Files
Nim/compiler/vm.nim
zah ca4b971bc8 Initial version of the hot-code reloading support for native targets (#10729)
* squashed work by Zahary

* squashing a ton of useful history... otherwise rebasing on top of upstream Nim after commit 82c009a2cb would be impossible.

* Code review changes; Working test suite (without code reloading enabled)

* - documentation
- implemented the HCR test - almost works...
- fix the issue on Unix where for executable targets the source file for the main module of a project in nimcache was being overwritten with the binary itself (and thus the actual source code was lost)
- fixing embedded paths to shared objects on unix (the "lib" prefix was being prepended to the entire path instead of just the filename)
- other fixes
- removing unnecessary includes since that file is already included in chcks.nim which is in turn included in system.nim (and previously was getting imported in chcks.nim but then system.nim improts something... and that breaks HCR (perhaps it could be fixed but it would be nice not to import anything in system))

* fix for clang & C++ - explicitly casting a function pointer to void*
more stable mangling of parameter names when HCR is on
the length of the static arrays in the DatInit functions is now part of the name of the variables, so when they get resized they get also recreated
more stable mangling for inline functions - no longer depends on the module which first used them
work on the new complicated HCR test - turned surprisingly complex - WIP
test now successfully passes even when re-running `koch test` (previously when the nimcache wasn't cold that lead to errors)
better documentation
calling setStackBottomWith for PreMain
passes over the HcrInit/DatInit/Init calls of all modules are now in the proper order (first all of one type, then all of the next). Also typeinfo globals are registered (created) in a single pass before the DatInit pass (because of the way generic instantiations are handled)
Fix the test suite execution on macOs
fix for being able to query the program arguments when using HCR on posix!
other fixes

* Bugfix: Fix a compilation error in C++ mode when a function pointer
is converted to a raw pointer

* basic documentation for the new hot code reloading semantics

* Add change log entry

* Don't re-execute the top-level statements while reloading JS code

* fix a number of tests broken in a recent bugfix

* Review changes

* Added {.executeOnReload.} pragma that indicates top-level statements
  that should be executed on each reload. To make this work, I've modified
  the way the `if (hcr_init_) {...}` guards are produced in the init code.
  This still needs more work as the new guards seem to be inserted within
  the previously generated guards.

  This change also removes the need for `lastRegistedGlobal` in nimhcr.

* Implemented the `signatureHash` magic and the `hasModuleChanged` API
  depending on it (the actual logic is not imlemented yet).

* Add the "hcr" prefix to all HCR-related symbols in the system module.
  Added a new `hotcodereloading` module exporting the high-level API to
  the user.

  Besides being more hygienic, this was also required in order to make
  it possible to use macros in the high-level API. Without the split,
  `system` would have to import `macros`, which was going to produce
  the well-known init problems.

* Attempted to solve the "GC markers problem".

  Crashes were expected with the previous code, because the GC markers
  were compiled as normal procs are registered in the GC. When their
  module is unloaded, dangling pointers will remain in the GC tables.
  To solve this issue, I don't register any GC markers when HCR is on,
  but I add them to the HCR globals metadata and I use a single marker
  registed in nimhcr during the initialization of the system module that
  will be responsible for marking all globals.

* fix a compilation error

* - implemented the hasModuleChanged functionality
- tuples can be returned and broken into different vars in global scope
- added comments for the closnig scopes of the if statements in the init proc
- the new executeOnReload pragma works now!
- other fixes

* finally! fixing this hack in a proper way - declaring the destructor out of line (out of the class body) - we no longer need to forward-declare popCurrentExceptionEx

* Force full module parsing

This is a temporary hack that breaks some tests. I'll investigate
later how these can be fixed.

* tuples are now properly handled when global!

* these comments mess up the codegen in debug mode when $n is not actually a new line (or something like that) - these labels are intended only for GOTO labels anyway...

* "solved" the issue with the .pdb locks on windows when a binary is being debugged and hot code reloading is used at the same time

* fixes after rebasing...

* small fixes for the test

* better handling of globals! no more compiler crashes for locals with the global pragma, also simplified code around loops in global scope which have local vars (actually globals)

* we can now use the global pragma even for ... globals!

* the right output

* lets try those boehm GC tests

* after the test is ran it will be at its starting state - no git modifications

* clarification in the docs

* removed unnecessary line directives for forward declarations of functions - they were causing trouble with hot code reloading when no semantic change propagates to the main module but a line directive got changed and thus the main module had to be recompiled since the .c code had changed

* fixed bug! was inserting duplicate keys into the table and later was removing only 1 copy of all the duplicates (after a few reloads)

* no longer breaking into DatInit code when not supposed to

* fixes after rebasing

* yet more fixes after rebasing

* Update jssys.nim

* Rework the HCR path-handling logic

After reviewing the code more carefully, I've noticed that the old logic
will be broken when the user overrides the '--out:f' compiler option.

Besides fixing this issues, I took the opportunity to implement the
missing '--outdir:d' option.

Other changes:

* ./koch test won't overwrite any HCR and RTL builds located in nim/lib
* HCR and RTL are compiled with --threads:on by default

* Clean up the globals registration logic

* Handle non-flattened top-level stmtlists in JS as well

* The HCR is not supported with the Boehm GC yet

Also fixes some typos and the expected output of the HCR integration test

* The GC marker procs are now properly used as trampolines

* Fix the HCR integration test in release builds

* Fix ./koch tools

* this forward declaration doesn't seem to be necessary, and in fact breaks HCR because a 2nd function pointer is emitted for this externed/rtl func

* the forward declaration I removed in the last commit was actually necessary

* Attempt to make all tests green

* Fix tgenscript

* BAT file for running the HCR integration test on Windows [skip ci]

