mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-28 17:04:41 +00:00
* Ref #12103 - adds FreeBSD CI * Fix getApplFreebsd - length of the string includes the null terminator byte, so minus 1 for result length * Show last commit in setup task. * Remove .git from repository URL * Don't include noisy details showing last commit. * Add FreeBSD build status badge * Fix #12182 - disable tconsole on FreeBSD * Disable tgetaddrinfo on FreebSD as getaddrinfo doesn't support the ICMP protocol. * Install boehm-gc-threaded * Use libgc-threaded.so on FreeBSD rather than libgc.so. * Simplify build failure handling. Update alt text for CI badge. * Disable test on FreeBSD * Simplify build config - use GNU make to build csources - set PATH variable using the environment key - remove modification of config to set CC as this is already set * Install git which seems to be missing from current freebsd images * Revert change to how path is set * Add a comment explaining why the length is truncated * Fix tconsole.
4516 lines
163 KiB
Nim
4516 lines
163 KiB
Nim
#
|
||
#
|
||
# Nim's Runtime Library
|
||
# (c) Copyright 2015 Andreas Rumpf
|
||
#
|
||
# See the file "copying.txt", included in this
|
||
# distribution, for details about the copyright.
|
||
#
|
||
|
||
|
||
## The compiler depends on the System module to work properly and the System
|
||
## module depends on the compiler. Most of the routines listed here use
|
||
## special compiler magic.
|
||
##
|
||
## Each module implicitly imports the System module; it must not be listed
|
||
## explicitly. Because of this there cannot be a user-defined module named
|
||
## ``system``.
|
||
##
|
||
## System module
|
||
## =============
|
||
##
|
||
## .. include:: ./system_overview.rst
|
||
|
||
|
||
type
|
||
int* {.magic: Int.} ## Default integer type; bitwidth depends on
|
||
## architecture, but is always the same as a pointer.
|
||
int8* {.magic: Int8.} ## Signed 8 bit integer type.
|
||
int16* {.magic: Int16.} ## Signed 16 bit integer type.
|
||
int32* {.magic: Int32.} ## Signed 32 bit integer type.
|
||
int64* {.magic: Int64.} ## Signed 64 bit integer type.
|
||
uint* {.magic: UInt.} ## Unsigned default integer type.
|
||
uint8* {.magic: UInt8.} ## Unsigned 8 bit integer type.
|
||
uint16* {.magic: UInt16.} ## Unsigned 16 bit integer type.
|
||
uint32* {.magic: UInt32.} ## Unsigned 32 bit integer type.
|
||
uint64* {.magic: UInt64.} ## Unsigned 64 bit integer type.
|
||
float* {.magic: Float.} ## Default floating point type.
|
||
float32* {.magic: Float32.} ## 32 bit floating point type.
|
||
float64* {.magic: Float.} ## 64 bit floating point type.
|
||
|
||
# 'float64' is now an alias to 'float'; this solves many problems
|
||
|
||
type # we need to start a new type section here, so that ``0`` can have a type
|
||
bool* {.magic: Bool.} = enum ## Built-in boolean type.
|
||
false = 0, true = 1
|
||
|
||
type
|
||
char* {.magic: Char.} ## Built-in 8 bit character type (unsigned).
|
||
string* {.magic: String.} ## Built-in string type.
|
||
cstring* {.magic: Cstring.} ## Built-in cstring (*compatible string*) type.
|
||
pointer* {.magic: Pointer.} ## Built-in pointer type, use the ``addr``
|
||
## operator to get a pointer to a variable.
|
||
|
||
typedesc* {.magic: TypeDesc.} ## Meta type to denote a type description.
|
||
|
||
const
|
||
on* = true ## Alias for ``true``.
|
||
off* = false ## Alias for ``false``.
|
||
|
||
{.push warning[GcMem]: off, warning[Uninit]: off.}
|
||
{.push hints: off.}
|
||
|
||
proc `or`*(a, b: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
|
||
## Constructs an `or` meta class.
|
||
|
||
proc `and`*(a, b: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
|
||
## Constructs an `and` meta class.
|
||
|
||
proc `not`*(a: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
|
||
## Constructs an `not` meta class.
|
||
|
||
type
|
||
Ordinal*[T] {.magic: Ordinal.} ## Generic ordinal type. Includes integer,
|
||
## bool, character, and enumeration types
|
||
## as well as their subtypes. Note `uint`
|
||
## and `uint64` are not ordinal types for
|
||
## implementation reasons.
|
||
`ptr`*[T] {.magic: Pointer.} ## Built-in generic untraced pointer type.
|
||
`ref`*[T] {.magic: Pointer.} ## Built-in generic traced pointer type.
|
||
|
||
`nil` {.magic: "Nil".}
|
||
|
||
void* {.magic: "VoidType".} ## Meta type to denote the absence of any type.
|
||
auto* {.magic: Expr.} ## Meta type for automatic type determination.
|
||
any* = distinct auto ## Meta type for any supported type.
