Files
Nim/lib/pure/strformat.nim
zah ca4b971bc8 Initial version of the hot-code reloading support for native targets (#10729)
* squashed work by Zahary

* squashing a ton of useful history... otherwise rebasing on top of upstream Nim after commit 82c009a2cb would be impossible.

* Code review changes; Working test suite (without code reloading enabled)

* - documentation
- implemented the HCR test - almost works...
- fix the issue on Unix where for executable targets the source file for the main module of a project in nimcache was being overwritten with the binary itself (and thus the actual source code was lost)
- fixing embedded paths to shared objects on unix (the "lib" prefix was being prepended to the entire path instead of just the filename)
- other fixes
- removing unnecessary includes since that file is already included in chcks.nim which is in turn included in system.nim (and previously was getting imported in chcks.nim but then system.nim improts something... and that breaks HCR (perhaps it could be fixed but it would be nice not to import anything in system))

* fix for clang & C++ - explicitly casting a function pointer to void*
more stable mangling of parameter names when HCR is on
the length of the static arrays in the DatInit functions is now part of the name of the variables, so when they get resized they get also recreated
more stable mangling for inline functions - no longer depends on the module which first used them
work on the new complicated HCR test - turned surprisingly complex - WIP
test now successfully passes even when re-running `koch test` (previously when the nimcache wasn't cold that lead to errors)
better documentation
calling setStackBottomWith for PreMain
passes over the HcrInit/DatInit/Init calls of all modules are now in the proper order (first all of one type, then all of the next). Also typeinfo globals are registered (created) in a single pass before the DatInit pass (because of the way generic instantiations are handled)
Fix the test suite execution on macOs
fix for being able to query the program arguments when using HCR on posix!
other fixes

* Bugfix: Fix a compilation error in C++ mode when a function pointer
is converted to a raw pointer

* basic documentation for the new hot code reloading semantics

* Add change log entry

* Don't re-execute the top-level statements while reloading JS code

* fix a number of tests broken in a recent bugfix

* Review changes

* Added {.executeOnReload.} pragma that indicates top-level statements
  that should be executed on each reload. To make this work, I've modified
  the way the `if (hcr_init_) {...}` guards are produced in the init code.
  This still needs more work as the new guards seem to be inserted within
  the previously generated guards.

  This change also removes the need for `lastRegistedGlobal` in nimhcr.

* Implemented the `signatureHash` magic and the `hasModuleChanged` API
  depending on it (the actual logic is not imlemented yet).

* Add the "hcr" prefix to all HCR-related symbols in the system module.
  Added a new `hotcodereloading` module exporting the high-level API to
  the user.

  Besides being more hygienic, this was also required in order to make
  it possible to use macros in the high-level API. Without the split,
  `system` would have to import `macros`, which was going to produce
  the well-known init problems.

* Attempted to solve the "GC markers problem".

  Crashes were expected with the previous code, because the GC markers
  were compiled as normal procs are registered in the GC. When their
  module is unloaded, dangling pointers will remain in the GC tables.
  To solve this issue, I don't register any GC markers when HCR is on,
  but I add them to the HCR globals metadata and I use a single marker
  registed in nimhcr during the initialization of the system module that
  will be responsible for marking all globals.

* fix a compilation error

* - implemented the hasModuleChanged functionality
- tuples can be returned and broken into different vars in global scope
- added comments for the closnig scopes of the if statements in the init proc
- the new executeOnReload pragma works now!
- other fixes

* finally! fixing this hack in a proper way - declaring the destructor out of line (out of the class body) - we no longer need to forward-declare popCurrentExceptionEx

* Force full module parsing

This is a temporary hack that breaks some tests. I'll investigate
later how these can be fixed.

* tuples are now properly handled when global!

* these comments mess up the codegen in debug mode when $n is not actually a new line (or something like that) - these labels are intended only for GOTO labels anyway...

* "solved" the issue with the .pdb locks on windows when a binary is being debugged and hot code reloading is used at the same time

* fixes after rebasing...