* Fix the docgen tests

* A final fix for Travis (hopefully)
2019-02-26 15:48:55 +01:00

2087 lines
73 KiB
Nim

#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This file implements the new evaluation engine for Nim code.
## An instruction is 1-3 int32s in memory, it is a register based VM.
import ast except getstr
import
strutils, astalgo, msgs, vmdef, vmgen, nimsets, types, passes,
parser, vmdeps, idents, trees, renderer, options, transf, parseutils,
vmmarshal, gorgeimpl, lineinfos, tables, btrees, macrocacheimpl,
sighashes
from semfold import leValueConv, ordinalValToString
from evaltempl import evalTemplate
from modulegraphs import ModuleGraph, PPassContext
const
traceCode = defined(nimVMDebug)
when hasFFI:
import evalffi
type
TRegisterKind = enum
rkNone, rkNode, rkInt, rkFloat, rkRegisterAddr, rkNodeAddr
TFullReg = object # with a custom mark proc, we could use the same
# data representation as LuaJit (tagged NaNs).
case kind: TRegisterKind
of rkNone: nil
of rkInt: intVal: BiggestInt
of rkFloat: floatVal: BiggestFloat
of rkNode: node: PNode
of rkRegisterAddr: regAddr: ptr TFullReg
of rkNodeAddr: nodeAddr: ptr PNode
PStackFrame* = ref TStackFrame
TStackFrame* = object
prc: PSym # current prc; proc that is evaluated
slots: seq[TFullReg] # parameters passed to the proc + locals;
# parameters come first
next: PStackFrame # for stacking
comesFrom: int
safePoints: seq[int] # used for exception handling
# XXX 'break' should perform cleanup actions
# What does the C backend do for it?
proc stackTraceAux(c: PCtx; x: PStackFrame; pc: int; recursionLimit=100) =
if x != nil:
if recursionLimit == 0:
var calls = 0
var x = x
while x != nil:
inc calls
x = x.next
msgWriteln(c.config, $calls & " calls omitted\n")
return
stackTraceAux(c, x.next, x.comesFrom, recursionLimit-1)
var info = c.debug[pc]
# we now use a format similar to the one in lib/system/excpt.nim
var s = ""
# todo: factor with quotedFilename
if optExcessiveStackTrace in c.config.globalOptions:
s = toFullPath(c.config, info)
else:
s = toFilename(c.config, info)
var line = toLinenumber(info)
var col = toColumn(info)
if line > 0:
add(s, '(')
add(s, $line)
add(s, ", ")
add(s, $(col + ColOffset))
add(s, ')')
if x.prc != nil:
for k in 1..max(1, 25-s.len): add(s, ' ')
add(s, x.prc.name.s)
msgWriteln(c.config, s)
proc stackTraceImpl(c: PCtx, tos: PStackFrame, pc: int,
msg: string, lineInfo: TLineInfo) =
msgWriteln(c.config, "stack trace: (most recent call last)")
stackTraceAux(c, tos, pc)
# XXX test if we want 'globalError' for every mode
if c.mode == emRepl: globalError(c.config, lineInfo, msg)
else: localError(c.config, lineInfo, msg)
template stackTrace(c: PCtx, tos: PStackFrame, pc: int,
msg: string, lineInfo: TLineInfo) =
stackTraceImpl(c, tos, pc, msg, lineInfo)
return
template stackTrace(c: PCtx, tos: PStackFrame, pc: int, msg: string) =
stackTraceImpl(c, tos, pc, msg, c.debug[pc])
return
proc bailOut(c: PCtx; tos: PStackFrame) =
stackTrace(c, tos, c.exceptionInstr, "unhandled exception: " &
c.currentExceptionA.sons[3].skipColon.strVal)
when not defined(nimComputedGoto):
{.pragma: computedGoto.}
proc myreset(n: var TFullReg) = reset(n)
template ensureKind(k: untyped) {.dirty.} =
if regs[ra].kind != k:
myreset(regs[ra])
regs[ra].kind = k
template decodeB(k: untyped) {.dirty.} =
let rb = instr.regB
ensureKind(k)
template decodeBC(k: untyped) {.dirty.} =
let rb = instr.regB
let rc = instr.regC
ensureKind(k)
template declBC() {.dirty.} =
let rb = instr.regB
let rc = instr.regC
template decodeBImm(k: untyped) {.dirty.} =
let rb = instr.regB
let imm = instr.regC - byteExcess
ensureKind(k)
template decodeBx(k: untyped) {.dirty.} =
let rbx = instr.regBx - wordExcess
ensureKind(k)
template move(a, b: untyped) {.dirty.} = system.shallowCopy(a, b)
# XXX fix minor 'shallowCopy' overloading bug in compiler
proc createStrKeepNode(x: var TFullReg; keepNode=true) =
if x.node.isNil or not keepNode:
x.node = newNode(nkStrLit)
elif x.node.kind == nkNilLit and keepNode:
when defined(useNodeIds):
let id = x.node.id
system.reset(x.node[])
x.node.kind = nkStrLit
when defined(useNodeIds):
x.node.id = id
elif x.node.kind notin {nkStrLit..nkTripleStrLit} or
nfAllConst in x.node.flags:
# XXX this is hacky; tests/txmlgen triggers it:
x.node = newNode(nkStrLit)
# It not only hackey, it is also wrong for tgentemplate. The primary
# cause of bugs like these is that the VM does not properly distinguish
# between variable defintions (var foo = e) and variable updates (foo = e).
include vmhooks
template createStr(x) =
x.node = newNode(nkStrLit)
template createSet(x) =
x.node = newNode(nkCurly)
proc moveConst(x: var TFullReg, y: TFullReg) =
if x.kind != y.kind:
myreset(x)
x.kind = y.kind
case x.kind
of rkNone: discard
of rkInt: x.intVal = y.intVal
of rkFloat: x.floatVal = y.floatVal
of rkNode: x.node = y.node
of rkRegisterAddr: x.regAddr = y.regAddr
of rkNodeAddr: x.nodeAddr = y.nodeAddr
# this seems to be the best way to model the reference semantics
# of system.NimNode:
template asgnRef(x, y: untyped) = moveConst(x, y)
proc copyValue(src: PNode): PNode =
if src == nil or nfIsRef in src.flags:
return src
result = newNode(src.kind)
result.info = src.info
result.typ = src.typ
result.flags = src.flags * PersistentNodeFlags
result.comment = src.comment
when defined(useNodeIds):
if result.id == nodeIdToDebug:
echo "COMES FROM ", src.id
case src.kind
of nkCharLit..nkUInt64Lit: result.intVal = src.intVal
of nkFloatLit..nkFloat128Lit: result.floatVal = src.floatVal
of nkSym: result.sym = src.sym
of nkIdent: result.ident = src.ident
of nkStrLit..nkTripleStrLit: result.strVal = src.strVal
else:
newSeq(result.sons, sonsLen(src))
for i in countup(0, sonsLen(src) - 1):
result.sons[i] = copyValue(src.sons[i])
proc asgnComplex(x: var TFullReg, y: TFullReg) =
if x.kind != y.kind:
myreset(x)
x.kind = y.kind
case x.kind
of rkNone: discard
of rkInt: x.intVal = y.intVal
of rkFloat: x.floatVal = y.floatVal
of rkNode: x.node = copyValue(y.node)
of rkRegisterAddr: x.regAddr = y.regAddr
of rkNodeAddr: x.nodeAddr = y.nodeAddr
proc writeField(n: var PNode, x: TFullReg) =
case x.kind
of rkNone: discard
of rkInt: n.intVal = x.intVal
of rkFloat: n.floatVal = x.floatVal
of rkNode: n = copyValue(x.node)
of rkRegisterAddr: writeField(n, x.regAddr[])
of rkNodeAddr: n = x.nodeAddr[]
proc putIntoReg(dest: var TFullReg; n: PNode) =
case n.kind
of nkStrLit..nkTripleStrLit:
dest.kind = rkNode
createStr(dest)
dest.node.strVal = n.strVal
of nkCharLit..nkUInt64Lit:
dest.kind = rkInt
dest.intVal = n.intVal
of nkFloatLit..nkFloat128Lit:
dest.kind = rkFloat
dest.floatVal = n.floatVal
else:
dest.kind = rkNode
dest.node = n
proc regToNode(x: TFullReg): PNode =
case x.kind
of rkNone: result = newNode(nkEmpty)
of rkInt: result = newNode(nkIntLit); result.intVal = x.intVal
of rkFloat: result = newNode(nkFloatLit); result.floatVal = x.floatVal
of rkNode: result = x.node
of rkRegisterAddr: result = regToNode(x.regAddr[])
of rkNodeAddr: result = x.nodeAddr[]
template getstr(a: untyped): untyped =
(if a.kind == rkNode: a.node.strVal else: $chr(int(a.intVal)))
proc pushSafePoint(f: PStackFrame; pc: int) =
when not defined(nimNoNilSeqs):
if f.safePoints.isNil: f.safePoints = @[]
f.safePoints.add(pc)
proc popSafePoint(f: PStackFrame) =
discard f.safePoints.pop()
type
ExceptionGoto = enum
ExceptionGotoHandler,
ExceptionGotoFinally,
ExceptionGotoUnhandled
proc findExceptionHandler(c: PCtx, f: PStackFrame, exc: PNode):
tuple[why: ExceptionGoto, where: int] =
let raisedType = exc.typ.skipTypes(abstractPtrs)
while f.safePoints.len > 0:
var pc = f.safePoints.pop()
var matched = false
var pcEndExcept = pc
# Scan the chain of exceptions starting at pc.
# The structure is the following:
# pc - opcExcept, <end of this block>
# - opcExcept, <pattern1>
# - opcExcept, <pattern2>
# ...
# - opcExcept, <patternN>
# - Exception handler body
# - ... more opcExcept blocks may follow
# - ... an optional opcFinally block may follow
#
# Note that the exception handler body already contains a jump to the
# finally block or, if that's not present, to the point where the execution
# should continue.
# Also note that opcFinally blocks are the last in the chain.
while c.code[pc].opcode == opcExcept:
# Where this Except block ends
pcEndExcept = pc + c.code[pc].regBx - wordExcess
inc pc
# A series of opcExcept follows for each exception type matched
while c.code[pc].opcode == opcExcept:
let excIndex = c.code[pc].regBx - wordExcess
let exceptType =
if excIndex > 0: c.types[excIndex].skipTypes(abstractPtrs)
else: nil
# echo typeToString(exceptType), " ", typeToString(raisedType)
# Determine if the exception type matches the pattern
if exceptType.isNil or inheritanceDiff(raisedType, exceptType) <= 0:
matched = true
break
inc pc
# Skip any further ``except`` pattern and find the first instruction of
# the handler body
while c.code[pc].opcode == opcExcept:
inc pc
if matched:
break
# If no handler in this chain is able to catch this exception we check if
# the "parent" chains are able to. If this chain ends with a `finally`
# block we must execute it before continuing.
pc = pcEndExcept
# Where the handler body starts
let pcBody = pc
if matched:
return (ExceptionGotoHandler, pcBody)
elif c.code[pc].opcode == opcFinally:
# The +1 here is here because we don't want to execute it since we've
# already pop'd this statepoint from the stack.
return (ExceptionGotoFinally, pc + 1)
return (ExceptionGotoUnhandled, 0)
proc cleanUpOnReturn(c: PCtx; f: PStackFrame): int =
# Walk up the chain of safepoints and return the PC of the first `finally`
# block we find or -1 if no such block is found.
# Note that the safepoint is removed once the function returns!
result = -1
# Traverse the stack starting from the end in order to execute the blocks in
# the inteded order
for i in 1 .. f.safePoints.len:
var pc = f.safePoints[^i]
# Skip the `except` blocks
while c.code[pc].opcode == opcExcept:
pc += c.code[pc].regBx - wordExcess
if c.code[pc].opcode == opcFinally:
discard f.safePoints.pop
return pc + 1
proc opConv(c: PCtx; dest: var TFullReg, src: TFullReg, desttyp, srctyp: PType): bool =
if desttyp.kind == tyString:
if dest.kind != rkNode:
myreset(dest)
dest.kind = rkNode
dest.node = newNode(nkStrLit)
let styp = srctyp.skipTypes(abstractRange)
case styp.kind
of tyEnum:
let n = styp.n
let x = src.intVal.int
if x <% n.len and (let f = n.sons[x].sym; f.position == x):
dest.node.strVal = if f.ast.isNil: f.name.s else: f.ast.strVal
else:
for i in 0..<n.len:
if n.sons[i].kind != nkSym: internalError(c.config, "opConv for enum")
let f = n.sons[i].sym
if f.position == x:
dest.node.strVal = if f.ast.isNil: f.name.s else: f.ast.strVal
return
dest.node.strVal = styp.sym.name.s & " " & $x
of tyInt..tyInt64:
dest.node.strVal = $src.intVal
of tyUInt..tyUInt64:
dest.node.strVal = $uint64(src.intVal)
of tyBool:
dest.node.strVal = if src.intVal == 0: "false" else: "true"
of tyFloat..tyFloat128:
dest.node.strVal = $src.floatVal
of tyString:
dest.node.strVal = src.node.strVal
of tyCString:
if src.node.kind == nkBracket:
# Array of chars
var strVal = ""
for son in src.node.sons:
let c = char(son.intVal)
if c == '\0': break
strVal.add(c)
dest.node.strVal = strVal
else:
dest.node.strVal = src.node.strVal
of tyChar:
dest.node.strVal = $chr(src.intVal)
else:
internalError(c.config, "cannot convert to string " & desttyp.typeToString)
else:
case skipTypes(desttyp, abstractRange).kind
of tyInt..tyInt64:
if dest.kind != rkInt:
myreset(dest); dest.kind = rkInt
case skipTypes(srctyp, abstractRange).kind
of tyFloat..tyFloat64:
dest.intVal = int(src.floatVal)
else:
dest.intVal = src.intVal
if dest.intVal < firstOrd(c.config, desttyp) or dest.intVal > lastOrd(c.config, desttyp):
return true
of tyUInt..tyUInt64:
if dest.kind != rkInt:
myreset(dest); dest.kind = rkInt
case skipTypes(srctyp, abstractRange).kind
of tyFloat..tyFloat64:
dest.intVal = int(src.floatVal)
else:
let srcDist = (sizeof(src.intVal) - srctyp.size) * 8
let destDist = (sizeof(dest.intVal) - desttyp.size) * 8
when system.cpuEndian == bigEndian:
dest.intVal = (src.intVal shr srcDist) shl srcDist
dest.intVal = (dest.intVal shr destDist) shl destDist
else:
dest.intVal = (src.intVal shl srcDist) shr srcDist
dest.intVal = (dest.intVal shl destDist) shr destDist
of tyFloat..tyFloat64:
if dest.kind != rkFloat:
myreset(dest); dest.kind = rkFloat
case skipTypes(srctyp, abstractRange).kind
of tyInt..tyInt64, tyUInt..tyUInt64, tyEnum, tyBool, tyChar:
dest.floatVal = toBiggestFloat(src.intVal)
else:
dest.floatVal = src.floatVal
of tyObject:
if srctyp.skipTypes(abstractRange).kind != tyObject:
internalError(c.config, "invalid object-to-object conversion")
# A object-to-object conversion is essentially a no-op
moveConst(dest, src)
else:
asgnComplex(dest, src)
proc compile(c: PCtx, s: PSym): int =
result = vmgen.genProc(c, s)
when debugEchoCode: c.echoCode result
#c.echoCode
template handleJmpBack() {.dirty.} =
if c.loopIterations <= 0:
if allowInfiniteLoops in c.features:
c.loopIterations = MaxLoopIterations
else:
msgWriteln(c.config, "stack trace: (most recent call last)")
stackTraceAux(c, tos, pc)
globalError(c.config, c.debug[pc], errTooManyIterations)
dec(c.loopIterations)
proc recSetFlagIsRef(arg: PNode) =
arg.flags.incl(nfIsRef)
for i in 0 ..< arg.safeLen:
arg.sons[i].recSetFlagIsRef
proc setLenSeq(c: PCtx; node: PNode; newLen: int; info: TLineInfo) =
let typ = node.typ.skipTypes(abstractInst+{tyRange}-{tyTypeDesc})
let oldLen = node.len
setLen(node.sons, newLen)
if oldLen < newLen:
for i in oldLen ..< newLen:
node.sons[i] = getNullValue(typ.sons[0], info, c.config)
const
errNilAccess = "attempt to access a nil address"
errOverOrUnderflow = "over- or underflow"
errConstantDivisionByZero = "division by zero"
errIllegalConvFromXtoY = "illegal conversion from '$1' to '$2'"
errTooManyIterations = "interpretation requires too many iterations; " &
"if you are sure this is not a bug in your code edit " &
"compiler/vmdef.MaxLoopIterations and rebuild the compiler"
errFieldXNotFound = "node lacks field: "
proc rawExecute(c: PCtx, start: int, tos: PStackFrame): TFullReg =
var pc = start
var tos = tos
# Used to keep track of where the execution is resumed.
var savedPC = -1
var savedFrame: PStackFrame
var regs: seq[TFullReg] # alias to tos.slots for performance
move(regs, tos.slots)
#echo "NEW RUN ------------------------"
while true:
#{.computedGoto.}
let instr = c.code[pc]
let ra = instr.regA
when traceCode:
template regDescr(name, r): string =
let kind = if r < regs.len: $regs[r].kind else: ""
let ret = name & ": " & $r & " " & $kind
alignLeft(ret, 15)
echo "PC:$pc $opcode $ra $rb $rc" % [
"pc", $pc, "opcode", alignLeft($c.code[pc].opcode, 15),
"ra", regDescr("ra", ra), "rb", regDescr("rb", instr.regB),
"rc", regDescr("rc", instr.regC)]
case instr.opcode
of opcEof: return regs[ra]
of opcRet:
let newPc = c.cleanUpOnReturn(tos)
# Perform any cleanup action before returning
if newPc < 0:
pc = tos.comesFrom
tos = tos.next
let retVal = regs[0]
if tos.isNil:
return retVal
move(regs, tos.slots)
assert c.code[pc].opcode in {opcIndCall, opcIndCallAsgn}
if c.code[pc].opcode == opcIndCallAsgn:
regs[c.code[pc].regA] = retVal
else:
savedPC = pc
savedFrame = tos
# The -1 is needed because at the end of the loop we increment `pc`
pc = newPc - 1
of opcYldYoid: assert false
of opcYldVal: assert false
of opcAsgnInt:
decodeB(rkInt)
regs[ra].intVal = regs[rb].intVal
of opcAsgnStr:
decodeBC(rkNode)
createStrKeepNode regs[ra], rc != 0
regs[ra].node.strVal = regs[rb].node.strVal
of opcAsgnFloat:
decodeB(rkFloat)
regs[ra].floatVal = regs[rb].floatVal
of opcAsgnIntFromFloat32:
let rb = instr.regB
ensureKind(rkInt)
regs[ra].intVal = cast[int32](float32(regs[rb].floatVal))
of opcAsgnIntFromFloat64:
let rb = instr.regB
ensureKind(rkInt)
regs[ra].intVal = cast[int64](regs[rb].floatVal)
of opcAsgnFloat32FromInt:
let rb = instr.regB
ensureKind(rkFloat)
regs[ra].floatVal = cast[float32](int32(regs[rb].intVal))
of opcAsgnFloat64FromInt:
let rb = instr.regB
ensureKind(rkFloat)
regs[ra].floatVal = cast[float64](int64(regs[rb].intVal))
of opcAsgnComplex:
asgnComplex(regs[ra], regs[instr.regB])
of opcAsgnRef:
asgnRef(regs[ra], regs[instr.regB])
of opcNodeToReg:
let ra = instr.regA
let rb = instr.regB
# opcDeref might already have loaded it into a register. XXX Let's hope
# this is still correct this way:
if regs[rb].kind != rkNode:
regs[ra] = regs[rb]
else:
assert regs[rb].kind == rkNode
let nb = regs[rb].node
case nb.kind
of nkCharLit..nkUInt64Lit:
ensureKind(rkInt)
regs[ra].intVal = nb.intVal
of nkFloatLit..nkFloat64Lit:
ensureKind(rkFloat)
regs[ra].floatVal = nb.floatVal
else:
ensureKind(rkNode)
regs[ra].node = nb
of opcLdArr:
# a = b[c]
decodeBC(rkNode)
if regs[rc].intVal > high(int):
stackTrace(c, tos, pc, formatErrorIndexBound(regs[rc].intVal, high(int)))
let idx = regs[rc].intVal.int
let src = regs[rb].node
if src.kind in {nkStrLit..nkTripleStrLit}:
if idx <% src.strVal.len:
regs[ra].node = newNodeI(nkCharLit, c.debug[pc])
regs[ra].node.intVal = src.strVal[idx].ord
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.strVal.len-1))
elif src.kind notin {nkEmpty..nkFloat128Lit} and idx <% src.len:
regs[ra].node = src.sons[idx]
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.len-1))
of opcLdStrIdx:
decodeBC(rkInt)
let idx = regs[rc].intVal.int
let s = regs[rb].node.strVal
if idx <% s.len:
regs[ra].intVal = s[idx].ord
elif idx == s.len and optLaxStrings in c.config.options:
regs[ra].intVal = 0
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, s.len-1))
of opcWrArr:
# a[b] = c
decodeBC(rkNode)
let idx = regs[rb].intVal.int
let arr = regs[ra].node
if arr.kind in {nkStrLit..nkTripleStrLit}:
if idx <% arr.strVal.len:
arr.strVal[idx] = chr(regs[rc].intVal)