|
||
untyped* {.magic: Expr.} ## Meta type to denote an expression that
|
||
## is not resolved (for templates).
|
||
typed* {.magic: Stmt.} ## Meta type to denote an expression that
|
||
## is resolved (for templates).
|
||
|
||
SomeSignedInt* = int|int8|int16|int32|int64
|
||
## Type class matching all signed integer types.
|
||
|
||
SomeUnsignedInt* = uint|uint8|uint16|uint32|uint64
|
||
## Type class matching all unsigned integer types.
|
||
|
||
SomeInteger* = SomeSignedInt|SomeUnsignedInt
|
||
## Type class matching all integer types.
|
||
|
||
SomeOrdinal* = int|int8|int16|int32|int64|bool|enum|uint|uint8|uint16|uint32|uint64
|
||
## Type class matching all ordinal types; however this includes enums with
|
||
## holes.
|
||
|
||
SomeFloat* = float|float32|float64
|
||
## Type class matching all floating point number types.
|
||
|
||
SomeNumber* = SomeInteger|SomeFloat
|
||
## Type class matching all number types.
|
||
|
||
proc defined*(x: untyped): bool {.magic: "Defined", noSideEffect, compileTime.}
|
||
## Special compile-time procedure that checks whether `x` is
|
||
## defined.
|
||
##
|
||
## `x` is an external symbol introduced through the compiler's
|
||
## `-d:x switch <nimc.html#compiler-usage-compile-time-symbols>`_ to enable
|
||
## build time conditionals:
|
||
##
|
||
## .. code-block:: Nim
|
||
## when not defined(release):
|
||
## # Do here programmer friendly expensive sanity checks.
|
||
## # Put here the normal code
|
||
|
||
when defined(nimHasRunnableExamples):
|
||
proc runnableExamples*(body: untyped) {.magic: "RunnableExamples".}
|
||
## A section you should use to mark `runnable example`:idx: code with.
|
||
##
|
||
## - In normal debug and release builds code within
|
||
## a ``runnableExamples`` section is ignored.
|
||
## - The documentation generator is aware of these examples and considers them
|
||
## part of the ``##`` doc comment. As the last step of documentation
|
||
## generation each runnableExample is put in its own file ``$file_examples$i.nim``,
|
||
## compiled and tested. The collected examples are
|
||
## put into their own module to ensure the examples do not refer to
|
||
## non-exported symbols.
|
||
##
|
||
## Usage:
|
||
##
|
||
## .. code-block:: Nim
|
||
## proc double*(x: int): int =
|
||
## ## This proc doubles a number.
|
||
## runnableExamples:
|
||
## ## at module scope
|
||
## assert double(5) == 10
|
||
## block: ## at block scope
|
||
## defer: echo "done"
|
||
##
|
||
## result = 2 * x
|
||
else:
|
||
template runnableExamples*(body: untyped) =
|
||
discard
|
||
|
||
proc declared*(x: untyped): bool {.magic: "Defined", noSideEffect, compileTime.}
|
||
## Special compile-time procedure that checks whether `x` is
|
||
## declared. `x` has to be an identifier or a qualified identifier.
|
||
##
|
||
## See also:
|
||
## * `declaredInScope <#declaredInScope,untyped>`_
|
||
##
|
||
## This can be used to check whether a library provides a certain
|
||
## feature or not:
|
||
##
|
||
## .. code-block:: Nim
|
||
## when not declared(strutils.toUpper):
|
||
## # provide our own toUpper proc here, because strutils is
|
||
## # missing it.
|
||
|
||
proc declaredInScope*(x: untyped): bool {.
|
||
magic: "DefinedInScope", noSideEffect, compileTime.}
|
||
## Special compile-time procedure that checks whether `x` is
|
||
## declared in the current scope. `x` has to be an identifier.
|
||
|
||
proc `addr`*[T](x: var T): ptr T {.magic: "Addr", noSideEffect.} =
|
||
## Builtin `addr` operator for taking the address of a memory location.
|
||
## Cannot be overloaded.
|
||
##
|
||
## See also:
|
||
## * `unsafeAddr <#unsafeAddr,T>`_
|
||
##
|
||
## .. code-block:: Nim
|
||
## var
|
||
## buf: seq[char] = @['a','b','c']
|
||
## p = buf[1].addr
|
||
## echo p.repr # ref 0x7faa35c40059 --> 'b'
|
||
## echo p[] # b
|
||
discard
|
||
|
||
proc unsafeAddr*[T](x: T): ptr T {.magic: "Addr", noSideEffect.} =
|
||
## Builtin `addr` operator for taking the address of a memory
|
||
## location. This works even for ``let`` variables or parameters
|
||
## for better interop with C and so it is considered even more
|
||
## unsafe than the ordinary `addr <#addr,T>`_.
|
||
##
|
||
## **Note**: When you use it to write a wrapper for a C library, you should
|
||
## always check that the original library does never write to data behind the
|
||
## pointer that is returned from this procedure.
|
||
##
|
||
## Cannot be overloaded.
|
||
discard
|
||
|
||
when defined(nimNewTypedesc):
|
||
type
|
||
`static`*[T] {.magic: "Static".}
|
||
## Meta type representing all values that can be evaluated at compile-time.
|
||
##
|
||
## The type coercion ``static(x)`` can be used to force the compile-time
|
||
## evaluation of the given expression ``x``.
|
||
|
||
`type`*[T] {.magic: "Type".}
|
||
## Meta type representing the type of all type values.
|
||
##
|
||
## The coercion ``type(x)`` can be used to obtain the type of the given
|
||
## expression ``x``.
|
||
else:
|
||
proc `type`*(x: untyped): typedesc {.magic: "TypeOf", noSideEffect, compileTime.} =
|
||
## Builtin `type` operator for accessing the type of an expression.
|
||
## Cannot be overloaded.
|
||
discard
|
||
|
||
when defined(nimHasTypeof):
|
||
type
|
||
TypeOfMode* = enum ## Possible modes of `typeof`.