* small fixes for the test

* better handling of globals! no more compiler crashes for locals with the global pragma, also simplified code around loops in global scope which have local vars (actually globals)

* we can now use the global pragma even for ... globals!

* the right output

* lets try those boehm GC tests

* after the test is ran it will be at its starting state - no git modifications

* clarification in the docs

* removed unnecessary line directives for forward declarations of functions - they were causing trouble with hot code reloading when no semantic change propagates to the main module but a line directive got changed and thus the main module had to be recompiled since the .c code had changed

* fixed bug! was inserting duplicate keys into the table and later was removing only 1 copy of all the duplicates (after a few reloads)

* no longer breaking into DatInit code when not supposed to

* fixes after rebasing

* yet more fixes after rebasing

* Update jssys.nim

* Rework the HCR path-handling logic

After reviewing the code more carefully, I've noticed that the old logic
will be broken when the user overrides the '--out:f' compiler option.

Besides fixing this issues, I took the opportunity to implement the
missing '--outdir:d' option.

Other changes:

* ./koch test won't overwrite any HCR and RTL builds located in nim/lib
* HCR and RTL are compiled with --threads:on by default

* Clean up the globals registration logic

* Handle non-flattened top-level stmtlists in JS as well

* The HCR is not supported with the Boehm GC yet

Also fixes some typos and the expected output of the HCR integration test

* The GC marker procs are now properly used as trampolines

* Fix the HCR integration test in release builds

* Fix ./koch tools

* this forward declaration doesn't seem to be necessary, and in fact breaks HCR because a 2nd function pointer is emitted for this externed/rtl func

* the forward declaration I removed in the last commit was actually necessary

* Attempt to make all tests green

* Fix tgenscript

* BAT file for running the HCR integration test on Windows [skip ci]