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, arr.strVal.len-1))
elif idx <% arr.len:
writeField(arr.sons[idx], regs[rc])
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, arr.len-1))
of opcLdObj:
# a = b.c
decodeBC(rkNode)
let src = regs[rb].node
case src.kind
of nkEmpty..nkNilLit:
stackTrace(c, tos, pc, errNilAccess)
of nkObjConstr:
let n = src.sons[rc + 1].skipColon
regs[ra].node = n
else:
let n = src.sons[rc]
regs[ra].node = n
of opcWrObj:
# a.b = c
decodeBC(rkNode)
let shiftedRb = rb + ord(regs[ra].node.kind == nkObjConstr)
let dest = regs[ra].node
if dest.kind == nkNilLit:
stackTrace(c, tos, pc, errNilAccess)
elif dest.sons[shiftedRb].kind == nkExprColonExpr:
writeField(dest.sons[shiftedRb].sons[1], regs[rc])
else:
writeField(dest.sons[shiftedRb], regs[rc])
of opcWrStrIdx:
decodeBC(rkNode)
let idx = regs[rb].intVal.int
if idx <% regs[ra].node.strVal.len:
regs[ra].node.strVal[idx] = chr(regs[rc].intVal)
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, regs[ra].node.strVal.len-1))
of opcAddrReg:
decodeB(rkRegisterAddr)
regs[ra].regAddr = addr(regs[rb])
of opcAddrNode:
decodeB(rkNodeAddr)
if regs[rb].kind == rkNode:
regs[ra].nodeAddr = addr(regs[rb].node)
else:
stackTrace(c, tos, pc, "limited VM support for 'addr'")
of opcLdDeref:
# a = b[]
let ra = instr.regA
let rb = instr.regB
case regs[rb].kind
of rkNodeAddr:
ensureKind(rkNode)
regs[ra].node = regs[rb].nodeAddr[]
of rkRegisterAddr:
ensureKind(regs[rb].regAddr.kind)
regs[ra] = regs[rb].regAddr[]
of rkNode:
if regs[rb].node.kind == nkNilLit:
stackTrace(c, tos, pc, errNilAccess)
if regs[rb].node.kind == nkRefTy:
regs[ra].node = regs[rb].node.sons[0]
else:
ensureKind(rkNode)
regs[ra].node = regs[rb].node
else:
stackTrace(c, tos, pc, errNilAccess)
of opcWrDeref:
# a[] = c; b unused
let ra = instr.regA
let rc = instr.regC
case regs[ra].kind
of rkNodeAddr:
let n = regs[rc].regToNode
# `var object` parameters are sent as rkNodeAddr. When they are mutated
# vmgen generates opcWrDeref, which means that we must dereference
# twice.
# TODO: This should likely be handled differently in vmgen.
if (nfIsRef notin regs[ra].nodeAddr[].flags and
nfIsRef notin n.flags):
regs[ra].nodeAddr[][] = n[]
else:
regs[ra].nodeAddr[] = n
of rkRegisterAddr: regs[ra].regAddr[] = regs[rc]
of rkNode:
if regs[ra].node.kind == nkNilLit:
stackTrace(c, tos, pc, errNilAccess)
assert nfIsRef in regs[ra].node.flags
regs[ra].node[] = regs[rc].regToNode[]
regs[ra].node.flags.incl nfIsRef
else: stackTrace(c, tos, pc, errNilAccess)
of opcAddInt:
decodeBC(rkInt)
let
bVal = regs[rb].intVal
cVal = regs[rc].intVal
sum = bVal +% cVal
if (sum xor bVal) >= 0 or (sum xor cVal) >= 0:
regs[ra].intVal = sum
else:
stackTrace(c, tos, pc, errOverOrUnderflow)
of opcAddImmInt:
decodeBImm(rkInt)
#message(c.config, c.debug[pc], warnUser, "came here")
#debug regs[rb].node
let
bVal = regs[rb].intVal
cVal = imm
sum = bVal +% cVal
if (sum xor bVal) >= 0 or (sum xor cVal) >= 0:
regs[ra].intVal = sum
else:
stackTrace(c, tos, pc, errOverOrUnderflow)
of opcSubInt:
decodeBC(rkInt)
let
bVal = regs[rb].intVal
cVal = regs[rc].intVal
diff = bVal -% cVal
if (diff xor bVal) >= 0 or (diff xor not cVal) >= 0:
regs[ra].intVal = diff
else:
stackTrace(c, tos, pc, errOverOrUnderflow)
of opcSubImmInt:
decodeBImm(rkInt)
let
bVal = regs[rb].intVal
cVal = imm
diff = bVal -% cVal
if (diff xor bVal) >= 0 or (diff xor not cVal) >= 0:
regs[ra].intVal = diff
else:
stackTrace(c, tos, pc, errOverOrUnderflow)
of opcLenSeq:
decodeBImm(rkInt)
#assert regs[rb].kind == nkBracket
let high = (imm and 1) # discard flags
if (imm and nimNodeFlag) != 0:
# used by mNLen (NimNode.len)
regs[ra].intVal = regs[rb].node.safeLen - high
else:
# safeArrLen also return string node len
# used when string is passed as openArray in VM
regs[ra].intVal = regs[rb].node.safeArrLen - high
of opcLenStr:
decodeBImm(rkInt)
assert regs[rb].kind == rkNode
regs[ra].intVal = regs[rb].node.strVal.len - imm
of opcIncl:
decodeB(rkNode)
let b = regs[rb].regToNode
if not inSet(regs[ra].node, b):
addSon(regs[ra].node, copyTree(b))
of opcInclRange:
decodeBC(rkNode)
var r = newNode(nkRange)
r.add regs[rb].regToNode
r.add regs[rc].regToNode
addSon(regs[ra].node, r.copyTree)
of opcExcl:
decodeB(rkNode)
var b = newNodeIT(nkCurly, regs[ra].node.info, regs[ra].node.typ)
addSon(b, regs[rb].regToNode)
var r = diffSets(c.config, regs[ra].node, b)
discardSons(regs[ra].node)
for i in countup(0, sonsLen(r) - 1): addSon(regs[ra].node, r.sons[i])
of opcCard:
decodeB(rkInt)
regs[ra].intVal = nimsets.cardSet(c.config, regs[rb].node)
of opcMulInt:
decodeBC(rkInt)
let
bVal = regs[rb].intVal
cVal = regs[rc].intVal
product = bVal *% cVal
floatProd = toBiggestFloat(bVal) * toBiggestFloat(cVal)
resAsFloat = toBiggestFloat(product)
if resAsFloat == floatProd:
regs[ra].intVal = product
elif 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd):
regs[ra].intVal = product
else:
stackTrace(c, tos, pc, errOverOrUnderflow)
of opcDivInt:
decodeBC(rkInt)
if regs[rc].intVal == 0: stackTrace(c, tos, pc, errConstantDivisionByZero)
else: regs[ra].intVal = regs[rb].intVal div regs[rc].intVal
of opcModInt:
decodeBC(rkInt)
if regs[rc].intVal == 0: stackTrace(c, tos, pc, errConstantDivisionByZero)
else: regs[ra].intVal = regs[rb].intVal mod regs[rc].intVal
of opcAddFloat:
decodeBC(rkFloat)
regs[ra].floatVal = regs[rb].floatVal + regs[rc].floatVal
of opcSubFloat:
decodeBC(rkFloat)
regs[ra].floatVal = regs[rb].floatVal - regs[rc].floatVal
of opcMulFloat:
decodeBC(rkFloat)
regs[ra].floatVal = regs[rb].floatVal * regs[rc].floatVal
of opcDivFloat:
decodeBC(rkFloat)
regs[ra].floatVal = regs[rb].floatVal / regs[rc].floatVal
of opcShrInt:
decodeBC(rkInt)
regs[ra].intVal = regs[rb].intVal shr regs[rc].intVal
of opcShlInt:
decodeBC(rkInt)
regs[ra].intVal = regs[rb].intVal shl regs[rc].intVal
of opcAshrInt:
decodeBC(rkInt)
regs[ra].intVal = ashr(regs[rb].intVal, regs[rc].intVal)
of opcBitandInt:
decodeBC(rkInt)
regs[ra].intVal = regs[rb].intVal and regs[rc].intVal
of opcBitorInt:
decodeBC(rkInt)
regs[ra].intVal = regs[rb].intVal or regs[rc].intVal
of opcBitxorInt:
decodeBC(rkInt)
regs[ra].intVal = regs[rb].intVal xor regs[rc].intVal
of opcAddu:
decodeBC(rkInt)
regs[ra].intVal = regs[rb].intVal +% regs[rc].intVal
of opcSubu:
decodeBC(rkInt)
regs[ra].intVal = regs[rb].intVal -% regs[rc].intVal
of opcMulu:
decodeBC(rkInt)
regs[ra].intVal = regs[rb].intVal *% regs[rc].intVal
of opcDivu:
decodeBC(rkInt)
regs[ra].intVal = regs[rb].intVal /% regs[rc].intVal
of opcModu:
decodeBC(rkInt)
regs[ra].intVal = regs[rb].intVal %% regs[rc].intVal
of opcEqInt:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].intVal == regs[rc].intVal)
of opcLeInt:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].intVal <= regs[rc].intVal)
of opcLtInt:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].intVal < regs[rc].intVal)
of opcEqFloat:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].floatVal == regs[rc].floatVal)
of opcLeFloat:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].floatVal <= regs[rc].floatVal)
of opcLtFloat:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].floatVal < regs[rc].floatVal)
of opcLeu:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].intVal <=% regs[rc].intVal)
of opcLtu:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].intVal <% regs[rc].intVal)
of opcEqRef:
decodeBC(rkInt)
if regs[rb].kind == rkNodeAddr:
if regs[rc].kind == rkNodeAddr:
regs[ra].intVal = ord(regs[rb].nodeAddr == regs[rc].nodeAddr)
else:
assert regs[rc].kind == rkNode
# we know these cannot be equal
regs[ra].intVal = ord(false)
elif regs[rc].kind == rkNodeAddr:
assert regs[rb].kind == rkNode
# we know these cannot be equal
regs[ra].intVal = ord(false)
else:
regs[ra].intVal = ord((regs[rb].node.kind == nkNilLit and
regs[rc].node.kind == nkNilLit) or
regs[rb].node == regs[rc].node)
of opcEqNimNode:
decodeBC(rkInt)
regs[ra].intVal =
ord(exprStructuralEquivalent(regs[rb].node, regs[rc].node,
strictSymEquality=true))
of opcSameNodeType:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].node.typ.sameTypeOrNil regs[rc].node.typ)
of opcXor:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].intVal != regs[rc].intVal)
of opcNot:
decodeB(rkInt)
assert regs[rb].kind == rkInt
regs[ra].intVal = 1 - regs[rb].intVal
of opcUnaryMinusInt:
decodeB(rkInt)
assert regs[rb].kind == rkInt
let val = regs[rb].intVal
if val != int64.low:
regs[ra].intVal = -val
else:
stackTrace(c, tos, pc, errOverOrUnderflow)
of opcUnaryMinusFloat:
decodeB(rkFloat)
assert regs[rb].kind == rkFloat
regs[ra].floatVal = -regs[rb].floatVal
of opcBitnotInt:
decodeB(rkInt)
assert regs[rb].kind == rkInt
regs[ra].intVal = not regs[rb].intVal
of opcEqStr:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].node.strVal == regs[rc].node.strVal)
of opcLeStr:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].node.strVal <= regs[rc].node.strVal)