|
||
typeOfProc, ## Prefer the interpretation that means `x` is a proc call.
|
||
typeOfIter ## Prefer the interpretation that means `x` is an iterator call.
|
||
|
||
proc typeof*(x: untyped; mode = typeOfIter): typedesc {.
|
||
magic: "TypeOf", noSideEffect, compileTime.} =
|
||
## Builtin `typeof` operation for accessing the type of an expression.
|
||
## Since version 0.20.0.
|
||
discard
|
||
|
||
proc `not`*(x: bool): bool {.magic: "Not", noSideEffect.}
|
||
## Boolean not; returns true if ``x == false``.
|
||
|
||
proc `and`*(x, y: bool): bool {.magic: "And", noSideEffect.}
|
||
## Boolean ``and``; returns true if ``x == y == true`` (if both arguments
|
||
## are true).
|
||
##
|
||
## Evaluation is lazy: if ``x`` is false, ``y`` will not even be evaluated.
|
||
proc `or`*(x, y: bool): bool {.magic: "Or", noSideEffect.}
|
||
## Boolean ``or``; returns true if ``not (not x and not y)`` (if any of
|
||
## the arguments is true).
|
||
##
|
||
## Evaluation is lazy: if ``x`` is true, ``y`` will not even be evaluated.
|
||
proc `xor`*(x, y: bool): bool {.magic: "Xor", noSideEffect.}
|
||
## Boolean `exclusive or`; returns true if ``x != y`` (if either argument
|
||
## is true while the other is false).
|
||
|
||
const ThisIsSystem = true
|
||
|
||
proc internalNew*[T](a: var ref T) {.magic: "New", noSideEffect.}
|
||
## Leaked implementation detail. Do not use.
|
||
|
||
when not defined(gcDestructors):
|
||
proc new*[T](a: var ref T, finalizer: proc (x: ref T) {.nimcall.}) {.
|
||
magic: "NewFinalize", noSideEffect.}
|
||
## Creates a new object of type ``T`` and returns a safe (traced)
|
||
## reference to it in ``a``.
|
||
##
|
||
## When the garbage collector frees the object, `finalizer` is called.
|
||
## The `finalizer` may not keep a reference to the
|
||
## object pointed to by `x`. The `finalizer` cannot prevent the GC from
|
||
## freeing the object.
|
||
##
|
||
## **Note**: The `finalizer` refers to the type `T`, not to the object!
|
||
## This means that for each object of type `T` the finalizer will be called!
|
||
|
||
when defined(nimV2):
|
||
proc reset*[T](obj: var T) {.magic: "Destroy", noSideEffect.}
|
||
## Old runtime target: Resets an object `obj` to its initial (binary zero) value.
|
||
##
|
||
## New runtime target: An alias for `=destroy`.
|
||
else:
|
||
proc reset*[T](obj: var T) {.magic: "Reset", noSideEffect.}
|
||
## Old runtime target: Resets an object `obj` to its initial (binary zero) value.
|
||
##
|
||
## New runtime target: An alias for `=destroy`.
|
||
|
||
proc wasMoved*[T](obj: var T) {.magic: "WasMoved", noSideEffect.} =
|
||
## Resets an object `obj` to its initial (binary zero) value to signify
|
||
## it was "moved" and to signify its destructor should do nothing and
|
||
## ideally be optimized away.
|
||
discard
|
||
|
||
proc move*[T](x: var T): T {.magic: "Move", noSideEffect.} =
|
||
result = x
|
||
wasMoved(x)
|
||
|
||
type
|
||
range*[T]{.magic: "Range".} ## Generic type to construct range types.
|
||
array*[I, T]{.magic: "Array".} ## Generic type to construct
|
||
## fixed-length arrays.
|
||
openArray*[T]{.magic: "OpenArray".} ## Generic type to construct open arrays.
|
||
## Open arrays are implemented as a
|
||
## pointer to the array data and a
|
||
## length field.
|
||
varargs*[T]{.magic: "Varargs".} ## Generic type to construct a varargs type.
|
||
seq*[T]{.magic: "Seq".} ## Generic type to construct sequences.
|
||
set*[T]{.magic: "Set".} ## Generic type to construct bit sets.