* Fix the docgen tests

* A final fix for Travis (hopefully)
2019-02-26 15:48:55 +01:00

718 lines
22 KiB
Nim
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#
#
# Nim's Runtime Library
# (c) Copyright 2017 Nim contributors
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
##[
String `interpolation`:idx: / `format`:idx: inspired by
Python's ``f``-strings.
``fmt`` vs. ``&``
=================
You can use either ``fmt`` or the unary ``&`` operator for formatting. The
difference between them is subtle but important.
The ``fmt"{expr}"`` syntax is more aesthetically pleasing, but it hides a small
gotcha. The string is a
`generalized raw string literal <manual.html#lexical-analysis-generalized-raw-string-literals>`_.
This has some surprising effects:
.. code-block:: nim
import strformat
let msg = "hello"
doAssert fmt"{msg}\n" == "hello\\n"
Because the literal is a raw string literal, the ``\n`` is not interpreted as
an escape sequence.
There are multiple ways to get around this, including the use of the ``&``
operator:
.. code-block:: nim
import strformat
let msg = "hello"
doAssert &"{msg}\n" == "hello\n"
doAssert fmt"{msg}{'\n'}" == "hello\n"
doAssert fmt("{msg}\n") == "hello\n"
doAssert "{msg}\n".fmt == "hello\n"
The choice of style is up to you.
Formatting strings
==================
.. code-block:: nim
import strformat
doAssert &"""{"abc":>4}""" == " abc"
doAssert &"""{"abc":<4}""" == "abc "
Formatting floats
=================
.. code-block:: nim
import strformat
doAssert fmt"{-12345:08}" == "-0012345"
doAssert fmt"{-1:3}" == " -1"
doAssert fmt"{-1:03}" == "-01"
doAssert fmt"{16:#X}" == "0x10"
doAssert fmt"{123.456}" == "123.456"
doAssert fmt"{123.456:>9.3f}" == " 123.456"
doAssert fmt"{123.456:9.3f}" == " 123.456"
doAssert fmt"{123.456:9.4f}" == " 123.4560"
doAssert fmt"{123.456:>9.0f}" == " 123."
doAssert fmt"{123.456:<9.4f}" == "123.4560 "
doAssert fmt"{123.456:e}" == "1.234560e+02"
doAssert fmt"{123.456:>13e}" == " 1.234560e+02"
doAssert fmt"{123.456:13e}" == " 1.234560e+02"
Implementation details
======================
An expression like ``&"{key} is {value:arg} {{z}}"`` is transformed into:
.. code-block:: nim
var temp = newStringOfCap(educatedCapGuess)
format(key, temp)
format(" is ", temp)
format(value, arg, temp)
format(" {z}", temp)
temp
Parts of the string that are enclosed in the curly braces are interpreted
as Nim code, to escape an ``{`` or ``}`` double it.
``&`` delegates most of the work to an open overloaded set
of ``format`` procs. The required signature for a type ``T`` that supports
formatting is usually ``proc format(x: T; result: var string)`` for efficiency
but can also be ``proc format(x: T): string``. ``add`` and ``$`` procs are
used as the fallback implementation.
This is the concrete lookup algorithm that ``&`` uses:
.. code-block:: nim
when compiles(format(arg, res)):
format(arg, res)
elif compiles(format(arg)):
res.add format(arg)
elif compiles(add(res, arg)):
res.add(arg)
else:
res.add($arg)
The subexpression after the colon
(``arg`` in ``&"{key} is {value:arg} {{z}}"``) is an optional argument
passed to ``format``.
If an optional argument is present the following lookup algorithm is used:
.. code-block:: nim
when compiles(format(arg, option, res)):
format(arg, option, res)
else:
res.add format(arg, option)
For strings and numeric types the optional argument is a so-called
"standard format specifier".
Standard format specifier for strings, integers and floats
==========================================================
The general form of a standard format specifier is::
[[fill]align][sign][#][0][minimumwidth][.precision][type]
The square brackets ``[]`` indicate an optional element.
The optional align flag can be one of the following:
'<'
Forces the field to be left-aligned within the available
space. (This is the default for strings.)
'>'
Forces the field to be right-aligned within the available space.
(This is the default for numbers.)
'^'
Forces the field to be centered within the available space.
Note that unless a minimum field width is defined, the field width