of opcLtStr:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].node.strVal < regs[rc].node.strVal)
of opcLeSet:
decodeBC(rkInt)
regs[ra].intVal = ord(containsSets(c.config, regs[rb].node, regs[rc].node))
of opcEqSet:
decodeBC(rkInt)
regs[ra].intVal = ord(equalSets(c.config, regs[rb].node, regs[rc].node))
of opcLtSet:
decodeBC(rkInt)
let a = regs[rb].node
let b = regs[rc].node
regs[ra].intVal = ord(containsSets(c.config, a, b) and not equalSets(c.config, a, b))
of opcMulSet:
decodeBC(rkNode)
createSet(regs[ra])
move(regs[ra].node.sons,
nimsets.intersectSets(c.config, regs[rb].node, regs[rc].node).sons)
of opcPlusSet:
decodeBC(rkNode)
createSet(regs[ra])
move(regs[ra].node.sons,
nimsets.unionSets(c.config, regs[rb].node, regs[rc].node).sons)
of opcMinusSet:
decodeBC(rkNode)
createSet(regs[ra])
move(regs[ra].node.sons,
nimsets.diffSets(c.config, regs[rb].node, regs[rc].node).sons)
of opcSymdiffSet:
decodeBC(rkNode)
createSet(regs[ra])
move(regs[ra].node.sons,
nimsets.symdiffSets(c.config, regs[rb].node, regs[rc].node).sons)
of opcConcatStr:
decodeBC(rkNode)
createStr regs[ra]
regs[ra].node.strVal = getstr(regs[rb])
for i in rb+1..rb+rc-1:
regs[ra].node.strVal.add getstr(regs[i])
of opcAddStrCh:
decodeB(rkNode)
#createStrKeepNode regs[ra]
regs[ra].node.strVal.add(regs[rb].intVal.chr)
of opcAddStrStr:
decodeB(rkNode)
#createStrKeepNode regs[ra]
regs[ra].node.strVal.add(regs[rb].node.strVal)
of opcAddSeqElem:
decodeB(rkNode)
if regs[ra].node.kind == nkBracket:
regs[ra].node.add(copyValue(regs[rb].regToNode))
else:
stackTrace(c, tos, pc, errNilAccess)
of opcGetImpl:
decodeB(rkNode)
var a = regs[rb].node
if a.kind == nkVarTy: a = a[0]
if a.kind == nkSym:
regs[ra].node = if a.sym.ast.isNil: newNode(nkNilLit)
else: copyTree(a.sym.ast)
regs[ra].node.flags.incl nfIsRef
else:
stackTrace(c, tos, pc, "node is not a symbol")
of opcGetImplTransf:
decodeB(rkNode)
let a = regs[rb].node
if a.kind == nkSym:
regs[ra].node = if a.sym.ast.isNil: newNode(nkNilLit)
else:
let ast = a.sym.ast.shallowCopy
for i in 0..<a.sym.ast.len:
ast[i] = a.sym.ast[i]
ast[bodyPos] = transformBody(c.graph, a.sym)
ast.copyTree()
of opcSymOwner:
decodeB(rkNode)
let a = regs[rb].node
if a.kind == nkSym:
regs[ra].node = if a.sym.owner.isNil: newNode(nkNilLit)
else: newSymNode(a.sym.skipGenericOwner)
regs[ra].node.flags.incl nfIsRef
else:
stackTrace(c, tos, pc, "node is not a symbol")
of opcSymIsInstantiationOf:
decodeBC(rkInt)
let a = regs[rb].node
let b = regs[rc].node
if a.kind == nkSym and a.sym.kind in skProcKinds and
b.kind == nkSym and b.sym.kind in skProcKinds:
regs[ra].intVal =
if sfFromGeneric in a.sym.flags and a.sym.owner == b.sym: 1
else: 0
else:
stackTrace(c, tos, pc, "node is not a proc symbol")
of opcEcho:
let rb = instr.regB
if rb == 1:
msgWriteln(c.config, regs[ra].node.strVal, {msgStdout})
else:
var outp = ""
for i in ra..ra+rb-1:
#if regs[i].kind != rkNode: debug regs[i]
outp.add(regs[i].node.strVal)
msgWriteln(c.config, outp, {msgStdout})
of opcContainsSet:
decodeBC(rkInt)
regs[ra].intVal = ord(inSet(regs[rb].node, regs[rc].regToNode))
of opcSubStr:
decodeBC(rkNode)
inc pc
assert c.code[pc].opcode == opcSubStr
let rd = c.code[pc].regA
createStr regs[ra]
regs[ra].node.strVal = substr(regs[rb].node.strVal,
regs[rc].intVal.int, regs[rd].intVal.int)
of opcParseFloat:
decodeBC(rkInt)
inc pc
assert c.code[pc].opcode == opcParseFloat
let rd = c.code[pc].regA
var rcAddr = addr(regs[rc])
if rcAddr.kind == rkRegisterAddr: rcAddr = rcAddr.regAddr
elif regs[rc].kind != rkFloat:
myreset(regs[rc])
regs[rc].kind = rkFloat
regs[ra].intVal = parseBiggestFloat(regs[rb].node.strVal,
rcAddr.floatVal, regs[rd].intVal.int)
of opcRangeChck:
let rb = instr.regB
let rc = instr.regC
if not (leValueConv(regs[rb].regToNode, regs[ra].regToNode) and
leValueConv(regs[ra].regToNode, regs[rc].regToNode)):
stackTrace(c, tos, pc,
errIllegalConvFromXtoY % [
$regs[ra].regToNode, "[" & $regs[rb].regToNode & ".." & $regs[rc].regToNode & "]"])
of opcIndCall, opcIndCallAsgn:
# dest = call regStart, n; where regStart = fn, arg1, ...
let rb = instr.regB
let rc = instr.regC
let bb = regs[rb].node
let isClosure = bb.kind == nkTupleConstr
let prc = if not isClosure: bb.sym else: bb.sons[0].sym
if prc.offset < -1:
# it's a callback:
c.callbacks[-prc.offset-2].value(
VmArgs(ra: ra, rb: rb, rc: rc, slots: cast[pointer](regs),
currentException: c.currentExceptionA,
currentLineInfo: c.debug[pc]))
elif sfImportc in prc.flags:
if compiletimeFFI notin c.config.features:
globalError(c.config, c.debug[pc], "VM not allowed to do FFI, see `compiletimeFFI`")
# we pass 'tos.slots' instead of 'regs' so that the compiler can keep
# 'regs' in a register:
when hasFFI:
let prcValue = c.globals.sons[prc.position-1]
if prcValue.kind == nkEmpty:
globalError(c.config, c.debug[pc], "cannot run " & prc.name.s)
var slots2: TNodeSeq
slots2.setLen(tos.slots.len)
for i in 0..<tos.slots.len:
slots2[i] = regToNode(tos.slots[i])
let newValue = callForeignFunction(c.config, prcValue, prc.typ, slots2,
rb+1, rc-1, c.debug[pc])
if newValue.kind != nkEmpty:
assert instr.opcode == opcIndCallAsgn
putIntoReg(regs[ra], newValue)
else:
globalError(c.config, c.debug[pc], "VM not built with FFI support")
elif prc.kind != skTemplate:
let newPc = compile(c, prc)
# tricky: a recursion is also a jump back, so we use the same
# logic as for loops:
if newPc < pc: handleJmpBack()
#echo "new pc ", newPc, " calling: ", prc.name.s
var newFrame = PStackFrame(prc: prc, comesFrom: pc, next: tos)
newSeq(newFrame.slots, prc.offset+ord(isClosure))
if not isEmptyType(prc.typ.sons[0]) or prc.kind == skMacro:
putIntoReg(newFrame.slots[0], getNullValue(prc.typ.sons[0], prc.info, c.config))
for i in 1 .. rc-1:
newFrame.slots[i] = regs[rb+i]
if isClosure:
newFrame.slots[rc].kind = rkNode
newFrame.slots[rc].node = regs[rb].node.sons[1]
tos = newFrame
move(regs, newFrame.slots)
# -1 for the following 'inc pc'
pc = newPc-1
else:
# for 'getAst' support we need to support template expansion here:
let genSymOwner = if tos.next != nil and tos.next.prc != nil:
tos.next.prc
else:
c.module
var macroCall = newNodeI(nkCall, c.debug[pc])
macroCall.add(newSymNode(prc))
for i in 1 .. rc-1:
let node = regs[rb+i].regToNode
node.info = c.debug[pc]
macroCall.add(node)
var a = evalTemplate(macroCall, prc, genSymOwner, c.config)
if a.kind == nkStmtList and a.len == 1: a = a[0]
a.recSetFlagIsRef
ensureKind(rkNode)
regs[ra].node = a
of opcTJmp:
# jump Bx if A != 0
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
if regs[ra].intVal != 0:
inc pc, rbx
of opcFJmp:
# jump Bx if A == 0
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
if regs[ra].intVal == 0:
inc pc, rbx
of opcJmp:
# jump Bx
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
inc pc, rbx
of opcJmpBack:
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
inc pc, rbx
handleJmpBack()
of opcBranch:
# we know the next instruction is a 'fjmp':
let branch = c.constants[instr.regBx-wordExcess]
var cond = false
for j in countup(0, sonsLen(branch) - 2):
if overlap(regs[ra].regToNode, branch.sons[j]):
cond = true
break
assert c.code[pc+1].opcode == opcFJmp
inc pc
# we skip this instruction so that the final 'inc(pc)' skips
# the following jump
if not cond:
let instr2 = c.code[pc]
let rbx = instr2.regBx - wordExcess - 1 # -1 for the following 'inc pc'
inc pc, rbx
of opcTry:
let rbx = instr.regBx - wordExcess
tos.pushSafePoint(pc + rbx)
assert c.code[pc+rbx].opcode in {opcExcept, opcFinally}
of opcExcept:
# This opcode is never executed, it only holds informations for the
# exception handling routines.
doAssert(false)
of opcFinally:
# Pop the last safepoint introduced by a opcTry. This opcode is only
# executed _iff_ no exception was raised in the body of the `try`
# statement hence the need to pop the safepoint here.
doAssert(savedPC < 0)
tos.popSafePoint()
of opcFinallyEnd:
# The control flow may not resume at the next instruction since we may be
# raising an exception or performing a cleanup.
if not savedPC < 0:
pc = savedPC - 1
savedPC = -1
if tos != savedFrame:
tos = savedFrame
move(regs, tos.slots)
of opcRaise:
let raised = regs[ra].node
c.currentExceptionA = raised
c.exceptionInstr = pc
var frame = tos
var jumpTo = findExceptionHandler(c, frame, raised)
while jumpTo.why == ExceptionGotoUnhandled and not frame.next.isNil:
frame = frame.next
jumpTo = findExceptionHandler(c, frame, raised)
case jumpTo.why:
of ExceptionGotoHandler:
# Jump to the handler, do nothing when the `finally` block ends.
savedPC = -1
pc = jumpTo.where - 1
if tos != frame:
tos = frame
move(regs, tos.slots)
of ExceptionGotoFinally:
# Jump to the `finally` block first then re-jump here to continue the
# traversal of the exception chain
savedPC = pc
savedFrame = tos
pc = jumpTo.where - 1
if tos != frame:
tos = frame
move(regs, tos.slots)
of ExceptionGotoUnhandled:
# Nobody handled this exception, error out.
bailOut(c, tos)
of opcNew:
ensureKind(rkNode)
let typ = c.types[instr.regBx - wordExcess]
regs[ra].node = getNullValue(typ, c.debug[pc], c.config)
regs[ra].node.flags.incl nfIsRef
of opcNewSeq:
let typ = c.types[instr.regBx - wordExcess]
inc pc
ensureKind(rkNode)
let instr2 = c.code[pc]
let count = regs[instr2.regA].intVal.int
regs[ra].node = newNodeI(nkBracket, c.debug[pc])
regs[ra].node.typ = typ
newSeq(regs[ra].node.sons, count)
for i in 0 ..< count:
regs[ra].node.sons[i] = getNullValue(typ.sons[0], c.debug[pc], c.config)
of opcNewStr:
decodeB(rkNode)
regs[ra].node = newNodeI(nkStrLit, c.debug[pc])
regs[ra].node.strVal = newString(regs[rb].intVal.int)
of opcLdImmInt:
# dest = immediate value
decodeBx(rkInt)
regs[ra].intVal = rbx
of opcLdNull:
ensureKind(rkNode)
let typ = c.types[instr.regBx - wordExcess]
regs[ra].node = getNullValue(typ, c.debug[pc], c.config)
# opcLdNull really is the gist of the VM's problems: should it load
# a fresh null to regs[ra].node or to regs[ra].node[]? This really
# depends on whether regs[ra] represents the variable itself or wether
# it holds the indirection! Due to the way registers are re-used we cannot
# say for sure here! --> The codegen has to deal with it
# via 'genAsgnPatch'.
of opcLdNullReg:
let typ = c.types[instr.regBx - wordExcess]
if typ.skipTypes(abstractInst+{tyRange}-{tyTypeDesc}).kind in {
tyFloat..tyFloat128}:
ensureKind(rkFloat)
regs[ra].floatVal = 0.0
else:
ensureKind(rkInt)
regs[ra].intVal = 0
of opcLdConst:
let rb = instr.regBx - wordExcess
let cnst = c.constants.sons[rb]
if fitsRegister(cnst.typ):
myreset(regs[ra])
putIntoReg(regs[ra], cnst)
else:
ensureKind(rkNode)
regs[ra].node = cnst
of opcAsgnConst:
let rb = instr.regBx - wordExcess
let cnst = c.constants.sons[rb]
if fitsRegister(cnst.typ):
putIntoReg(regs[ra], cnst)
else:
ensureKind(rkNode)
regs[ra].node = cnst.copyTree
of opcLdGlobal:
let rb = instr.regBx - wordExcess - 1
ensureKind(rkNode)
regs[ra].node = c.globals.sons[rb]
of opcLdGlobalAddr:
let rb = instr.regBx - wordExcess - 1
ensureKind(rkNodeAddr)
regs[ra].nodeAddr = addr(c.globals.sons[rb])
of opcRepr:
decodeB(rkNode)
createStr regs[ra]
regs[ra].node.strVal = renderTree(regs[rb].regToNode, {renderNoComments, renderDocComments})
of opcQuit:
if c.mode in {emRepl, emStaticExpr, emStaticStmt}:
message(c.config, c.debug[pc], hintQuitCalled)
msgQuit(int8(getOrdValue(regs[ra].regToNode)))
else:
return TFullReg(kind: rkNone)
of opcSetLenStr:
decodeB(rkNode)
#createStrKeepNode regs[ra]
regs[ra].node.strVal.setLen(regs[rb].intVal.int)
of opcOf:
decodeBC(rkInt)
let typ = c.types[regs[rc].intVal.int]
regs[ra].intVal = ord(inheritanceDiff(regs[rb].node.typ, typ) <= 0)
of opcIs:
decodeBC(rkInt)
let t1 = regs[rb].node.typ.skipTypes({tyTypeDesc})
let t2 = c.types[regs[rc].intVal.int]
# XXX: This should use the standard isOpImpl
let match = if t2.kind == tyUserTypeClass: true
else: sameType(t1, t2)
regs[ra].intVal = ord(match)
of opcSetLenSeq:
decodeB(rkNode)
let newLen = regs[rb].intVal.int
if regs[ra].node.isNil: stackTrace(c, tos, pc, errNilAccess)
else: c.setLenSeq(regs[ra].node, newLen, c.debug[pc])
of opcNarrowS:
decodeB(rkInt)
let min = -(1.BiggestInt shl (rb-1))
let max = (1.BiggestInt shl (rb-1))-1
if regs[ra].intVal < min or regs[ra].intVal > max:
stackTrace(c, tos, pc, "unhandled exception: value out of range")
of opcNarrowU:
decodeB(rkInt)
regs[ra].intVal = regs[ra].intVal and ((1'i64 shl rb)-1)
of opcSignExtend:
# like opcNarrowS, but no out of range possible
decodeB(rkInt)
let imm = 64 - rb
regs[ra].intVal = ashr(regs[ra].intVal shl imm, imm)
of opcIsNil:
decodeB(rkInt)
let node = regs[rb].node
regs[ra].intVal = ord(
# Note that `nfIsRef` + `nkNilLit` represents an allocated
# reference with the value `nil`, so `isNil` should be false!
(node.kind == nkNilLit and nfIsRef notin node.flags) or
(not node.typ.isNil and node.typ.kind == tyProc and
node.typ.callConv == ccClosure and node.sons[0].kind == nkNilLit and
node.sons[1].kind == nkNilLit))
of opcNBindSym:
# cannot use this simple check
# if dynamicBindSym notin c.config.features:
# bindSym with static input
decodeBx(rkNode)
regs[ra].node = copyTree(c.constants.sons[rbx])
regs[ra].node.flags.incl nfIsRef
of opcNDynBindSym:
# experimental bindSym
let
rb = instr.regB
rc = instr.regC
idx = int(regs[rb+rc-1].intVal)
callback = c.callbacks[idx].value
args = VmArgs(ra: ra, rb: rb, rc: rc, slots: cast[pointer](regs),
currentException: c.currentExceptionA,
currentLineInfo: c.debug[pc])
callback(args)
regs[ra].node.flags.incl nfIsRef
of opcNChild:
decodeBC(rkNode)
let idx = regs[rc].intVal.int
let src = regs[rb].node
if src.kind notin {nkEmpty..nkNilLit} and idx <% src.len:
regs[ra].node = src.sons[idx]
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.len-1))
of opcNSetChild:
decodeBC(rkNode)
let idx = regs[rb].intVal.int
var dest = regs[ra].node
if dest.kind notin {nkEmpty..nkNilLit} and idx <% dest.len:
dest.sons[idx] = regs[rc].node
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, dest.len-1))
of opcNAdd:
decodeBC(rkNode)
var u = regs[rb].node
if u.kind notin {nkEmpty..nkNilLit}:
u.add(regs[rc].node)
else:
stackTrace(c, tos, pc, "cannot add to node kind: " & $u.kind)
regs[ra].node = u
of opcNAddMultiple:
decodeBC(rkNode)
let x = regs[rc].node
var u = regs[rb].node
if u.kind notin {nkEmpty..nkNilLit}:
# XXX can be optimized:
for i in 0..<x.len: u.add(x.sons[i])
else:
stackTrace(c, tos, pc, "cannot add to node kind: " & $u.kind)
regs[ra].node = u
of opcNKind:
decodeB(rkInt)
regs[ra].intVal = ord(regs[rb].node.kind)
c.comesFromHeuristic = regs[rb].node.info
of opcNSymKind:
decodeB(rkInt)
let a = regs[rb].node
if a.kind == nkSym:
regs[ra].intVal = ord(a.sym.kind)
else:
stackTrace(c, tos, pc, "node is not a symbol")
c.comesFromHeuristic = regs[rb].node.info
of opcNIntVal:
decodeB(rkInt)
let a = regs[rb].node
case a.kind
of nkCharLit..nkUInt64Lit: regs[ra].intVal = a.intVal
else: stackTrace(c, tos, pc, errFieldXNotFound & "intVal")
of opcNFloatVal:
decodeB(rkFloat)
let a = regs[rb].node
case a.kind
of nkFloatLit..nkFloat64Lit: regs[ra].floatVal = a.floatVal
else: stackTrace(c, tos, pc, errFieldXNotFound & "floatVal")
of opcNSymbol:
decodeB(rkNode)
let a = regs[rb].node
if a.kind == nkSym:
regs[ra].node = copyNode(a)
else:
stackTrace(c, tos, pc, errFieldXNotFound & "symbol")
of opcNIdent:
decodeB(rkNode)
let a = regs[rb].node
if a.kind == nkIdent:
regs[ra].node = copyNode(a)
else:
stackTrace(c, tos, pc, errFieldXNotFound & "ident")
of opcNGetType:
let rb = instr.regB
let rc = instr.regC
case rc
of 0:
# getType opcode:
ensureKind(rkNode)
if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
regs[ra].node = opMapTypeToAst(c.cache, regs[rb].node.typ, c.debug[pc])
elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
regs[ra].node = opMapTypeToAst(c.cache, regs[rb].node.sym.typ, c.debug[pc])
else:
stackTrace(c, tos, pc, "node has no type")
of 1:
# typeKind opcode:
ensureKind(rkInt)
if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
regs[ra].intVal = ord(regs[rb].node.typ.kind)
elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
regs[ra].intVal = ord(regs[rb].node.sym.typ.kind)
#else:
# stackTrace(c, tos, pc, "node has no type")
of 2:
# getTypeInst opcode:
ensureKind(rkNode)
if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
regs[ra].node = opMapTypeInstToAst(c.cache, regs[rb].node.typ, c.debug[pc])
elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
regs[ra].node = opMapTypeInstToAst(c.cache, regs[rb].node.sym.typ, c.debug[pc])
else:
stackTrace(c, tos, pc, "node has no type")
else:
# getTypeImpl opcode:
ensureKind(rkNode)
if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
regs[ra].node = opMapTypeImplToAst(c.cache, regs[rb].node.typ, c.debug[pc])
elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
regs[ra].node = opMapTypeImplToAst(c.cache, regs[rb].node.sym.typ, c.debug[pc])
else:
stackTrace(c, tos, pc, "node has no type")
of opcNStrVal:
decodeB(rkNode)
createStr regs[ra]
let a = regs[rb].node
case a.kind
of nkStrLit..nkTripleStrLit:
regs[ra].node.strVal = a.strVal
of nkCommentStmt:
regs[ra].node.strVal = a.comment
of nkIdent:
regs[ra].node.strVal = a.ident.s
of nkSym:
regs[ra].node.strVal = a.sym.name.s
else:
stackTrace(c, tos, pc, errFieldXNotFound & "strVal")
of opcNSigHash:
decodeB(rkNode)
createStr regs[ra]
if regs[rb].node.kind != nkSym:
stackTrace(c, tos, pc, "node is not a symbol")
else:
regs[ra].node.strVal = $sigHash(regs[rb].node.sym)
of opcSlurp:
decodeB(rkNode)
createStr regs[ra]
regs[ra].node.strVal = opSlurp(regs[rb].node.strVal, c.debug[pc],
c.module, c.config)
of opcGorge:
when defined(nimcore):
decodeBC(rkNode)
inc pc
let rd = c.code[pc].regA
createStr regs[ra]
regs[ra].node.strVal = opGorge(regs[rb].node.strVal,
regs[rc].node.strVal, regs[rd].node.strVal,
c.debug[pc], c.config)[0]