|
||
|
||
when defined(nimUncheckedArrayTyp):
|
||
type
|
||
UncheckedArray*[T]{.magic: "UncheckedArray".}
|
||
## Array with no bounds checking.
|
||
else:
|
||
type
|
||
UncheckedArray*[T]{.unchecked.} = array[0,T]
|
||
## Array with no bounds checking.
|
||
|
||
type sink*[T]{.magic: "BuiltinType".}
|
||
type lent*[T]{.magic: "BuiltinType".}
|
||
|
||
proc high*[T: Ordinal|enum|range](x: T): T {.magic: "High", noSideEffect.}
|
||
## Returns the highest possible value of an ordinal value `x`.
|
||
##
|
||
## As a special semantic rule, `x` may also be a type identifier.
|
||
##
|
||
## See also:
|
||
## * `low(T) <#low,T>`_
|
||
##
|
||
## .. code-block:: Nim
|
||
## high(2) # => 9223372036854775807
|
||
|
||
proc high*[T: Ordinal|enum|range](x: typedesc[T]): T {.magic: "High", noSideEffect.}
|
||
## Returns the highest possible value of an ordinal or enum type.
|
||
##
|
||
## ``high(int)`` is Nim's way of writing `INT_MAX`:idx: or `MAX_INT`:idx:.
|
||
##
|
||
## See also:
|
||
## * `low(typedesc) <#low,typedesc[T]>`_
|
||
##
|
||
## .. code-block:: Nim
|
||
## high(int) # => 9223372036854775807
|
||
|
||
proc high*[T](x: openArray[T]): int {.magic: "High", noSideEffect.}
|
||
## Returns the highest possible index of a sequence `x`.
|
||
##
|
||
## See also:
|
||
## * `low(openArray) <#low,openArray[T]>`_
|
||
##
|
||
## .. code-block:: Nim
|
||
## var s = @[1, 2, 3, 4, 5, 6, 7]
|
||
## high(s) # => 6
|
||
## for i in low(s)..high(s):
|
||
## echo s[i]
|
||
|
||
proc high*[I, T](x: array[I, T]): I {.magic: "High", noSideEffect.}
|
||
## Returns the highest possible index of an array `x`.
|
||
##
|
||
## See also:
|
||
## * `low(array) <#low,array[I,T]>`_
|
||
##
|
||
## .. code-block:: Nim
|
||
## var arr = [1, 2, 3, 4, 5, 6, 7]
|
||
## high(arr) # => 6
|
||
## for i in low(arr)..high(arr):
|
||
## echo arr[i]
|
||
|
||
proc high*[I, T](x: typedesc[array[I, T]]): I {.magic: "High", noSideEffect.}
|
||
## Returns the highest possible index of an array type.
|
||
##
|
||
## See also:
|
||
## * `low(typedesc[array]) <#low,typedesc[array[I,T]]>`_
|
||
##
|
||
## .. code-block:: Nim
|
||
## high(array[7, int]) # => 6
|
||
|
||
proc high*(x: cstring): int {.magic: "High", noSideEffect.}
|
||
## Returns the highest possible index of a compatible string `x`.
|
||
## This is sometimes an O(n) operation.
|
||
##
|
||
## See also:
|
||
## * `low(cstring) <#low,cstring>`_
|
||
|
||
proc high*(x: string): int {.magic: "High", noSideEffect.}
|
||
## Returns the highest possible index of a string `x`.
|
||
##
|
||
## See also:
|
||
## * `low(string) <#low,string>`_
|
||
##
|
||
## .. code-block:: Nim
|
||
## var str = "Hello world!"
|
||
## high(str) # => 11
|
||
|
||
proc low*[T: Ordinal|enum|range](x: T): T {.magic: "Low", noSideEffect.}
|
||
## Returns the lowest possible value of an ordinal value `x`. As a special
|
||
## semantic rule, `x` may also be a type identifier.
|
||
##
|
||
## See also:
|
||
## * `high(T) <#high,T>`_
|
||
##
|
||
## .. code-block:: Nim
|
||
## low(2) # => -9223372036854775808
|
||
|
||
proc low*[T: Ordinal|enum|range](x: typedesc[T]): T {.magic: "Low", noSideEffect.}
