|
putIntoReg(newFrame.slots[0], getNullValue(prc.typ.sons[0], prc.info, c.config))
|
|
for i in 1 .. rc-1:
|
|
newFrame.slots[i] = regs[rb+i]
|
|
if isClosure:
|
|
newFrame.slots[rc].kind = rkNode
|
|
newFrame.slots[rc].node = regs[rb].node.sons[1]
|
|
tos = newFrame
|
|
move(regs, newFrame.slots)
|
|
# -1 for the following 'inc pc'
|
|
pc = newPc-1
|
|
else:
|
|
# for 'getAst' support we need to support template expansion here:
|
|
let genSymOwner = if tos.next != nil and tos.next.prc != nil:
|
|
tos.next.prc
|
|
else:
|
|
c.module
|
|
var macroCall = newNodeI(nkCall, c.debug[pc])
|
|
macroCall.add(newSymNode(prc))
|
|
for i in 1 .. rc-1:
|
|
let node = regs[rb+i].regToNode
|
|
node.info = c.debug[pc]
|
|
macroCall.add(node)
|
|
var a = evalTemplate(macroCall, prc, genSymOwner, c.config)
|
|
if a.kind == nkStmtList and a.len == 1: a = a[0]
|
|
a.recSetFlagIsRef
|
|
ensureKind(rkNode)
|
|
regs[ra].node = a
|
|
of opcTJmp:
|
|
# jump Bx if A != 0
|
|
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
|
|
if regs[ra].intVal != 0:
|
|
inc pc, rbx
|
|
of opcFJmp:
|
|
# jump Bx if A == 0
|
|
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
|
|
if regs[ra].intVal == 0:
|
|
inc pc, rbx
|
|
of opcJmp:
|
|
# jump Bx
|
|
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
|
|
inc pc, rbx
|
|
of opcJmpBack:
|
|
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
|
|
inc pc, rbx
|
|
handleJmpBack()
|
|
of opcBranch:
|
|
# we know the next instruction is a 'fjmp':
|
|
let branch = c.constants[instr.regBx-wordExcess]
|
|
var cond = false
|
|
for j in countup(0, sonsLen(branch) - 2):
|
|
if overlap(regs[ra].regToNode, branch.sons[j]):
|
|
cond = true
|
|
break
|
|
assert c.code[pc+1].opcode == opcFJmp
|
|
inc pc
|
|
# we skip this instruction so that the final 'inc(pc)' skips
|
|
# the following jump
|
|
if not cond:
|
|
let instr2 = c.code[pc]
|
|
let rbx = instr2.regBx - wordExcess - 1 # -1 for the following 'inc pc'
|
|
inc pc, rbx
|
|
of opcTry:
|
|
let rbx = instr.regBx - wordExcess
|
|
tos.pushSafePoint(pc + rbx)
|
|
assert c.code[pc+rbx].opcode in {opcExcept, opcFinally}
|
|
of opcExcept:
|
|
# This opcode is never executed, it only holds informations for the
|
|
# exception handling routines.
|
|
doAssert(false)
|
|
of opcFinally:
|
|
# Pop the last safepoint introduced by a opcTry. This opcode is only
|
|
# executed _iff_ no exception was raised in the body of the `try`
|
|
# statement hence the need to pop the safepoint here.
|
|
doAssert(savedPC < 0)
|
|
tos.popSafePoint()
|
|
of opcFinallyEnd:
|
|
# The control flow may not resume at the next instruction since we may be
|
|
# raising an exception or performing a cleanup.
|
|
if not savedPC < 0:
|
|
pc = savedPC - 1
|
|
savedPC = -1
|
|
if tos != savedFrame:
|
|
tos = savedFrame
|
|
move(regs, tos.slots)
|
|
of opcRaise:
|
|
let raised = regs[ra].node
|
|
c.currentExceptionA = raised
|
|
c.exceptionInstr = pc
|
|
|
|
var frame = tos
|
|
var jumpTo = findExceptionHandler(c, frame, raised)
|
|
while jumpTo.why == ExceptionGotoUnhandled and not frame.next.isNil:
|
|
frame = frame.next
|
|
jumpTo = findExceptionHandler(c, frame, raised)
|
|
|
|
case jumpTo.why:
|
|
of ExceptionGotoHandler:
|
|
# Jump to the handler, do nothing when the `finally` block ends.
|
|
savedPC = -1
|
|
pc = jumpTo.where - 1
|
|
if tos != frame:
|
|
tos = frame
|
|
move(regs, tos.slots)
|
|
of ExceptionGotoFinally:
|
|
# Jump to the `finally` block first then re-jump here to continue the
|
|
# traversal of the exception chain
|
|
savedPC = pc
|
|
savedFrame = tos
|
|
pc = jumpTo.where - 1
|
|
if tos != frame:
|
|
tos = frame
|
|
move(regs, tos.slots)
|
|
of ExceptionGotoUnhandled:
|
|
# Nobody handled this exception, error out.
|
|
bailOut(c, tos)
|
|
of opcNew:
|
|
ensureKind(rkNode)
|
|
let typ = c.types[instr.regBx - wordExcess]
|
|
regs[ra].node = getNullValue(typ, c.debug[pc], c.config)
|
|
regs[ra].node.flags.incl nfIsRef
|
|
of opcNewSeq:
|
|
let typ = c.types[instr.regBx - wordExcess]
|
|
inc pc
|
|
ensureKind(rkNode)
|
|
let instr2 = c.code[pc]
|
|
let count = regs[instr2.regA].intVal.int
|
|
regs[ra].node = newNodeI(nkBracket, c.debug[pc])
|
|
regs[ra].node.typ = typ
|
|
newSeq(regs[ra].node.sons, count)
|
|
for i in 0 ..< count:
|
|
regs[ra].node.sons[i] = getNullValue(typ.sons[0], c.debug[pc], c.config)
|
|
of opcNewStr:
|
|
decodeB(rkNode)
|
|
regs[ra].node = newNodeI(nkStrLit, c.debug[pc])
|
|
regs[ra].node.strVal = newString(regs[rb].intVal.int)
|
|
of opcLdImmInt:
|
|
# dest = immediate value
|
|
decodeBx(rkInt)
|
|
regs[ra].intVal = rbx
|
|
of opcLdNull:
|
|
ensureKind(rkNode)
|
|
let typ = c.types[instr.regBx - wordExcess]
|
|
regs[ra].node = getNullValue(typ, c.debug[pc], c.config)