will always be the same size as the data to fill it, so that the alignment
option has no meaning in this case.
The optional 'fill' character defines the character to be used to pad
the field to the minimum width. The fill character, if present, must be
followed by an alignment flag.
The 'sign' option is only valid for numeric types, and can be one of the following:
================= ====================================================
Sign Meaning
================= ====================================================
``+`` Indicates that a sign should be used for both
positive as well as negative numbers.
``-`` Indicates that a sign should be used only for
negative numbers (this is the default behavior).
(space) Indicates that a leading space should be used on
positive numbers.
================= ====================================================
If the '#' character is present, integers use the 'alternate form' for formatting.
This means that binary, octal, and hexadecimal output will be prefixed
with '0b', '0o', and '0x', respectively.
'width' is a decimal integer defining the minimum field width. If not specified,
then the field width will be determined by the content.
If the width field is preceded by a zero ('0') character, this enables
zero-padding.
The 'precision' is a decimal number indicating how many digits should be displayed
after the decimal point in a floating point conversion. For non-numeric types the
field indicates the maximum field size - in other words, how many characters will
be used from the field content. The precision is ignored for integer conversions.
Finally, the 'type' determines how the data should be presented.
The available integer presentation types are:
================= ====================================================
Type Result
================= ====================================================
``b`` Binary. Outputs the number in base 2.
``d`` Decimal Integer. Outputs the number in base 10.
``o`` Octal format. Outputs the number in base 8.
``x`` Hex format. Outputs the number in base 16, using
lower-case letters for the digits above 9.
``X`` Hex format. Outputs the number in base 16, using
uppercase letters for the digits above 9.
(None) the same as 'd'
================= ====================================================
The available floating point presentation types are:
================= ====================================================
Type Result
================= ====================================================
``e`` Exponent notation. Prints the number in scientific
notation using the letter 'e' to indicate the
exponent.
``E`` Exponent notation. Same as 'e' except it converts
the number to uppercase.
``f`` Fixed point. Displays the number as a fixed-point
number.
``F`` Fixed point. Same as 'f' except it converts the
number to uppercase.
``g`` General format. This prints the number as a
fixed-point number, unless the number is too
large, in which case it switches to 'e'
exponent notation.
``G`` General format. Same as 'g' except switches to 'E'
if the number gets to large.
(None) similar to 'g', except that it prints at least one
digit after the decimal point.
================= ====================================================
Future directions
=================
A curly expression with commas in it like ``{x, argA, argB}`` could be
transformed to ``format(x, argA, argB, res)`` in order to support
formatters that do not need to parse a custom language within a custom
language but instead prefer to use Nim's existing syntax. This also
helps in readability since there is only so much you can cram into
single letter DSLs.
]##
import macros, parseutils, unicode
import strutils
template callFormat(res, arg) {.dirty.} =
when arg is string:
# workaround in order to circumvent 'strutils.format' which matches
# too but doesn't adhere to our protocol.
res.add arg
elif compiles(format(arg, res)) and
# Check if format returns void
not (compiles do: discard format(arg, res)):
format(arg, res)
elif compiles(format(arg)):
res.add format(arg)
elif compiles(add(res, arg)):