else:
globalError(c.config, c.debug[pc], "VM is not built with 'gorge' support")
of opcNError, opcNWarning, opcNHint:
decodeB(rkNode)
let a = regs[ra].node
let b = regs[rb].node
let info = if b.kind == nkNilLit: c.debug[pc] else: b.info
if instr.opcode == opcNError:
stackTrace(c, tos, pc, a.strVal, info)
elif instr.opcode == opcNWarning:
message(c.config, info, warnUser, a.strVal)
elif instr.opcode == opcNHint:
message(c.config, info, hintUser, a.strVal)
of opcParseExprToAst:
decodeB(rkNode)
# c.debug[pc].line.int - countLines(regs[rb].strVal) ?
var error: string
let ast = parseString(regs[rb].node.strVal, c.cache, c.config,
toFullPath(c.config, c.debug[pc]), c.debug[pc].line.int,
proc (conf: ConfigRef; info: TLineInfo; msg: TMsgKind; arg: string) =
if error.len == 0 and msg <= errMax:
error = formatMsg(conf, info, msg, arg))
if error.len > 0:
c.errorFlag = error
elif sonsLen(ast) != 1:
c.errorFlag = formatMsg(c.config, c.debug[pc], errGenerated,
"expected expression, but got multiple statements")
else:
regs[ra].node = ast.sons[0]
of opcParseStmtToAst:
decodeB(rkNode)
var error: string
let ast = parseString(regs[rb].node.strVal, c.cache, c.config,
toFullPath(c.config, c.debug[pc]), c.debug[pc].line.int,
proc (conf: ConfigRef; info: TLineInfo; msg: TMsgKind; arg: string) =
if error.len == 0 and msg <= errMax:
error = formatMsg(conf, info, msg, arg))
if error.len > 0:
c.errorFlag = error
else:
regs[ra].node = ast
of opcQueryErrorFlag:
createStr regs[ra]
regs[ra].node.strVal = c.errorFlag
c.errorFlag.setLen 0
of opcCallSite:
ensureKind(rkNode)
if c.callsite != nil: regs[ra].node = c.callsite
else: stackTrace(c, tos, pc, errFieldXNotFound & "callsite")
of opcNGetLineInfo:
decodeBImm(rkNode)
let n = regs[rb].node
case imm
of 0: # getFile
regs[ra].node = newStrNode(nkStrLit, toFullPath(c.config, n.info))
of 1: # getLine
regs[ra].node = newIntNode(nkIntLit, n.info.line.int)
of 2: # getColumn
regs[ra].node = newIntNode(nkIntLit, n.info.col)
else:
internalAssert c.config, false
regs[ra].node.info = n.info
regs[ra].node.typ = n.typ
of opcNSetLineInfo:
decodeB(rkNode)
regs[ra].node.info = regs[rb].node.info
of opcEqIdent:
decodeBC(rkInt)
# aliases for shorter and easier to understand code below
let aNode = regs[rb].node
let bNode = regs[rc].node
# these are cstring to prevent string copy, and cmpIgnoreStyle from
# takes cstring arguments
var aStrVal: cstring = nil
var bStrVal: cstring = nil
# extract strVal from argument ``a``
case aNode.kind
of nkStrLit..nkTripleStrLit:
aStrVal = aNode.strVal.cstring
of nkIdent:
aStrVal = aNode.ident.s.cstring
of nkSym:
aStrVal = aNode.sym.name.s.cstring
of nkOpenSymChoice, nkClosedSymChoice:
aStrVal = aNode[0].sym.name.s.cstring
else:
discard
# extract strVal from argument ``b``
case bNode.kind
of nkStrLit..nkTripleStrLit:
bStrVal = bNode.strVal.cstring
of nkIdent:
bStrVal = bNode.ident.s.cstring
of nkSym:
bStrVal = bNode.sym.name.s.cstring
of nkOpenSymChoice, nkClosedSymChoice:
bStrVal = bNode[0].sym.name.s.cstring
else:
discard
# set result
regs[ra].intVal =
if aStrVal != nil and bStrVal != nil:
ord(idents.cmpIgnoreStyle(aStrVal, bStrVal, high(int)) == 0)
else:
0
of opcStrToIdent:
decodeB(rkNode)
if regs[rb].node.kind notin {nkStrLit..nkTripleStrLit}:
stackTrace(c, tos, pc, errFieldXNotFound & "strVal")
else:
regs[ra].node = newNodeI(nkIdent, c.debug[pc])
regs[ra].node.ident = getIdent(c.cache, regs[rb].node.strVal)
regs[ra].node.flags.incl nfIsRef
of opcSetType:
let typ = c.types[instr.regBx - wordExcess]
if regs[ra].kind != rkNode:
let temp = regToNode(regs[ra])
ensureKind(rkNode)
regs[ra].node = temp
regs[ra].node.info = c.debug[pc]
regs[ra].node.typ = typ
of opcConv:
let rb = instr.regB
inc pc
let desttyp = c.types[c.code[pc].regBx - wordExcess]
inc pc
let srctyp = c.types[c.code[pc].regBx - wordExcess]
if opConv(c, regs[ra], regs[rb], desttyp, srctyp):
stackTrace(c, tos, pc,
errIllegalConvFromXtoY % [
typeToString(srctyp), typeToString(desttyp)])
of opcCast:
let rb = instr.regB
inc pc
let desttyp = c.types[c.code[pc].regBx - wordExcess]
inc pc
let srctyp = c.types[c.code[pc].regBx - wordExcess]
when hasFFI:
let dest = fficast(c.config, regs[rb].node, desttyp)
# todo: check whether this is correct
# asgnRef(regs[ra], dest)
putIntoReg(regs[ra], dest)
else:
globalError(c.config, c.debug[pc], "cannot evaluate cast")
of opcNSetIntVal:
decodeB(rkNode)
var dest = regs[ra].node
if dest.kind in {nkCharLit..nkUInt64Lit} and
regs[rb].kind in {rkInt}:
dest.intVal = regs[rb].intVal
else:
stackTrace(c, tos, pc, errFieldXNotFound & "intVal")
of opcNSetFloatVal:
decodeB(rkNode)
var dest = regs[ra].node
if dest.kind in {nkFloatLit..nkFloat64Lit} and
regs[rb].kind in {rkFloat}:
dest.floatVal = regs[rb].floatVal
else:
stackTrace(c, tos, pc, errFieldXNotFound & "floatVal")
of opcNSetSymbol:
decodeB(rkNode)
var dest = regs[ra].node
if dest.kind == nkSym and regs[rb].node.kind == nkSym:
dest.sym = regs[rb].node.sym
else:
stackTrace(c, tos, pc, errFieldXNotFound & "symbol")
of opcNSetIdent:
decodeB(rkNode)
var dest = regs[ra].node
if dest.kind == nkIdent and regs[rb].node.kind == nkIdent:
dest.ident = regs[rb].node.ident
else:
stackTrace(c, tos, pc, errFieldXNotFound & "ident")
of opcNSetType:
decodeB(rkNode)
let b = regs[rb].node
internalAssert c.config, b.kind == nkSym and b.sym.kind == skType
internalAssert c.config, regs[ra].node != nil
regs[ra].node.typ = b.sym.typ
of opcNSetStrVal:
decodeB(rkNode)
var dest = regs[ra].node
if dest.kind in {nkStrLit..nkTripleStrLit} and
regs[rb].kind in {rkNode}:
dest.strVal = regs[rb].node.strVal
elif dest.kind == nkCommentStmt and regs[rb].kind in {rkNode}:
dest.comment = regs[rb].node.strVal
else:
stackTrace(c, tos, pc, errFieldXNotFound & "strVal")
of opcNNewNimNode:
decodeBC(rkNode)
var k = regs[rb].intVal
if k < 0 or k > ord(high(TNodeKind)):
internalError(c.config, c.debug[pc],
"request to create a NimNode of invalid kind")
let cc = regs[rc].node
let x = newNodeI(TNodeKind(int(k)),
if cc.kind != nkNilLit:
cc.info
elif c.comesFromHeuristic.line != 0'u16:
c.comesFromHeuristic
elif c.callsite != nil and c.callsite.safeLen > 1:
c.callsite[1].info
else:
c.debug[pc])
x.flags.incl nfIsRef
# prevent crashes in the compiler resulting from wrong macros:
if x.kind == nkIdent: x.ident = c.cache.emptyIdent
regs[ra].node = x
of opcNCopyNimNode:
decodeB(rkNode)
regs[ra].node = copyNode(regs[rb].node)
of opcNCopyNimTree:
decodeB(rkNode)
regs[ra].node = copyTree(regs[rb].node)
of opcNDel:
decodeBC(rkNode)
let bb = regs[rb].intVal.int
for i in countup(0, regs[rc].intVal.int-1):
delSon(regs[ra].node, bb)
of opcGenSym:
decodeBC(rkNode)
let k = regs[rb].intVal
let name = if regs[rc].node.strVal.len == 0: ":tmp"
else: regs[rc].node.strVal
if k < 0 or k > ord(high(TSymKind)):
internalError(c.config, c.debug[pc], "request to create symbol of invalid kind")
var sym = newSym(k.TSymKind, getIdent(c.cache, name), c.module.owner, c.debug[pc])
incl(sym.flags, sfGenSym)
regs[ra].node = newSymNode(sym)
regs[ra].node.flags.incl nfIsRef
of opcNccValue:
decodeB(rkInt)
let destKey = regs[rb].node.strVal
regs[ra].intVal = getOrDefault(c.graph.cacheCounters, destKey)
of opcNccInc:
let g = c.graph
let destKey = regs[ra].node.strVal
let by = regs[instr.regB].intVal
let v = getOrDefault(g.cacheCounters, destKey)
g.cacheCounters[destKey] = v+by
recordInc(c, c.debug[pc], destKey, by)
of opcNcsAdd:
let g = c.graph
let destKey = regs[ra].node.strVal
let val = regs[instr.regB].node
if not contains(g.cacheSeqs, destKey):
g.cacheSeqs[destKey] = newTree(nkStmtList, val)
# newNodeI(nkStmtList, c.debug[pc])
else:
g.cacheSeqs[destKey].add val
recordAdd(c, c.debug[pc], destKey, val)
of opcNcsIncl:
let g = c.graph
let destKey = regs[ra].node.strVal
let val = regs[instr.regB].node
if not contains(g.cacheSeqs, destKey):
g.cacheSeqs[destKey] = newTree(nkStmtList, val)
else:
block search:
for existing in g.cacheSeqs[destKey]:
if exprStructuralEquivalent(existing, val, strictSymEquality=true):
break search
g.cacheSeqs[destKey].add val
recordIncl(c, c.debug[pc], destKey, val)
of opcNcsLen:
let g = c.graph
decodeB(rkInt)
let destKey = regs[rb].node.strVal
regs[ra].intVal =
if contains(g.cacheSeqs, destKey): g.cacheSeqs[destKey].len else: 0
of opcNcsAt:
let g = c.graph
decodeBC(rkNode)
let idx = regs[rc].intVal
let destKey = regs[rb].node.strVal
if contains(g.cacheSeqs, destKey) and idx <% g.cacheSeqs[destKey].len:
regs[ra].node = g.cacheSeqs[destKey][idx.int]
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, g.cacheSeqs[destKey].len-1))
of opcNctPut:
let g = c.graph
let destKey = regs[ra].node.strVal
let key = regs[instr.regB].node.strVal
let val = regs[instr.regC].node
if not contains(g.cacheTables, destKey):
g.cacheTables[destKey] = initBTree[string, PNode]()
if not contains(g.cacheTables[destKey], key):
g.cacheTables[destKey].add(key, val)
recordPut(c, c.debug[pc], destKey, key, val)