|
|
# opcLdNull really is the gist of the VM's problems: should it load
|
|
# a fresh null to regs[ra].node or to regs[ra].node[]? This really
|
|
# depends on whether regs[ra] represents the variable itself or wether
|
|
# it holds the indirection! Due to the way registers are re-used we cannot
|
|
# say for sure here! --> The codegen has to deal with it
|
|
# via 'genAsgnPatch'.
|
|
of opcLdNullReg:
|
|
let typ = c.types[instr.regBx - wordExcess]
|
|
if typ.skipTypes(abstractInst+{tyRange}-{tyTypeDesc}).kind in {
|
|
tyFloat..tyFloat128}:
|
|
ensureKind(rkFloat)
|
|
regs[ra].floatVal = 0.0
|
|
else:
|
|
ensureKind(rkInt)
|
|
regs[ra].intVal = 0
|
|
of opcLdConst:
|
|
let rb = instr.regBx - wordExcess
|
|
let cnst = c.constants.sons[rb]
|
|
if fitsRegister(cnst.typ):
|
|
myreset(regs[ra])
|
|
putIntoReg(regs[ra], cnst)
|
|
else:
|
|
ensureKind(rkNode)
|
|
regs[ra].node = cnst
|
|
of opcAsgnConst:
|
|
let rb = instr.regBx - wordExcess
|
|
let cnst = c.constants.sons[rb]
|
|
if fitsRegister(cnst.typ):
|
|
putIntoReg(regs[ra], cnst)
|
|
else:
|
|
ensureKind(rkNode)
|
|
regs[ra].node = cnst.copyTree
|
|
of opcLdGlobal:
|
|
let rb = instr.regBx - wordExcess - 1
|
|
ensureKind(rkNode)
|
|
regs[ra].node = c.globals.sons[rb]
|
|
of opcLdGlobalAddr:
|
|
let rb = instr.regBx - wordExcess - 1
|
|
ensureKind(rkNodeAddr)
|
|
regs[ra].nodeAddr = addr(c.globals.sons[rb])
|
|
of opcRepr:
|
|
decodeB(rkNode)
|
|
createStr regs[ra]
|
|
regs[ra].node.strVal = renderTree(regs[rb].regToNode, {renderNoComments, renderDocComments})
|
|
of opcQuit:
|
|
if c.mode in {emRepl, emStaticExpr, emStaticStmt}:
|
|
message(c.config, c.debug[pc], hintQuitCalled)
|
|
msgQuit(int8(getOrdValue(regs[ra].regToNode)))
|
|
else:
|
|
return TFullReg(kind: rkNone)
|
|
of opcSetLenStr:
|
|
decodeB(rkNode)
|
|
#createStrKeepNode regs[ra]
|
|
regs[ra].node.strVal.setLen(regs[rb].intVal.int)
|
|
of opcOf:
|
|
decodeBC(rkInt)
|
|
let typ = c.types[regs[rc].intVal.int]
|
|
regs[ra].intVal = ord(inheritanceDiff(regs[rb].node.typ, typ) <= 0)
|
|
of opcIs:
|
|
decodeBC(rkInt)
|
|
let t1 = regs[rb].node.typ.skipTypes({tyTypeDesc})
|
|
let t2 = c.types[regs[rc].intVal.int]
|
|
# XXX: This should use the standard isOpImpl
|
|
let match = if t2.kind == tyUserTypeClass: true
|
|
else: sameType(t1, t2)
|
|
regs[ra].intVal = ord(match)
|
|
of opcSetLenSeq:
|
|
decodeB(rkNode)
|
|
let newLen = regs[rb].intVal.int
|
|
if regs[ra].node.isNil: stackTrace(c, tos, pc, errNilAccess)
|
|
else: c.setLenSeq(regs[ra].node, newLen, c.debug[pc])
|
|
of opcNarrowS:
|
|
decodeB(rkInt)
|
|
let min = -(1.BiggestInt shl (rb-1))
|
|
let max = (1.BiggestInt shl (rb-1))-1
|
|
if regs[ra].intVal < min or regs[ra].intVal > max:
|
|
stackTrace(c, tos, pc, "unhandled exception: value out of range")
|
|
of opcNarrowU:
|
|
decodeB(rkInt)
|
|
regs[ra].intVal = regs[ra].intVal and ((1'i64 shl rb)-1)
|
|
of opcSignExtend:
|
|
# like opcNarrowS, but no out of range possible
|
|
decodeB(rkInt)
|
|
let imm = 64 - rb
|
|
regs[ra].intVal = ashr(regs[ra].intVal shl imm, imm)
|
|
of opcIsNil:
|
|
decodeB(rkInt)