|
||
## Returns the lowest possible value of an ordinal or enum type.
|
||
##
|
||
## ``low(int)`` is Nim's way of writing `INT_MIN`:idx: or `MIN_INT`:idx:.
|
||
##
|
||
## See also:
|
||
## * `high(typedesc) <#high,typedesc[T]>`_
|
||
##
|
||
## .. code-block:: Nim
|
||
## low(int) # => -9223372036854775808
|
||
|
||
proc low*[T](x: openArray[T]): int {.magic: "Low", noSideEffect.}
|
||
## Returns the lowest possible index of a sequence `x`.
|
||
##
|
||
## See also:
|
||
## * `high(openArray) <#high,openArray[T]>`_
|
||
##
|
||
## .. code-block:: Nim
|
||
## var s = @[1, 2, 3, 4, 5, 6, 7]
|
||
## low(s) # => 0
|
||
## for i in low(s)..high(s):
|
||
## echo s[i]
|
||
|
||
proc low*[I, T](x: array[I, T]): I {.magic: "Low", noSideEffect.}
|
||
## Returns the lowest possible index of an array `x`.
|
||
##
|
||
## See also:
|
||
## * `high(array) <#high,array[I,T]>`_
|
||
##
|
||
## .. code-block:: Nim
|
||
## var arr = [1, 2, 3, 4, 5, 6, 7]
|
||
## low(arr) # => 0
|
||
## for i in low(arr)..high(arr):
|
||
## echo arr[i]
|
||
|
||
proc low*[I, T](x: typedesc[array[I, T]]): I {.magic: "Low", noSideEffect.}
|
||
## Returns the lowest possible index of an array type.
|
||
##
|
||
## See also:
|
||
## * `high(typedesc[array]) <#high,typedesc[array[I,T]]>`_
|
||
##
|
||
## .. code-block:: Nim
|
||
## low(array[7, int]) # => 0
|
||
|
||
proc low*(x: cstring): int {.magic: "Low", noSideEffect.}
|
||
## Returns the lowest possible index of a compatible string `x`.
|
||
##
|
||
## See also:
|
||
## * `high(cstring) <#high,cstring>`_
|
||
|
||
proc low*(x: string): int {.magic: "Low", noSideEffect.}
|
||
## Returns the lowest possible index of a string `x`.
|
||
##
|
||
## See also:
|
||
## * `high(string) <#high,string>`_
|
||
##
|
||
## .. code-block:: Nim
|
||
## var str = "Hello world!"
|
||
## low(str) # => 0
|
||
|
||
proc shallowCopy*[T](x: var T, y: T) {.noSideEffect, magic: "ShallowCopy".}
|
||
## Use this instead of `=` for a `shallow copy`:idx:.
|
||
##
|
||
## The shallow copy only changes the semantics for sequences and strings
|
||
## (and types which contain those).
|
||
##
|
||
## Be careful with the changed semantics though!
|
||
## There is a reason why the default assignment does a deep copy of sequences
|
||
## and strings.
|
||
|
||
when defined(nimArrIdx):
|
||
# :array|openArray|string|seq|cstring|tuple
|
||
proc `[]`*[I: Ordinal;T](a: T; i: I): T {.
|
||
noSideEffect, magic: "ArrGet".}
|
||
proc `[]=`*[I: Ordinal;T,S](a: T; i: I;
|
||
x: S) {.noSideEffect, magic: "ArrPut".}
|
||
proc `=`*[T](dest: var T; src: T) {.noSideEffect, magic: "Asgn".}
|
||
|
||
proc arrGet[I: Ordinal;T](a: T; i: I): T {.
|
||
noSideEffect, magic: "ArrGet".}
|
||
proc arrPut[I: Ordinal;T,S](a: T; i: I;
|
||
x: S) {.noSideEffect, magic: "ArrPut".}
|
||
|
||
proc `=destroy`*[T](x: var T) {.inline, magic: "Destroy".} =
|
||
## Generic `destructor`:idx: implementation that can be overridden.
|
||
discard
|
||
proc `=sink`*[T](x: var T; y: T) {.inline, magic: "Asgn".} =
|
||
## Generic `sink`:idx: implementation that can be overridden.
|
||
shallowCopy(x, y)
|
||
|
||
type
|
||
HSlice*[T, U] = object ## "Heterogeneous" slice type.
|
||
a*: T ## The lower bound (inclusive).
|
||
b*: U ## The upper bound (inclusive).
|
||
Slice*[T] = HSlice[T, T] ## An alias for ``HSlice[T, T]``.
|
||
|
||
proc `..`*[T, U](a: T, b: U): HSlice[T, U] {.noSideEffect, inline, magic: "DotDot".} =
|
||
## Binary `slice`:idx: operator that constructs an interval ``[a, b]``, both `a`
|
||
## and `b` are inclusive.
|
||
##
|
||
## Slices can also be used in the set constructor and in ordinal case
|
||
## statements, but then they are special-cased by the compiler.
|
||
##
|
||
## .. code-block:: Nim
|
||
## let a = [10, 20, 30, 40, 50]
|
||
## echo a[2 .. 3] # @[30, 40]
|
||
result = HSlice[T, U](a: a, b: b)
|
||
|
||
proc `..`*[T](b: T): HSlice[int, T] {.noSideEffect, inline, magic: "DotDot".} =
|
||
## Unary `slice`:idx: operator that constructs an interval ``[default(int), b]``.
|
||
##
|
||
## .. code-block:: Nim
|
||
## let a = [10, 20, 30, 40, 50]
|
||
## echo a[.. 2] # @[10, 20, 30]
|
||
result = HSlice[int, T](a: 0, b: b)
|
||
|
||
when not defined(niminheritable):
|
||
{.pragma: inheritable.}
|
||
when not defined(nimunion):
|
||
{.pragma: unchecked.}
|
||
when not defined(nimHasHotCodeReloading):
|
||
{.pragma: nonReloadable.}
|
||
when defined(hotCodeReloading):
|
||
{.pragma: hcrInline, inline.}
|
||
else:
|
||
{.pragma: hcrInline.}
|
||
|
||
# comparison operators:
|
||
proc `==`*[Enum: enum](x, y: Enum): bool {.magic: "EqEnum", noSideEffect.}
|
||
## Checks whether values within the *same enum* have the same underlying value.
|
||
##
|
||
## .. code-block:: Nim
|
||
## type
|
||
## Enum1 = enum
|
||
## Field1 = 3, Field2
|
||
## Enum2 = enum
|
||
## Place1, Place2 = 3
|
||
## var
|
||
## e1 = Field1
|
||
## e2 = Enum1(Place2)
|
||
## echo (e1 == e2) # true
|
||
## echo (e1 == Place2) # raises error
|
||
proc `==`*(x, y: pointer): bool {.magic: "EqRef", noSideEffect.}
|
||
## .. code-block:: Nim
|
||
## var # this is a wildly dangerous example
|
||
## a = cast[pointer](0)
|
||
## b = cast[pointer](nil)
|
||
## echo (a == b) # true due to the special meaning of `nil`/0 as a pointer
|
||
proc `==`*(x, y: string): bool {.magic: "EqStr", noSideEffect.}
|
||
## Checks for equality between two `string` variables.
|
||
|
||
proc `==`*(x, y: char): bool {.magic: "EqCh", noSideEffect.}
|
||
## Checks for equality between two `char` variables.
|
||
proc `==`*(x, y: bool): bool {.magic: "EqB", noSideEffect.}
|
||
## Checks for equality between two `bool` variables.
|
||
proc `==`*[T](x, y: set[T]): bool {.magic: "EqSet", noSideEffect.}
|
||
## Checks for equality between two variables of type `set`.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var a = {1, 2, 2, 3} # duplication in sets is ignored