else:
stackTrace(c, tos, pc, "key already exists: " & key)
of opcNctLen:
let g = c.graph
decodeB(rkInt)
let destKey = regs[rb].node.strVal
regs[ra].intVal =
if contains(g.cacheTables, destKey): g.cacheTables[destKey].len else: 0
of opcNctGet:
let g = c.graph
decodeBC(rkNode)
let destKey = regs[rb].node.strVal
let key = regs[rc].node.strVal
if contains(g.cacheTables, destKey):
if contains(g.cacheTables[destKey], key):
regs[ra].node = getOrDefault(g.cacheTables[destKey], key)
else:
stackTrace(c, tos, pc, "key does not exist: " & key)
else:
stackTrace(c, tos, pc, "key does not exist: " & destKey)
of opcNctHasNext:
let g = c.graph
decodeBC(rkInt)
let destKey = regs[rb].node.strVal
regs[ra].intVal =
if g.cacheTables.contains(destKey):
ord(btrees.hasNext(g.cacheTables[destKey], regs[rc].intVal.int))
else:
0
of opcNctNext:
let g = c.graph
decodeBC(rkNode)
let destKey = regs[rb].node.strVal
let index = regs[rc].intVal
if contains(g.cacheTables, destKey):
let (k, v, nextIndex) = btrees.next(g.cacheTables[destKey], index.int)
regs[ra].node = newTree(nkTupleConstr, newStrNode(k, c.debug[pc]), v,
newIntNode(nkIntLit, nextIndex))
else:
stackTrace(c, tos, pc, "key does not exist: " & destKey)
of opcTypeTrait:
# XXX only supports 'name' for now; we can use regC to encode the
# type trait operation
decodeB(rkNode)
var typ = regs[rb].node.typ
internalAssert c.config, typ != nil
while typ.kind == tyTypeDesc and typ.len > 0: typ = typ.sons[0]
createStr regs[ra]
regs[ra].node.strVal = typ.typeToString(preferExported)
of opcMarshalLoad:
let ra = instr.regA
let rb = instr.regB
inc pc
let typ = c.types[c.code[pc].regBx - wordExcess]
putIntoReg(regs[ra], loadAny(regs[rb].node.strVal, typ, c.cache, c.config))
of opcMarshalStore:
decodeB(rkNode)
inc pc
let typ = c.types[c.code[pc].regBx - wordExcess]
createStrKeepNode(regs[ra])
when not defined(nimNoNilSeqs):
if regs[ra].node.strVal.isNil: regs[ra].node.strVal = newStringOfCap(1000)
storeAny(regs[ra].node.strVal, typ, regs[rb].regToNode, c.config)
of opcToNarrowInt:
decodeBC(rkInt)
let mask = (1'i64 shl rc) - 1 # 0xFF
let signbit = 1'i64 shl (rc - 1) # 0x80
let toggle = mask - signbit # 0x7F
# algorithm: -((i8 and 0xFF) xor 0x7F) + 0x7F
# mask off higher bits.
# uses two's complement to sign-extend integer.
# reajust integer into desired range.
regs[ra].intVal = -((regs[rb].intVal and mask) xor toggle) + toggle
inc pc
proc execute(c: PCtx, start: int): PNode =
var tos = PStackFrame(prc: nil, comesFrom: 0, next: nil)
newSeq(tos.slots, c.prc.maxSlots)
result = rawExecute(c, start, tos).regToNode
proc execProc*(c: PCtx; sym: PSym; args: openArray[PNode]): PNode =
if sym.kind in routineKinds:
if sym.typ.len-1 != args.len:
localError(c.config, sym.info,
"NimScript: expected $# arguments, but got $#" % [
$(sym.typ.len-1), $args.len])
else:
let start = genProc(c, sym)
var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil)
let maxSlots = sym.offset
newSeq(tos.slots, maxSlots)
# setup parameters:
if not isEmptyType(sym.typ.sons[0]) or sym.kind == skMacro:
putIntoReg(tos.slots[0], getNullValue(sym.typ.sons[0], sym.info, c.config))
# XXX We could perform some type checking here.
for i in 1..<sym.typ.len:
putIntoReg(tos.slots[i], args[i-1])
result = rawExecute(c, start, tos).regToNode
else:
localError(c.config, sym.info,
"NimScript: attempt to call non-routine: " & sym.name.s)
proc evalStmt*(c: PCtx, n: PNode) =
let n = transformExpr(c.graph, c.module, n, noDestructors = true)
let start = genStmt(c, n)
# execute new instructions; this redundant opcEof check saves us lots
# of allocations in 'execute':
if c.code[start].opcode != opcEof:
discard execute(c, start)
proc evalExpr*(c: PCtx, n: PNode): PNode =
let n = transformExpr(c.graph, c.module, n, noDestructors = true)
let start = genExpr(c, n)
assert c.code[start].opcode != opcEof
result = execute(c, start)
proc getGlobalValue*(c: PCtx; s: PSym): PNode =
internalAssert c.config, s.kind in {skLet, skVar} and sfGlobal in s.flags
result = c.globals.sons[s.position-1]
include vmops
proc setupGlobalCtx*(module: PSym; graph: ModuleGraph) =
if graph.vm.isNil:
graph.vm = newCtx(module, graph.cache, graph)
registerAdditionalOps(PCtx graph.vm)
else:
refresh(PCtx graph.vm, module)
proc myOpen(graph: ModuleGraph; module: PSym): PPassContext =
#var c = newEvalContext(module, emRepl)
#c.features = {allowCast, allowInfiniteLoops}
#pushStackFrame(c, newStackFrame())
# XXX produce a new 'globals' environment here:
setupGlobalCtx(module, graph)
result = PCtx graph.vm
proc myProcess(c: PPassContext, n: PNode): PNode =
let c = PCtx(c)
# don't eval errornous code:
if c.oldErrorCount == c.config.errorCounter:
evalStmt(c, n)
result = newNodeI(nkEmpty, n.info)
else:
result = n
c.oldErrorCount = c.config.errorCounter
proc myClose(graph: ModuleGraph; c: PPassContext, n: PNode): PNode =
myProcess(c, n)
const evalPass* = makePass(myOpen, myProcess, myClose)
proc evalConstExprAux(module: PSym;
g: ModuleGraph; prc: PSym, n: PNode,
mode: TEvalMode): PNode =
if g.config.errorCounter > 0: return n
let n = transformExpr(g, module, n, noDestructors = true)
setupGlobalCtx(module, g)
var c = PCtx g.vm
let oldMode = c.mode
defer: c.mode = oldMode
c.mode = mode
let start = genExpr(c, n, requiresValue = mode!=emStaticStmt)
if c.code[start].opcode == opcEof: return newNodeI(nkEmpty, n.info)
assert c.code[start].opcode != opcEof
when debugEchoCode: c.echoCode start
var tos = PStackFrame(prc: prc, comesFrom: 0, next: nil)
newSeq(tos.slots, c.prc.maxSlots)
#for i in 0 ..< c.prc.maxSlots: tos.slots[i] = newNode(nkEmpty)
result = rawExecute(c, start, tos).regToNode
if result.info.col < 0: result.info = n.info
proc evalConstExpr*(module: PSym; g: ModuleGraph; e: PNode): PNode =
result = evalConstExprAux(module, g, nil, e, emConst)
proc evalStaticExpr*(module: PSym; g: ModuleGraph; e: PNode, prc: PSym): PNode =
result = evalConstExprAux(module, g, prc, e, emStaticExpr)
proc evalStaticStmt*(module: PSym; g: ModuleGraph; e: PNode, prc: PSym) =
discard evalConstExprAux(module, g, prc, e, emStaticStmt)
proc setupCompileTimeVar*(module: PSym; g: ModuleGraph; n: PNode) =
discard evalConstExprAux(module, g, nil, n, emStaticStmt)
proc setupMacroParam(x: PNode, typ: PType): TFullReg =
case typ.kind
of tyStatic:
putIntoReg(result, x)
of tyTypeDesc:
putIntoReg(result, x)
else:
result.kind = rkNode
var n = x
if n.kind in {nkHiddenSubConv, nkHiddenStdConv}: n = n.sons[1]
n = n.canonValue
n.flags.incl nfIsRef
n.typ = x.typ
result.node = n
iterator genericParamsInMacroCall*(macroSym: PSym, call: PNode): (PSym, PNode) =
let gp = macroSym.ast[genericParamsPos]
for i in 0 ..< gp.len:
let genericParam = gp[i].sym
let posInCall = macroSym.typ.len + i
yield (genericParam, call[posInCall])
# to prevent endless recursion in macro instantiation
const evalMacroLimit = 1000
proc evalMacroCall*(module: PSym; g: ModuleGraph;
n, nOrig: PNode, sym: PSym): PNode =
# XXX globalError() is ugly here, but I don't know a better solution for now
inc(g.config.evalMacroCounter)
if g.config.evalMacroCounter > evalMacroLimit:
globalError(g.config, n.info, "macro instantiation too nested")
# immediate macros can bypass any type and arity checking so we check the
# arity here too:
if sym.typ.len > n.safeLen and sym.typ.len > 1:
globalError(g.config, n.info, "in call '$#' got $#, but expected $# argument(s)" % [
n.renderTree, $(n.safeLen-1), $(sym.typ.len-1)])
setupGlobalCtx(module, g)
var c = PCtx g.vm
c.comesFromHeuristic.line = 0'u16
c.callsite = nOrig
let start = genProc(c, sym)
var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil)
let maxSlots = sym.offset
newSeq(tos.slots, maxSlots)
# setup arguments:
var L = n.safeLen
if L == 0: L = 1
# This is wrong for tests/reject/tind1.nim where the passed 'else' part
# doesn't end up in the parameter:
#InternalAssert tos.slots.len >= L
# return value:
tos.slots[0].kind = rkNode
tos.slots[0].node = newNodeI(nkEmpty, n.info)
# setup parameters:
for i in 1..<sym.typ.len:
tos.slots[i] = setupMacroParam(n.sons[i], sym.typ.sons[i])
let gp = sym.ast[genericParamsPos]
for i in 0 ..< gp.len:
if sfImmediate notin sym.flags:
let idx = sym.typ.len + i
if idx < n.len:
tos.slots[idx] = setupMacroParam(n.sons[idx], gp[i].sym.typ)
else:
dec(g.config.evalMacroCounter)
c.callsite = nil
localError(c.config, n.info, "expected " & $gp.len &
" generic parameter(s)")
elif gp[i].sym.typ.kind in {tyStatic, tyTypeDesc}:
dec(g.config.evalMacroCounter)
c.callsite = nil
globalError(c.config, n.info, "static[T] or typedesc nor supported for .immediate macros")
# temporary storage:
#for i in L ..< maxSlots: tos.slots[i] = newNode(nkEmpty)
result = rawExecute(c, start, tos).regToNode
if result.info.line < 0: result.info = n.info
if cyclicTree(result): globalError(c.config, n.info, "macro produced a cyclic tree")
dec(g.config.evalMacroCounter)
c.callsite = nil