|
|
let node = regs[rb].node
|
|
regs[ra].intVal = ord(
|
|
# Note that `nfIsRef` + `nkNilLit` represents an allocated
|
|
# reference with the value `nil`, so `isNil` should be false!
|
|
(node.kind == nkNilLit and nfIsRef notin node.flags) or
|
|
(not node.typ.isNil and node.typ.kind == tyProc and
|
|
node.typ.callConv == ccClosure and node.sons[0].kind == nkNilLit and
|
|
node.sons[1].kind == nkNilLit))
|
|
of opcNBindSym:
|
|
# cannot use this simple check
|
|
# if dynamicBindSym notin c.config.features:
|
|
|
|
# bindSym with static input
|
|
decodeBx(rkNode)
|
|
regs[ra].node = copyTree(c.constants.sons[rbx])
|
|
regs[ra].node.flags.incl nfIsRef
|
|
of opcNDynBindSym:
|
|
# experimental bindSym
|
|
let
|
|
rb = instr.regB
|
|
rc = instr.regC
|
|
idx = int(regs[rb+rc-1].intVal)
|
|
callback = c.callbacks[idx].value
|
|
args = VmArgs(ra: ra, rb: rb, rc: rc, slots: cast[pointer](regs),
|
|
currentException: c.currentExceptionA,
|
|
currentLineInfo: c.debug[pc])
|
|
callback(args)
|
|
regs[ra].node.flags.incl nfIsRef
|
|
of opcNChild:
|
|
decodeBC(rkNode)
|
|
let idx = regs[rc].intVal.int
|
|
let src = regs[rb].node
|
|
if src.kind notin {nkEmpty..nkNilLit} and idx <% src.len:
|
|
regs[ra].node = src.sons[idx]
|
|
else:
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.len-1))
|
|
of opcNSetChild:
|
|
decodeBC(rkNode)
|
|
let idx = regs[rb].intVal.int
|
|
var dest = regs[ra].node
|
|
if dest.kind notin {nkEmpty..nkNilLit} and idx <% dest.len:
|
|
dest.sons[idx] = regs[rc].node
|
|
else:
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(idx, dest.len-1))
|
|
of opcNAdd:
|
|
decodeBC(rkNode)
|
|
var u = regs[rb].node
|
|
if u.kind notin {nkEmpty..nkNilLit}:
|
|
u.add(regs[rc].node)
|
|
else:
|
|
stackTrace(c, tos, pc, "cannot add to node kind: " & $u.kind)
|
|
regs[ra].node = u
|
|
of opcNAddMultiple:
|
|
decodeBC(rkNode)
|
|
let x = regs[rc].node
|
|
var u = regs[rb].node
|
|
if u.kind notin {nkEmpty..nkNilLit}:
|
|
# XXX can be optimized:
|
|
for i in 0..<x.len: u.add(x.sons[i])
|
|
else:
|
|
stackTrace(c, tos, pc, "cannot add to node kind: " & $u.kind)
|
|
regs[ra].node = u
|
|
of opcNKind:
|
|
decodeB(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].node.kind)
|
|
c.comesFromHeuristic = regs[rb].node.info
|
|
of opcNSymKind:
|
|
decodeB(rkInt)
|
|
let a = regs[rb].node
|
|
if a.kind == nkSym:
|
|
regs[ra].intVal = ord(a.sym.kind)
|
|
else:
|
|
stackTrace(c, tos, pc, "node is not a symbol")
|
|
c.comesFromHeuristic = regs[rb].node.info
|
|
of opcNIntVal:
|
|
decodeB(rkInt)
|
|
let a = regs[rb].node
|
|
case a.kind
|
|
of nkCharLit..nkUInt64Lit: regs[ra].intVal = a.intVal
|
|
else: stackTrace(c, tos, pc, errFieldXNotFound & "intVal")
|
|
of opcNFloatVal:
|
|
decodeB(rkFloat)
|
|
let a = regs[rb].node
|
|
case a.kind
|
|
of nkFloatLit..nkFloat64Lit: regs[ra].floatVal = a.floatVal
|
|
else: stackTrace(c, tos, pc, errFieldXNotFound & "floatVal")
|
|
of opcNSymbol:
|
|
decodeB(rkNode)
|
|
let a = regs[rb].node
|
|
if a.kind == nkSym:
|
|
regs[ra].node = copyNode(a)
|
|
else:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & "symbol")
|
|
of opcNIdent:
|
|
decodeB(rkNode)
|
|
let a = regs[rb].node
|
|
if a.kind == nkIdent:
|
|
regs[ra].node = copyNode(a)
|
|
else:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & "ident")
|
|
of opcNGetType:
|
|
let rb = instr.regB
|
|
let rc = instr.regC
|
|
case rc
|
|
of 0:
|
|
# getType opcode:
|
|
ensureKind(rkNode)
|
|
if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
|
|
regs[ra].node = opMapTypeToAst(c.cache, regs[rb].node.typ, c.debug[pc])
|
|
elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
|
|
regs[ra].node = opMapTypeToAst(c.cache, regs[rb].node.sym.typ, c.debug[pc])
|
|
else:
|
|
stackTrace(c, tos, pc, "node has no type")
|
|
of 1:
|
|
# typeKind opcode:
|
|
ensureKind(rkInt)
|
|
if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
|
|
regs[ra].intVal = ord(regs[rb].node.typ.kind)
|
|
elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
|
|
regs[ra].intVal = ord(regs[rb].node.sym.typ.kind)
|
|
#else:
|
|
# stackTrace(c, tos, pc, "node has no type")
|
|
of 2:
|
|
# getTypeInst opcode:
|
|
ensureKind(rkNode)
|
|
if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
|
|
regs[ra].node = opMapTypeInstToAst(c.cache, regs[rb].node.typ, c.debug[pc])
|
|
elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
|
|
regs[ra].node = opMapTypeInstToAst(c.cache, regs[rb].node.sym.typ, c.debug[pc])
|
|
else:
|
|
stackTrace(c, tos, pc, "node has no type")
|
|
else:
|
|
# getTypeImpl opcode:
|
|
ensureKind(rkNode)
|
|