res.add(arg)
else:
res.add($arg)
template callFormatOption(res, arg, option) {.dirty.} =
when compiles(format(arg, option, res)):
format(arg, option, res)
elif compiles(format(arg, option)):
res.add format(arg, option)
else:
format($arg, option, res)
macro `&`*(pattern: string): untyped =
## For a specification of the ``&`` macro, see the module level documentation.
if pattern.kind notin {nnkStrLit..nnkTripleStrLit}:
error "string formatting (fmt(), &) only works with string literals", pattern
let f = pattern.strVal
var i = 0
let res = genSym(nskVar, "fmtRes")
result = newNimNode(nnkStmtListExpr, lineInfoFrom=pattern)
# XXX: https://github.com/nim-lang/Nim/issues/8405
# When compiling with -d:useNimRtl, certain procs such as `count` from the strutils
# module are not accessible at compile-time:
let expectedGrowth = when defined(useNimRtl): 0 else: count(f, '{') * 10
result.add newVarStmt(res, newCall(bindSym"newStringOfCap", newLit(f.len + expectedGrowth)))
var strlit = ""
while i < f.len:
if f[i] == '{':
inc i
if f[i] == '{':
inc i
strlit.add '{'
else:
if strlit.len > 0:
result.add newCall(bindSym"add", res, newLit(strlit))
strlit = ""
var subexpr = ""
while i < f.len and f[i] != '}' and f[i] != ':':
subexpr.add f[i]
inc i
let x = parseExpr(subexpr)
if f[i] == ':':
inc i
var options = ""
while i < f.len and f[i] != '}':
options.add f[i]
inc i
result.add getAst(callFormatOption(res, x, newLit(options)))
else:
result.add getAst(callFormat(res, x))
if f[i] == '}':
inc i
else:
doAssert false, "invalid format string: missing '}'"
elif f[i] == '}':
if f[i+1] == '}':
strlit.add '}'
inc i, 2
else:
doAssert false, "invalid format string: '}' instead of '}}'"
inc i
else:
strlit.add f[i]
inc i
if strlit.len > 0:
result.add newCall(bindSym"add", res, newLit(strlit))
result.add res
when defined(debugFmtDsl):
echo repr result
template fmt*(pattern: string): untyped =
## An alias for ``&``.
bind `&`
&pattern
proc mkDigit(v: int, typ: char): string {.inline.} =
assert(v < 26)
if v < 10:
result = $chr(ord('0') + v)
else:
result = $chr(ord(if typ == 'x': 'a' else: 'A') + v - 10)
proc alignString*(s: string, minimumWidth: int; align = '\0'; fill = ' '): string =
## Aligns ``s`` using ``fill`` char.
## This is only of interest if you want to write a custom ``format`` proc that
## should support the standard format specifiers.
if minimumWidth == 0:
result = s
else:
let sRuneLen = if s.validateUtf8 == -1: s.runeLen else: s.len
let toFill = minimumWidth - sRuneLen
if toFill <= 0:
result = s
elif align == '<' or align == '\0':
result = s & repeat(fill, toFill)
elif align == '^':
let half = toFill div 2
result = repeat(fill, half) & s & repeat(fill, toFill - half)
else:
result = repeat(fill, toFill) & s
type
StandardFormatSpecifier* = object ## Type that describes "standard format specifiers".
fill*, align*: char ## Desired fill and alignment.
sign*: char ## Desired sign.
alternateForm*: bool ## Whether to prefix binary, octal and hex numbers
## with ``0b``, ``0o``, ``0x``.
padWithZero*: bool ## Whether to pad with zeros rather than spaces.
minimumWidth*, precision*: int ## Desired minium width and precision.
typ*: char ## Type like 'f', 'g' or 'd'.
endPosition*: int ## End position in the format specifier after
## ``parseStandardFormatSpecifier`` returned.
proc formatInt(n: SomeNumber; radix: int; spec: StandardFormatSpecifier): string =
## Converts ``n`` to string. If ``n`` is `SomeFloat`, it casts to `int64`.
## Conversion is done using ``radix``. If result's length is lesser than
## ``minimumWidth``, it aligns result to the right or left (depending on ``a``)
## with ``fill`` char.
when n is SomeUnsignedInt:
var v = n.uint64
let negative = false
else:
var v = n.int64
let negative = v.int64 < 0
if negative:
# FIXME: overflow error for low(int64)
v = v * -1
var xx = ""
if spec.alternateForm:
case spec.typ
of 'X': xx = "0x"
of 'x': xx = "0x"
of 'b': xx = "0b"
of 'o': xx = "0o"
else: discard
if v == 0:
result = "0"
else:
result = ""
while v > type(v)(0):
let d = v mod type(v)(radix)
v = v div type(v)(radix)
result.add(mkDigit(d.int, spec.typ))