|
||
## var b = {1, 2, 3}
|
||
## echo (a == b) # true
|
||
proc `==`*[T](x, y: ref T): bool {.magic: "EqRef", noSideEffect.}
|
||
## Checks that two `ref` variables refer to the same item.
|
||
proc `==`*[T](x, y: ptr T): bool {.magic: "EqRef", noSideEffect.}
|
||
## Checks that two `ptr` variables refer to the same item.
|
||
proc `==`*[T: proc](x, y: T): bool {.magic: "EqProc", noSideEffect.}
|
||
## Checks that two `proc` variables refer to the same procedure.
|
||
|
||
proc `<=`*[Enum: enum](x, y: Enum): bool {.magic: "LeEnum", noSideEffect.}
|
||
proc `<=`*(x, y: string): bool {.magic: "LeStr", noSideEffect.}
|
||
## Compares two strings and returns true if `x` is lexicographically
|
||
## before `y` (uppercase letters come before lowercase letters).
|
||
##
|
||
## .. code-block:: Nim
|
||
## let
|
||
## a = "abc"
|
||
## b = "abd"
|
||
## c = "ZZZ"
|
||
## assert a <= b
|
||
## assert a <= a
|
||
## assert (a <= c) == false
|
||
proc `<=`*(x, y: char): bool {.magic: "LeCh", noSideEffect.}
|
||
## Compares two chars and returns true if `x` is lexicographically
|
||
## before `y` (uppercase letters come before lowercase letters).
|
||
##
|
||
## .. code-block:: Nim
|
||
## let
|
||
## a = 'a'
|
||
## b = 'b'
|
||
## c = 'Z'
|
||
## assert a <= b
|
||
## assert a <= a
|
||
## assert (a <= c) == false
|
||
proc `<=`*[T](x, y: set[T]): bool {.magic: "LeSet", noSideEffect.}
|
||
## Returns true if `x` is a subset of `y`.
|
||
##
|
||
## A subset `x` has all of its members in `y` and `y` doesn't necessarily
|
||
## have more members than `x`. That is, `x` can be equal to `y`.
|
||
##
|
||
## .. code-block:: Nim
|
||
## let
|
||
## a = {3, 5}
|
||
## b = {1, 3, 5, 7}
|
||
## c = {2}
|
||
## assert a <= b
|
||
## assert a <= a
|
||
## assert (a <= c) == false
|
||
proc `<=`*(x, y: bool): bool {.magic: "LeB", noSideEffect.}
|
||
proc `<=`*[T](x, y: ref T): bool {.magic: "LePtr", noSideEffect.}
|
||
proc `<=`*(x, y: pointer): bool {.magic: "LePtr", noSideEffect.}
|
||
|
||
proc `<`*[Enum: enum](x, y: Enum): bool {.magic: "LtEnum", noSideEffect.}
|
||
proc `<`*(x, y: string): bool {.magic: "LtStr", noSideEffect.}
|
||
## Compares two strings and returns true if `x` is lexicographically
|
||
## before `y` (uppercase letters come before lowercase letters).
|
||
##
|
||
## .. code-block:: Nim
|
||
## let
|
||
## a = "abc"
|
||
## b = "abd"
|
||
## c = "ZZZ"
|
||
## assert a < b
|
||
## assert (a < a) == false
|
||
## assert (a < c) == false
|
||
proc `<`*(x, y: char): bool {.magic: "LtCh", noSideEffect.}
|
||
## Compares two chars and returns true if `x` is lexicographically
|
||
## before `y` (uppercase letters come before lowercase letters).
|
||
##
|
||
## .. code-block:: Nim
|
||
## let
|
||
## a = 'a'
|
||
## b = 'b'
|
||
## c = 'Z'
|
||
## assert a < b
|
||
## assert (a < a) == false
|
||
## assert (a < c) == false
|
||
proc `<`*[T](x, y: set[T]): bool {.magic: "LtSet", noSideEffect.}
|
||
## Returns true if `x` is a strict or proper subset of `y`.
|
||
##
|
||
## A strict or proper subset `x` has all of its members in `y` but `y` has
|
||
## more elements than `y`.
|
||
##
|
||
## .. code-block:: Nim
|
||
## let
|
||
## a = {3, 5}
|
||
## b = {1, 3, 5, 7}
|
||
## c = {2}
|
||
## assert a < b
|
||
## assert (a < a) == false
|
||
## assert (a < c) == false
|
||
proc `<`*(x, y: bool): bool {.magic: "LtB", noSideEffect.}
|
||
proc `<`*[T](x, y: ref T): bool {.magic: "LtPtr", noSideEffect.}
|
||
proc `<`*[T](x, y: ptr T): bool {.magic: "LtPtr", noSideEffect.}
|
||
proc `<`*(x, y: pointer): bool {.magic: "LtPtr", noSideEffect.}
|
||
|
||
template `!=`*(x, y: untyped): untyped =
|
||
## Unequals operator. This is a shorthand for ``not (x == y)``.
|
||
not (x == y)
|
||
|
||
template `>=`*(x, y: untyped): untyped =
|
||
## "is greater or equals" operator. This is the same as ``y <= x``.
|
||
y <= x
|
||
|
||
template `>`*(x, y: untyped): untyped =
|
||
## "is greater" operator. This is the same as ``y < x``.
|
||
y < x
|
||
|
||
const
|
||
appType* {.magic: "AppType"}: string = ""
|
||
## A string that describes the application type. Possible values:
|
||
## `"console"`, `"gui"`, `"lib"`.
|
||
|
||
include "system/inclrtl"
|
||
|
||
const NoFakeVars* = defined(nimscript) ## `true` if the backend doesn't support \
|
||
## "fake variables" like `var EBADF {.importc.}: cint`.
|
||
|
||
when not defined(JS) and not defined(nimSeqsV2):
|
||
type
|
||
TGenericSeq {.compilerproc, pure, inheritable.} = object
|
||
len, reserved: int
|
||
when defined(gogc):
|
||
elemSize: int
|
||
PGenericSeq {.exportc.} = ptr TGenericSeq
|
||
# len and space without counting the terminating zero:
|
||
NimStringDesc {.compilerproc, final.} = object of TGenericSeq
|
||
data: UncheckedArray[char]
|
||
NimString = ptr NimStringDesc
|
||
|
||
when not defined(JS) and not defined(nimscript):
|
||
when not defined(nimSeqsV2):
|
||
template space(s: PGenericSeq): int {.dirty.} =
|
||
s.reserved and not (seqShallowFlag or strlitFlag)
|
||
when not defined(nimV2):
|
||
include "system/hti"
|
||
|
||
type
|
||
byte* = uint8 ## This is an alias for ``uint8``, that is an unsigned
|
||
## integer, 8 bits wide.
|
||
|
||
Natural* = range[0..high(int)]
|
||
## is an `int` type ranging from zero to the maximum value
|
||
## of an `int`. This type is often useful for documentation and debugging.
|
||
|
||
Positive* = range[1..high(int)]
|
||
## is an `int` type ranging from one to the maximum value
|
||
## of an `int`. This type is often useful for documentation and debugging.
|
||
|
||
RootObj* {.compilerproc, inheritable.} =
|
||
object ## The root of Nim's object hierarchy.
|
||
##
|
||
## Objects should inherit from `RootObj` or one of its descendants.
|
||
## However, objects that have no ancestor are also allowed.
|
||
RootRef* = ref RootObj ## Reference to `RootObj`.
|
||
|
||
RootEffect* {.compilerproc.} = object of RootObj ## \
|
||
## Base effect class.
|
||
##
|
||
## Each effect should inherit from `RootEffect` unless you know what
|
||
## you're doing.
|
||
TimeEffect* = object of RootEffect ## Time effect.
|
||
IOEffect* = object of RootEffect ## IO effect.
|
||
ReadIOEffect* = object of IOEffect ## Effect describing a read IO operation.
|
||
WriteIOEffect* = object of IOEffect ## Effect describing a write IO operation.
|
||
ExecIOEffect* = object of IOEffect ## Effect describing an executing IO operation.
|
||
|
||
StackTraceEntry* = object ## In debug mode exceptions store the stack trace that led
|
||
## to them. A `StackTraceEntry` is a single entry of the
|
||
## stack trace.
|
||
procname*: cstring ## Name of the proc that is currently executing.
|
||
line*: int ## Line number of the proc that is currently executing.
|
||
filename*: cstring ## Filename of the proc that is currently executing.
|
||
|
||
Exception* {.compilerproc, magic: "Exception".} = object of RootObj ## \
|
||
## Base exception class.
|
||
##
|
||
## Each exception has to inherit from `Exception`. See the full `exception
|
||
## hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
|
||
parent*: ref Exception ## Parent exception (can be used as a stack).
|
||
name*: cstring ## The exception's name is its Nim identifier.
|
||
## This field is filled automatically in the
|
||
## ``raise`` statement.
|
||
msg* {.exportc: "message".}: string ## The exception's message. Not
|
||
## providing an exception message
|
||
## is bad style.
|
||
when defined(js):
|
||
trace: string
|
||
else:
|
||
trace: seq[StackTraceEntry]
|
||
when defined(nimBoostrapCsources0_19_0):
|
||
# see #10315, bootstrap with `nim cpp` from csources gave error:
|
||
# error: no member named 'raise_id' in 'Exception'
|
||
raise_id: uint # set when exception is raised
|
||
else:
|
||
raiseId: uint # set when exception is raised
|
||
up: ref Exception # used for stacking exceptions. Not exported!