if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
|
|
regs[ra].node = opMapTypeImplToAst(c.cache, regs[rb].node.typ, c.debug[pc])
|
|
elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
|
|
regs[ra].node = opMapTypeImplToAst(c.cache, regs[rb].node.sym.typ, c.debug[pc])
|
|
else:
|
|
stackTrace(c, tos, pc, "node has no type")
|
|
of opcNStrVal:
|
|
decodeB(rkNode)
|
|
createStr regs[ra]
|
|
let a = regs[rb].node
|
|
case a.kind
|
|
of nkStrLit..nkTripleStrLit:
|
|
regs[ra].node.strVal = a.strVal
|
|
of nkCommentStmt:
|
|
regs[ra].node.strVal = a.comment
|
|
of nkIdent:
|
|
regs[ra].node.strVal = a.ident.s
|
|
of nkSym:
|
|
regs[ra].node.strVal = a.sym.name.s
|
|
else:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & "strVal")
|
|
of opcNSigHash:
|
|
decodeB(rkNode)
|
|
createStr regs[ra]
|
|
if regs[rb].node.kind != nkSym:
|
|
stackTrace(c, tos, pc, "node is not a symbol")
|
|
else:
|
|
regs[ra].node.strVal = $sigHash(regs[rb].node.sym)
|
|
of opcSlurp:
|
|
decodeB(rkNode)
|
|
createStr regs[ra]
|
|
regs[ra].node.strVal = opSlurp(regs[rb].node.strVal, c.debug[pc],
|
|
c.module, c.config)
|
|
of opcGorge:
|
|
when defined(nimcore):
|
|
decodeBC(rkNode)
|
|
inc pc
|
|
let rd = c.code[pc].regA
|
|
|
|
createStr regs[ra]
|
|
regs[ra].node.strVal = opGorge(regs[rb].node.strVal,
|
|
regs[rc].node.strVal, regs[rd].node.strVal,
|
|
c.debug[pc], c.config)[0]
|
|
else:
|
|
globalError(c.config, c.debug[pc], "VM is not built with 'gorge' support")
|
|
of opcNError, opcNWarning, opcNHint:
|
|
decodeB(rkNode)
|
|
let a = regs[ra].node
|
|
let b = regs[rb].node
|
|
let info = if b.kind == nkNilLit: c.debug[pc] else: b.info
|
|
if instr.opcode == opcNError:
|
|
stackTrace(c, tos, pc, a.strVal, info)
|
|
elif instr.opcode == opcNWarning:
|
|
message(c.config, info, warnUser, a.strVal)
|
|
elif instr.opcode == opcNHint:
|
|
message(c.config, info, hintUser, a.strVal)
|
|
of opcParseExprToAst:
|
|
decodeB(rkNode)
|
|
# c.debug[pc].line.int - countLines(regs[rb].strVal) ?
|
|
var error: string
|
|
let ast = parseString(regs[rb].node.strVal, c.cache, c.config,
|
|
toFullPath(c.config, c.debug[pc]), c.debug[pc].line.int,
|
|
proc (conf: ConfigRef; info: TLineInfo; msg: TMsgKind; arg: string) =
|
|
if error.len == 0 and msg <= errMax:
|
|
error = formatMsg(conf, info, msg, arg))
|
|
if error.len > 0:
|
|
c.errorFlag = error
|
|
elif sonsLen(ast) != 1:
|
|
c.errorFlag = formatMsg(c.config, c.debug[pc], errGenerated,
|
|
"expected expression, but got multiple statements")
|
|
else:
|
|
regs[ra].node = ast.sons[0]
|
|
of opcParseStmtToAst:
|
|
decodeB(rkNode)
|
|
var error: string
|
|
let ast = parseString(regs[rb].node.strVal, c.cache, c.config,
|
|
toFullPath(c.config, c.debug[pc]), c.debug[pc].line.int,
|
|
proc (conf: ConfigRef; info: TLineInfo; msg: TMsgKind; arg: string) =
|
|
if error.len == 0 and msg <= errMax:
|
|
error = formatMsg(conf, info, msg, arg))
|
|
if error.len > 0:
|
|
c.errorFlag = error
|
|
else:
|
|
regs[ra].node = ast
|
|
of opcQueryErrorFlag:
|
|
createStr regs[ra]
|
|
regs[ra].node.strVal = c.errorFlag
|
|
c.errorFlag.setLen 0
|
|
of opcCallSite:
|
|
ensureKind(rkNode)
|
|
if c.callsite != nil: regs[ra].node = c.callsite
|
|
else: stackTrace(c, tos, pc, errFieldXNotFound & "callsite")
|
|
of opcNGetLineInfo:
|
|
decodeBImm(rkNode)
|
|
let n = regs[rb].node
|
|
case imm
|
|
of 0: # getFile
|
|
regs[ra].node = newStrNode(nkStrLit, toFullPath(c.config, n.info))
|
|
of 1: # getLine
|
|
regs[ra].node = newIntNode(nkIntLit, n.info.line.int)
|
|
of 2: # getColumn
|
|
regs[ra].node = newIntNode(nkIntLit, n.info.col)
|
|
else:
|
|
internalAssert c.config, false
|
|
regs[ra].node.info = n.info
|
|
regs[ra].node.typ = n.typ
|
|
of opcNSetLineInfo:
|
|
decodeB(rkNode)
|
|
regs[ra].node.info = regs[rb].node.info
|
|
of opcEqIdent:
|
|
decodeBC(rkInt)
|
|
# aliases for shorter and easier to understand code below
|
|
let aNode = regs[rb].node
|
|
let bNode = regs[rc].node
|
|
# these are cstring to prevent string copy, and cmpIgnoreStyle from
|
|
# takes cstring arguments
|
|
var aStrVal: cstring = nil
|
|
var bStrVal: cstring = nil
|
|
# extract strVal from argument ``a``
|
|
case aNode.kind
|
|
of nkStrLit..nkTripleStrLit:
|
|
aStrVal = aNode.strVal.cstring
|
|
of nkIdent:
|
|
aStrVal = aNode.ident.s.cstring
|
|
of nkSym:
|
|
aStrVal = aNode.sym.name.s.cstring
|
|
of nkOpenSymChoice, nkClosedSymChoice:
|
|
aStrVal = aNode[0].sym.name.s.cstring
|
|
else:
|
|
discard
|
|
# extract strVal from argument ``b``
|
|
case bNode.kind
|
|
of nkStrLit..nkTripleStrLit:
|
|
bStrVal = bNode.strVal.cstring
|
|
of nkIdent:
|
|