for idx in 0..<(result.len div 2):
swap result[idx], result[result.len - idx - 1]
if spec.padWithZero:
let sign = negative or spec.sign != '-'
let toFill = spec.minimumWidth - result.len - xx.len - ord(sign)
if toFill > 0:
result = repeat('0', toFill) & result
if negative:
result = "-" & xx & result
elif spec.sign != '-':
result = spec.sign & xx & result
else:
result = xx & result
if spec.align == '<':
for i in result.len..<spec.minimumWidth:
result.add(spec.fill)
else:
let toFill = spec.minimumWidth - result.len
if spec.align == '^':
let half = toFill div 2
result = repeat(spec.fill, half) & result & repeat(spec.fill, toFill - half)
else:
if toFill > 0:
result = repeat(spec.fill, toFill) & result
proc parseStandardFormatSpecifier*(s: string; start = 0;
ignoreUnknownSuffix = false): StandardFormatSpecifier =
## An exported helper proc that parses the "standard format specifiers",
## as specified by the grammar::
##
## [[fill]align][sign][#][0][minimumwidth][.precision][type]
##
## This is only of interest if you want to write a custom ``format`` proc that
## should support the standard format specifiers. If ``ignoreUnknownSuffix`` is true,
## an unknown suffix after the ``type`` field is not an error.
const alignChars = {'<', '>', '^'}
result.fill = ' '
result.align = '\0'
result.sign = '-'
var i = start
if i + 1 < s.len and s[i+1] in alignChars:
result.fill = s[i]
result.align = s[i+1]
inc i, 2
elif i < s.len and s[i] in alignChars:
result.align = s[i]
inc i
if i < s.len and s[i] in {'-', '+', ' '}:
result.sign = s[i]
inc i
if i < s.len and s[i] == '#':
result.alternateForm = true
inc i
if i+1 < s.len and s[i] == '0' and s[i+1] in {'0'..'9'}:
result.padWithZero = true
inc i
let parsedLength = parseSaturatedNatural(s, result.minimumWidth, i)
inc i, parsedLength
if i < s.len and s[i] == '.':
inc i
let parsedLengthB = parseSaturatedNatural(s, result.precision, i)
inc i, parsedLengthB
else:
result.precision = -1
if i < s.len and s[i] in {'A'..'Z', 'a'..'z'}:
result.typ = s[i]
inc i
result.endPosition = i
if i != s.len and not ignoreUnknownSuffix:
raise newException(ValueError,
"invalid format string, cannot parse: " & s[i..^1])
proc format*(value: SomeInteger; specifier: string; res: var string) =
## Standard format implementation for ``SomeInteger``. It makes little
## sense to call this directly, but it is required to exist
## by the ``&`` macro.
let spec = parseStandardFormatSpecifier(specifier)
var radix = 10
case spec.typ
of 'x', 'X': radix = 16
of 'd', '\0': discard
of 'b': radix = 2
of 'o': radix = 8
else:
raise newException(ValueError,
"invalid type in format string for number, expected one " &
" of 'x', 'X', 'b', 'd', 'o' but got: " & spec.typ)
res.add formatInt(value, radix, spec)
proc format*(value: SomeFloat; specifier: string; res: var string) =
## Standard format implementation for ``SomeFloat``. It makes little
## sense to call this directly, but it is required to exist
## by the ``&`` macro.
let spec = parseStandardFormatSpecifier(specifier)
var fmode = ffDefault
case spec.typ
of 'e', 'E':
fmode = ffScientific
of 'f', 'F':
fmode = ffDecimal
of 'g', 'G':
fmode = ffDefault
of '\0': discard
else:
raise newException(ValueError,
"invalid type in format string for number, expected one " &
" of 'e', 'E', 'f', 'F', 'g', 'G' but got: " & spec.typ)
var f = formatBiggestFloat(value, fmode, spec.precision)
var sign = false
if value >= 0.0:
if spec.sign != '-':
sign = true
if value == 0.0:
if 1.0 / value == Inf:
# only insert the sign if value != negZero
f.insert($spec.sign, 0)
else:
f.insert($spec.sign, 0)
else:
sign = true
if spec.padWithZero:
var sign_str = ""
if sign:
sign_str = $f[0]
f = f[1..^1]
let toFill = spec.minimumWidth - f.len - ord(sign)
if toFill > 0:
f = repeat('0', toFill) & f
if sign:
f = sign_str & f
# the default for numbers is right-alignment:
let align = if spec.align == '\0': '>' else: spec.align
let result = alignString(f, spec.minimumWidth,
align, spec.fill)
if spec.typ in {'A'..'Z'}:
res.add toUpperAscii(result)
else:
res.add result
proc format*(value: string; specifier: string; res: var string) =