bStrVal = bNode.ident.s.cstring
|
|
of nkSym:
|
|
bStrVal = bNode.sym.name.s.cstring
|
|
of nkOpenSymChoice, nkClosedSymChoice:
|
|
bStrVal = bNode[0].sym.name.s.cstring
|
|
else:
|
|
discard
|
|
# set result
|
|
regs[ra].intVal =
|
|
if aStrVal != nil and bStrVal != nil:
|
|
ord(idents.cmpIgnoreStyle(aStrVal, bStrVal, high(int)) == 0)
|
|
else:
|
|
0
|
|
|
|
of opcStrToIdent:
|
|
decodeB(rkNode)
|
|
if regs[rb].node.kind notin {nkStrLit..nkTripleStrLit}:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & "strVal")
|
|
else:
|
|
regs[ra].node = newNodeI(nkIdent, c.debug[pc])
|
|
regs[ra].node.ident = getIdent(c.cache, regs[rb].node.strVal)
|
|
regs[ra].node.flags.incl nfIsRef
|
|
of opcSetType:
|
|
let typ = c.types[instr.regBx - wordExcess]
|
|
if regs[ra].kind != rkNode:
|
|
let temp = regToNode(regs[ra])
|
|
ensureKind(rkNode)
|
|
regs[ra].node = temp
|
|
regs[ra].node.info = c.debug[pc]
|
|
regs[ra].node.typ = typ
|
|
of opcConv:
|
|
let rb = instr.regB
|
|
inc pc
|
|
let desttyp = c.types[c.code[pc].regBx - wordExcess]
|
|
inc pc
|
|
let srctyp = c.types[c.code[pc].regBx - wordExcess]
|
|
|
|
if opConv(c, regs[ra], regs[rb], desttyp, srctyp):
|
|
stackTrace(c, tos, pc,
|
|
errIllegalConvFromXtoY % [
|
|
typeToString(srctyp), typeToString(desttyp)])
|
|
of opcCast:
|
|
let rb = instr.regB
|
|
inc pc
|
|
let desttyp = c.types[c.code[pc].regBx - wordExcess]
|
|
inc pc
|
|
let srctyp = c.types[c.code[pc].regBx - wordExcess]
|
|
|
|
when hasFFI:
|
|
let dest = fficast(c.config, regs[rb].node, desttyp)
|
|
# todo: check whether this is correct
|
|
# asgnRef(regs[ra], dest)
|
|
putIntoReg(regs[ra], dest)
|
|
else:
|
|
globalError(c.config, c.debug[pc], "cannot evaluate cast")
|
|
of opcNSetIntVal:
|
|
decodeB(rkNode)
|
|
var dest = regs[ra].node
|
|
if dest.kind in {nkCharLit..nkUInt64Lit} and
|
|
regs[rb].kind in {rkInt}:
|
|
dest.intVal = regs[rb].intVal
|
|
else:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & "intVal")
|
|
of opcNSetFloatVal:
|
|
decodeB(rkNode)
|
|
var dest = regs[ra].node
|
|
if dest.kind in {nkFloatLit..nkFloat64Lit} and
|
|
regs[rb].kind in {rkFloat}:
|
|
dest.floatVal = regs[rb].floatVal
|
|
else:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & "floatVal")
|
|
of opcNSetSymbol:
|
|
decodeB(rkNode)
|
|
var dest = regs[ra].node
|
|
if dest.kind == nkSym and regs[rb].node.kind == nkSym:
|
|
dest.sym = regs[rb].node.sym
|
|
else:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & "symbol")
|
|
of opcNSetIdent:
|
|
decodeB(rkNode)
|
|
var dest = regs[ra].node
|
|
if dest.kind == nkIdent and regs[rb].node.kind == nkIdent:
|
|
dest.ident = regs[rb].node.ident
|
|
else:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & "ident")
|
|
of opcNSetType:
|
|
decodeB(rkNode)
|
|
let b = regs[rb].node
|
|
internalAssert c.config, b.kind == nkSym and b.sym.kind == skType
|
|
internalAssert c.config, regs[ra].node != nil
|
|
regs[ra].node.typ = b.sym.typ
|
|
of opcNSetStrVal:
|
|
decodeB(rkNode)
|
|
var dest = regs[ra].node
|
|
if dest.kind in {nkStrLit..nkTripleStrLit} and
|
|
regs[rb].kind in {rkNode}:
|
|
dest.strVal = regs[rb].node.strVal
|
|
elif dest.kind == nkCommentStmt and regs[rb].kind in {rkNode}:
|
|
dest.comment = regs[rb].node.strVal
|
|
else:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & "strVal")
|
|
of opcNNewNimNode:
|
|
decodeBC(rkNode)
|
|
var k = regs[rb].intVal
|
|
if k < 0 or k > ord(high(TNodeKind)):
|
|
internalError(c.config, c.debug[pc],
|
|
"request to create a NimNode of invalid kind")
|
|
let cc = regs[rc].node
|
|
|
|
let x = newNodeI(TNodeKind(int(k)),
|
|
if cc.kind != nkNilLit:
|
|
cc.info
|
|
elif c.comesFromHeuristic.line != 0'u16:
|
|
c.comesFromHeuristic
|
|
elif c.callsite != nil and c.callsite.safeLen > 1:
|
|
c.callsite[1].info
|
|
else:
|
|
c.debug[pc])
|
|
x.flags.incl nfIsRef
|
|
# prevent crashes in the compiler resulting from wrong macros:
|
|
if x.kind == nkIdent: x.ident = c.cache.emptyIdent
|
|
regs[ra].node = x
|
|
of opcNCopyNimNode:
|
|
decodeB(rkNode)
|
|
regs[ra].node = copyNode(regs[rb].node)
|
|
of opcNCopyNimTree:
|
|
decodeB(rkNode)
|
|
regs[ra].node = copyTree(regs[rb].node)
|
|
of opcNDel:
|
|
decodeBC(rkNode)
|
|
let bb = regs[rb].intVal.int
|
|
for i in countup(0, regs[rc].intVal.int-1):
|
|
delSon(regs[ra].node, bb)
|
|
of opcGenSym:
|
|
decodeBC(rkNode)
|
|
let k = regs[rb].intVal
|
|
let name = if regs[rc].node.strVal.len == 0: ":tmp"
|
|
else: regs[rc].node.strVal
|
|
if k < 0 or k > ord(high(TSymKind)):
|
|
internalError(c.config, c.debug[pc], "request to create symbol of invalid kind")
|
|
var sym = newSym(k.TSymKind, getIdent(c.cache, name), c.module.owner, c.debug[pc])
|
|
incl(sym.flags, sfGenSym)
|
|
regs[ra].node = newSymNode(sym)
|
|
regs[ra].node.flags.incl nfIsRef
|
|
of opcNccValue:
|
|
decodeB(rkInt)
|
|
let destKey = regs[rb].node.strVal
|
|
regs[ra].intVal = getOrDefault(c.graph.cacheCounters, destKey)
|
|
of opcNccInc:
|
|
let g = c.graph
|
|
let destKey = regs[ra].node.strVal
|
|
let by = regs[instr.regB].intVal
|
|
let v = getOrDefault(g.cacheCounters, destKey)
|
|
g.cacheCounters[destKey] = v+by
|
|
recordInc(c, c.debug[pc], destKey, by)
|
|
of opcNcsAdd:
|
|
let g = c.graph
|
|
let destKey = regs[ra].node.strVal
|
|
let val = regs[instr.regB].node
|
|
if not contains(g.cacheSeqs, destKey):
|
|
g.cacheSeqs[destKey] = newTree(nkStmtList, val)
|
|
# newNodeI(nkStmtList, c.debug[pc])
|
|
else:
|
|
g.cacheSeqs[destKey].add val
|
|
recordAdd(c, c.debug[pc], destKey, val)
|
|
of opcNcsIncl:
|
|
let g = c.graph
|
|
let destKey = regs[ra].node.strVal
|
|
let val = regs[instr.regB].node
|
|
if not contains(g.cacheSeqs, destKey):
|
|
g.cacheSeqs[destKey] = newTree(nkStmtList, val)
|
|
else:
|
|
block search:
|
|
for existing in g.cacheSeqs[destKey]:
|
|
if exprStructuralEquivalent(existing, val, strictSymEquality=true):
|
|
break search
|
|
g.cacheSeqs[destKey].add val
|
|
recordIncl(c, c.debug[pc], destKey, val)
|
|
of opcNcsLen:
|
|
let g = c.graph
|
|
decodeB(rkInt)
|
|
let destKey = regs[rb].node.strVal
|
|
regs[ra].intVal =
|
|
if contains(g.cacheSeqs, destKey): g.cacheSeqs[destKey].len else: 0
|
|
of opcNcsAt:
|
|
let g = c.graph
|
|
decodeBC(rkNode)
|
|
let idx = regs[rc].intVal
|
|
let destKey = regs[rb].node.strVal
|
|
if contains(g.cacheSeqs, destKey) and idx <% g.cacheSeqs[destKey].len:
|
|
regs[ra].node = g.cacheSeqs[destKey][idx.int]
|
|
else:
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(idx, g.cacheSeqs[destKey].len-1))
|
|
of opcNctPut:
|
|
let g = c.graph
|
|
let destKey = regs[ra].node.strVal
|
|
let key = regs[instr.regB].node.strVal
|
|
let val = regs[instr.regC].node
|
|
if not contains(g.cacheTables, destKey):
|
|
g.cacheTables[destKey] = initBTree[string, PNode]()
|
|
if not contains(g.cacheTables[destKey], key):
|
|
g.cacheTables[destKey].add(key, val)
|
|
recordPut(c, c.debug[pc], destKey, key, val)
|
|
else:
|
|
stackTrace(c, tos, pc, "key already exists: " & key)
|
|
of opcNctLen:
|
|
let g = c.graph
|
|
decodeB(rkInt)
|
|
let destKey = regs[rb].node.strVal
|
|
regs[ra].intVal =
|
|
if contains(g.cacheTables, destKey): g.cacheTables[destKey].len else: 0
|
|
of opcNctGet:
|
|
let g = c.graph
|
|
decodeBC(rkNode)
|
|
let destKey = regs[rb].node.strVal
|
|
let key = regs[rc].node.strVal
|
|
if contains(g.cacheTables, destKey):
|
|
if contains(g.cacheTables[destKey], key):
|
|
regs[ra].node = getOrDefault(g.cacheTables[destKey], key)
|
|
else:
|
|
stackTrace(c, tos, pc, "key does not exist: " & key)
|
|
else:
|
|
stackTrace(c, tos, pc, "key does not exist: " & destKey)
|
|
of opcNctHasNext:
|
|
let g = c.graph
|
|
decodeBC(rkInt)
|
|
let destKey = regs[rb].node.strVal
|
|
regs[ra].intVal =
|
|
if g.cacheTables.contains(destKey):
|
|
ord(btrees.hasNext(g.cacheTables[destKey], regs[rc].intVal.int))
|
|
else:
|
|
0
|
|
of opcNctNext:
|
|
let g = c.graph
|
|
decodeBC(rkNode)
|
|
let destKey = regs[rb].node.strVal
|
|
let index = regs[rc].intVal
|
|
if contains(g.cacheTables, destKey):
|
|
let (k, v, nextIndex) = btrees.next(g.cacheTables[destKey], index.int)
|
|
regs[ra].node = newTree(nkTupleConstr, newStrNode(k, c.debug[pc]), v,
|
|
newIntNode(nkIntLit, nextIndex))
|
|
else:
|
|
stackTrace(c, tos, pc, "key does not exist: " & destKey)
|
|
|
|
of opcTypeTrait:
|
|
# XXX only supports 'name' for now; we can use regC to encode the
|
|
# type trait operation
|
|
decodeB(rkNode)
|
|
var typ = regs[rb].node.typ
|
|
internalAssert c.config, typ != nil
|
|
while typ.kind == tyTypeDesc and typ.len > 0: typ = typ.sons[0]
|
|
createStr regs[ra]
|
|
regs[ra].node.strVal = typ.typeToString(preferExported)
|
|
of opcMarshalLoad:
|
|
let ra = instr.regA
|
|
let rb = instr.regB
|
|
inc pc
|
|
let typ = c.types[c.code[pc].regBx - wordExcess]
|
|
putIntoReg(regs[ra], loadAny(regs[rb].node.strVal, typ, c.cache, c.config))
|
|
of opcMarshalStore:
|
|
decodeB(rkNode)
|
|
inc pc
|
|
let typ = c.types[c.code[pc].regBx - wordExcess]
|
|
createStrKeepNode(regs[ra])
|
|
when not defined(nimNoNilSeqs):
|
|
if regs[ra].node.strVal.isNil: regs[ra].node.strVal = newStringOfCap(1000)
|
|
storeAny(regs[ra].node.strVal, typ, regs[rb].regToNode, c.config)
|
|
of opcToNarrowInt:
|
|
decodeBC(rkInt)