## Standard format implementation for ``string``. It makes little
## sense to call this directly, but it is required to exist
## by the ``&`` macro.
let spec = parseStandardFormatSpecifier(specifier)
var value = value
case spec.typ
of 's', '\0': discard
else:
raise newException(ValueError,
"invalid type in format string for string, expected 's', but got " &
spec.typ)
if spec.precision != -1:
if spec.precision < runelen(value):
setLen(value, runeOffset(value, spec.precision))
res.add alignString(value, spec.minimumWidth, spec.align, spec.fill)
when isMainModule:
template check(actual, expected: string) =
doAssert actual == expected
from strutils import toUpperAscii, repeat
# Basic tests
let s = "string"
check &"{0} {s}", "0 string"
check &"{s[0..2].toUpperAscii}", "STR"
check &"{-10:04}", "-010"
check &"{-10:<04}", "-010"
check &"{-10:>04}", "-010"
check &"0x{10:02X}", "0x0A"
check &"{10:#04X}", "0x0A"
check &"""{"test":#>5}""", "#test"
check &"""{"test":>5}""", " test"
check &"""{"test":#^7}""", "#test##"
check &"""{"test": <5}""", "test "
check &"""{"test":<5}""", "test "
check &"{1f:.3f}", "1.000"
check &"Hello, {s}!", "Hello, string!"
# Tests for identifers without parenthesis
check &"{s} works{s}", "string worksstring"
check &"{s:>7}", " string"
doAssert(not compiles(&"{s_works}")) # parsed as identifier `s_works`
# Misc general tests
check &"{{}}", "{}"
check &"{0}%", "0%"
check &"{0}%asdf", "0%asdf"
check &("\n{\"\\n\"}\n"), "\n\n\n"
check &"""{"abc"}s""", "abcs"
# String tests
check &"""{"abc"}""", "abc"
check &"""{"abc":>4}""", " abc"
check &"""{"abc":<4}""", "abc "
check &"""{"":>4}""", " "
check &"""{"":<4}""", " "
# Int tests
check &"{12345}", "12345"
check &"{ - 12345}", "-12345"
check &"{12345:6}", " 12345"
check &"{12345:>6}", " 12345"
check &"{12345:4}", "12345"
check &"{12345:08}", "00012345"
check &"{-12345:08}", "-0012345"
check &"{0:0}", "0"
check &"{0:02}", "00"
check &"{-1:3}", " -1"
check &"{-1:03}", "-01"
check &"{10}", "10"
check &"{16:#X}", "0x10"
check &"{16:^#7X}", " 0x10 "
check &"{16:^+#7X}", " +0x10 "
# Hex tests
check &"{0:x}", "0"
check &"{-0:x}", "0"
check &"{255:x}", "ff"
check &"{255:X}", "FF"
check &"{-255:x}", "-ff"
check &"{-255:X}", "-FF"
check &"{255:x} uNaffeCteD CaSe", "ff uNaffeCteD CaSe"
check &"{255:X} uNaffeCteD CaSe", "FF uNaffeCteD CaSe"
check &"{255:4x}", " ff"
check &"{255:04x}", "00ff"
check &"{-255:4x}", " -ff"
check &"{-255:04x}", "-0ff"
# Float tests
check &"{123.456}", "123.456"
check &"{-123.456}", "-123.456"
check &"{123.456:.3f}", "123.456"
check &"{123.456:+.3f}", "+123.456"
check &"{-123.456:+.3f}", "-123.456"
check &"{-123.456:.3f}", "-123.456"
check &"{123.456:1g}", "123.456"
check &"{123.456:.1f}", "123.5"
check &"{123.456:.0f}", "123."
#check &"{123.456:.0f}", "123."
check &"{123.456:>9.3f}", " 123.456"
check &"{123.456:9.3f}", " 123.456"
check &"{123.456:>9.4f}", " 123.4560"
check &"{123.456:>9.0f}", " 123."
check &"{123.456:<9.4f}", "123.4560 "
# Float (scientific) tests
check &"{123.456:e}", "1.234560e+02"
check &"{123.456:>13e}", " 1.234560e+02"
check &"{123.456:<13e}", "1.234560e+02 "
check &"{123.456:.1e}", "1.2e+02"
check &"{123.456:.2e}", "1.23e+02"
check &"{123.456:.3e}", "1.235e+02"
# Note: times.format adheres to the format protocol. Test that this
# works:
import times
var dt = initDateTime(01, mJan, 2000, 00, 00, 00)
check &"{dt:yyyy-MM-dd}", "2000-01-01"
var tm = fromUnix(0)
discard &"{tm}"
# Unicode string tests
check &"""{"αβγ"}""", "αβγ"
check &"""{"αβγ":>5}""", " αβγ"
check &"""{"αβγ":<5}""", "αβγ "
check &"""a{"a"}α{"α"}€{""}𐍈{"𐍈"}""", "aaαα€€𐍈𐍈"
check &"""a{"a":2}α{"α":2}€{"":2}𐍈{"𐍈":2}""", "aa αα €€ 𐍈𐍈 "
# Invalid unicode sequences should be handled as plain strings.
# Invalid examples taken from: https://stackoverflow.com/a/3886015/1804173
let invalidUtf8 = [
"\xc3\x28", "\xa0\xa1",
"\xe2\x28\xa1", "\xe2\x82\x28",
"\xf0\x28\x8c\xbc", "\xf0\x90\x28\xbc", "\xf0\x28\x8c\x28"
]
for s in invalidUtf8:
check &"{s:>5}", repeat(" ", 5-s.len) & s
import json
doAssert fmt"{'a'} {'b'}" == "a b"
echo("All tests ok")