|
|
let mask = (1'i64 shl rc) - 1 # 0xFF
|
|
let signbit = 1'i64 shl (rc - 1) # 0x80
|
|
let toggle = mask - signbit # 0x7F
|
|
# algorithm: -((i8 and 0xFF) xor 0x7F) + 0x7F
|
|
# mask off higher bits.
|
|
# uses two's complement to sign-extend integer.
|
|
# reajust integer into desired range.
|
|
regs[ra].intVal = -((regs[rb].intVal and mask) xor toggle) + toggle
|
|
|
|
inc pc
|
|
|
|
proc execute(c: PCtx, start: int): PNode =
|
|
var tos = PStackFrame(prc: nil, comesFrom: 0, next: nil)
|
|
newSeq(tos.slots, c.prc.maxSlots)
|
|
result = rawExecute(c, start, tos).regToNode
|
|
|
|
proc execProc*(c: PCtx; sym: PSym; args: openArray[PNode]): PNode =
|
|
if sym.kind in routineKinds:
|
|
if sym.typ.len-1 != args.len:
|
|
localError(c.config, sym.info,
|
|
"NimScript: expected $# arguments, but got $#" % [
|
|
$(sym.typ.len-1), $args.len])
|
|
else:
|
|
let start = genProc(c, sym)
|
|
|
|
var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil)
|
|
let maxSlots = sym.offset
|
|
newSeq(tos.slots, maxSlots)
|
|
|
|
# setup parameters:
|
|
if not isEmptyType(sym.typ.sons[0]) or sym.kind == skMacro:
|
|
putIntoReg(tos.slots[0], getNullValue(sym.typ.sons[0], sym.info, c.config))
|
|
# XXX We could perform some type checking here.
|
|
for i in 1..<sym.typ.len:
|
|
putIntoReg(tos.slots[i], args[i-1])
|
|
|
|
result = rawExecute(c, start, tos).regToNode
|
|
else:
|
|
localError(c.config, sym.info,
|
|
"NimScript: attempt to call non-routine: " & sym.name.s)
|
|
|
|
proc evalStmt*(c: PCtx, n: PNode) =
|
|
let n = transformExpr(c.graph, c.module, n, noDestructors = true)
|
|
let start = genStmt(c, n)
|
|
# execute new instructions; this redundant opcEof check saves us lots
|
|
# of allocations in 'execute':
|
|
if c.code[start].opcode != opcEof:
|
|
discard execute(c, start)
|
|
|
|
proc evalExpr*(c: PCtx, n: PNode): PNode =
|
|
let n = transformExpr(c.graph, c.module, n, noDestructors = true)
|
|
let start = genExpr(c, n)
|
|
assert c.code[start].opcode != opcEof
|
|
result = execute(c, start)
|
|
|
|
proc getGlobalValue*(c: PCtx; s: PSym): PNode =
|
|
internalAssert c.config, s.kind in {skLet, skVar} and sfGlobal in s.flags
|
|
result = c.globals.sons[s.position-1]
|
|
|
|
include vmops
|
|
|
|
proc setupGlobalCtx*(module: PSym; graph: ModuleGraph) =
|
|
if graph.vm.isNil:
|
|
graph.vm = newCtx(module, graph.cache, graph)
|
|
registerAdditionalOps(PCtx graph.vm)
|
|
else:
|
|
refresh(PCtx graph.vm, module)
|
|
|
|
proc myOpen(graph: ModuleGraph; module: PSym): PPassContext =
|
|
#var c = newEvalContext(module, emRepl)
|
|
#c.features = {allowCast, allowInfiniteLoops}
|
|
#pushStackFrame(c, newStackFrame())
|
|
|
|
# XXX produce a new 'globals' environment here:
|
|
setupGlobalCtx(module, graph)
|
|
result = PCtx graph.vm
|
|
|
|
proc myProcess(c: PPassContext, n: PNode): PNode =
|
|
let c = PCtx(c)
|
|
# don't eval errornous code:
|
|
if c.oldErrorCount == c.config.errorCounter:
|
|
evalStmt(c, n)
|
|
result = newNodeI(nkEmpty, n.info)
|
|
else:
|
|
result = n
|
|
c.oldErrorCount = c.config.errorCounter
|
|
|
|
proc myClose(graph: ModuleGraph; c: PPassContext, n: PNode): PNode =
|
|
myProcess(c, n)
|
|
|
|
const evalPass* = makePass(myOpen, myProcess, myClose)
|
|
|
|
proc evalConstExprAux(module: PSym;
|
|
g: ModuleGraph; prc: PSym, n: PNode,
|
|
mode: TEvalMode): PNode =
|
|
if g.config.errorCounter > 0: return n
|
|
let n = transformExpr(g, module, n, noDestructors = true)
|
|
setupGlobalCtx(module, g)
|
|
var c = PCtx g.vm
|
|
let oldMode = c.mode
|
|
defer: c.mode = oldMode
|
|
c.mode = mode
|
|
let start = genExpr(c, n, requiresValue = mode!=emStaticStmt)
|
|
if c.code[start].opcode == opcEof: return newNodeI(nkEmpty, n.info)
|
|
assert c.code[start].opcode != opcEof
|
|
when debugEchoCode: c.echoCode start
|
|
var tos = PStackFrame(prc: prc, comesFrom: 0, next: nil)
|
|
newSeq(tos.slots, c.prc.maxSlots)
|
|
#for i in 0 ..< c.prc.maxSlots: tos.slots[i] = newNode(nkEmpty)
|
|
result = rawExecute(c, start, tos).regToNode
|
|
if result.info.col < 0: result.info = n.info
|
|
|
|
proc evalConstExpr*(module: PSym; g: ModuleGraph; e: PNode): PNode =
|
|
result = evalConstExprAux(module, g, nil, e, emConst)
|
|
|
|
proc evalStaticExpr*(module: PSym; g: ModuleGraph; e: PNode, prc: PSym): PNode =
|
|
result = evalConstExprAux(module, g, prc, e, emStaticExpr)
|
|
|
|
proc evalStaticStmt*(module: PSym; g: ModuleGraph; e: PNode, prc: PSym) =
|
|
discard evalConstExprAux(module, g, prc, e, emStaticStmt)
|
|
|
|
proc setupCompileTimeVar*(module: PSym; g: ModuleGraph; n: PNode) =
|
|
discard evalConstExprAux(module, g, nil, n, emStaticStmt)
|
|
|
|
proc setupMacroParam(x: PNode, typ: PType): TFullReg =
|
|
case typ.kind
|
|
of tyStatic:
|
|
putIntoReg(result, x)
|
|
of tyTypeDesc:
|
|
putIntoReg(result, x)
|
|
else:
|
|
result.kind = rkNode
|
|
var n = x
|
|
if n.kind in {nkHiddenSubConv, nkHiddenStdConv}: n = n.sons[1]
|
|
n = n.canonValue
|
|
n.flags.incl nfIsRef
|
|
n.typ = x.typ
|
|
result.node = n
|
|
|
|
iterator genericParamsInMacroCall*(macroSym: PSym, call: PNode): (PSym, PNode) =
|
|
let gp = macroSym.ast[genericParamsPos]
|
|
for i in 0 ..< gp.len:
|
|
let genericParam = gp[i].sym
|
|
let posInCall = macroSym.typ.len + i
|
|
yield (genericParam, call[posInCall])
|
|
|
|
# to prevent endless recursion in macro instantiation
|
|
const evalMacroLimit = 1000
|
|
|
|
proc evalMacroCall*(module: PSym; g: ModuleGraph;
|
|
n, nOrig: PNode, sym: PSym): PNode =
|
|
# XXX globalError() is ugly here, but I don't know a better solution for now
|
|
inc(g.config.evalMacroCounter)
|
|
if g.config.evalMacroCounter > evalMacroLimit:
|
|
globalError(g.config, n.info, "macro instantiation too nested")
|
|
|
|
# immediate macros can bypass any type and arity checking so we check the
|
|
# arity here too:
|
|
if sym.typ.len > n.safeLen and sym.typ.len > 1:
|
|
globalError(g.config, n.info, "in call '$#' got $#, but expected $# argument(s)" % [
|
|
n.renderTree, $(n.safeLen-1), $(sym.typ.len-1)])
|
|
|
|
setupGlobalCtx(module, g)
|
|
var c = PCtx g.vm
|
|
c.comesFromHeuristic.line = 0'u16
|
|
|
|
c.callsite = nOrig
|
|
let start = genProc(c, sym)
|
|
|
|
var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil)
|
|
let maxSlots = sym.offset
|
|
newSeq(tos.slots, maxSlots)
|
|
# setup arguments:
|
|
var L = n.safeLen
|
|
if L == 0: L = 1
|
|
# This is wrong for tests/reject/tind1.nim where the passed 'else' part
|
|
# doesn't end up in the parameter:
|
|
#InternalAssert tos.slots.len >= L
|
|
|
|
# return value:
|
|
tos.slots[0].kind = rkNode
|
|
tos.slots[0].node = newNodeI(nkEmpty, n.info)
|
|
|
|
# setup parameters:
|
|
for i in 1..<sym.typ.len:
|
|
tos.slots[i] = setupMacroParam(n.sons[i], sym.typ.sons[i])
|
|
|
|
let gp = sym.ast[genericParamsPos]
|
|
for i in 0 ..< gp.len:
|
|
if sfImmediate notin sym.flags:
|
|
let idx = sym.typ.len + i
|
|
if idx < n.len:
|
|
tos.slots[idx] = setupMacroParam(n.sons[idx], gp[i].sym.typ)
|
|
else:
|
|
dec(g.config.evalMacroCounter)
|
|
c.callsite = nil
|
|
localError(c.config, n.info, "expected " & $gp.len &
|
|
" generic parameter(s)")
|
|
elif gp[i].sym.typ.kind in {tyStatic, tyTypeDesc}:
|
|
dec(g.config.evalMacroCounter)
|
|
c.callsite = nil
|
|
globalError(c.config, n.info, "static[T] or typedesc nor supported for .immediate macros")
|
|
# temporary storage:
|
|
#for i in L ..< maxSlots: tos.slots[i] = newNode(nkEmpty)
|
|
result = rawExecute(c, start, tos).regToNode
|
|
if result.info.line < 0: result.info = n.info
|
|
if cyclicTree(result): globalError(c.config, n.info, "macro produced a cyclic tree")
|
|
dec(g.config.evalMacroCounter)
|
|
c.callsite = nil
|