|
||
|
||
Defect* = object of Exception ## \
|
||
## Abstract base class for all exceptions that Nim's runtime raises
|
||
## but that are strictly uncatchable as they can also be mapped to
|
||
## a ``quit`` / ``trap`` / ``exit`` operation.
|
||
|
||
CatchableError* = object of Exception ## \
|
||
## Abstract class for all exceptions that are catchable.
|
||
IOError* = object of CatchableError ## \
|
||
## Raised if an IO error occurred.
|
||
EOFError* = object of IOError ## \
|
||
## Raised if an IO "end of file" error occurred.
|
||
OSError* = object of CatchableError ## \
|
||
## Raised if an operating system service failed.
|
||
errorCode*: int32 ## OS-defined error code describing this error.
|
||
LibraryError* = object of OSError ## \
|
||
## Raised if a dynamic library could not be loaded.
|
||
ResourceExhaustedError* = object of CatchableError ## \
|
||
## Raised if a resource request could not be fulfilled.
|
||
ArithmeticError* = object of Defect ## \
|
||
## Raised if any kind of arithmetic error occurred.
|
||
DivByZeroError* = object of ArithmeticError ## \
|
||
## Raised for runtime integer divide-by-zero errors.
|
||
|
||
OverflowError* = object of ArithmeticError ## \
|
||
## Raised for runtime integer overflows.
|
||
##
|
||
## This happens for calculations whose results are too large to fit in the
|
||
## provided bits.
|
||
AccessViolationError* = object of Defect ## \
|
||
## Raised for invalid memory access errors
|
||
AssertionError* = object of Defect ## \
|
||
## Raised when assertion is proved wrong.
|
||
##
|
||
## Usually the result of using the `assert() template
|
||
## <assertions.html#assert.t,untyped,string>`_.
|
||
ValueError* = object of CatchableError ## \
|
||
## Raised for string and object conversion errors.
|
||
KeyError* = object of ValueError ## \
|
||
## Raised if a key cannot be found in a table.
|
||
##
|
||
## Mostly used by the `tables <tables.html>`_ module, it can also be raised
|
||
## by other collection modules like `sets <sets.html>`_ or `strtabs
|
||
## <strtabs.html>`_.
|
||
OutOfMemError* = object of Defect ## \
|
||
## Raised for unsuccessful attempts to allocate memory.
|
||
IndexError* = object of Defect ## \
|
||
## Raised if an array index is out of bounds.
|
||
|
||
FieldError* = object of Defect ## \
|
||
## Raised if a record field is not accessible because its discriminant's
|
||
## value does not fit.
|
||
RangeError* = object of Defect ## \
|
||
## Raised if a range check error occurred.
|
||
StackOverflowError* = object of Defect ## \
|
||
## Raised if the hardware stack used for subroutine calls overflowed.
|
||
ReraiseError* = object of Defect ## \
|
||
## Raised if there is no exception to reraise.
|
||
ObjectAssignmentError* = object of Defect ## \
|
||
## Raised if an object gets assigned to its parent's object.
|
||
ObjectConversionError* = object of Defect ## \
|
||
## Raised if an object is converted to an incompatible object type.
|
||
## You can use ``of`` operator to check if conversion will succeed.
|
||
FloatingPointError* = object of Defect ## \
|
||
## Base class for floating point exceptions.
|
||
FloatInvalidOpError* = object of FloatingPointError ## \
|
||
## Raised by invalid operations according to IEEE.
|
||
##
|
||
## Raised by ``0.0/0.0``, for example.
|
||
FloatDivByZeroError* = object of FloatingPointError ## \
|
||
## Raised by division by zero.
|
||
##
|
||
## Divisor is zero and dividend is a finite nonzero number.
|
||
FloatOverflowError* = object of FloatingPointError ## \
|
||
## Raised for overflows.
|
||
##
|
||
## The operation produced a result that exceeds the range of the exponent.
|
||
FloatUnderflowError* = object of FloatingPointError ## \
|
||
## Raised for underflows.
|
||
##
|
||
## The operation produced a result that is too small to be represented as a
|
||
## normal number.
|
||
FloatInexactError* = object of FloatingPointError ## \
|
||
## Raised for inexact results.
|
||
##
|
||
## The operation produced a result that cannot be represented with infinite
|
||
## precision -- for example: ``2.0 / 3.0, log(1.1)``
|
||
##
|
||
## **Note**: Nim currently does not detect these!
|
||
DeadThreadError* = object of Defect ## \
|
||
## Raised if it is attempted to send a message to a dead thread.
|
||
NilAccessError* = object of Defect ## \
|
||
## Raised on dereferences of ``nil`` pointers.
|
||
##
|
||
## This is only raised if the `segfaults module <segfaults.html>`_ was imported!
|
||
|
||
when defined(js) or defined(nimdoc):
|
||
type
|
||
JsRoot* = ref object of RootObj
|
||
## Root type of the JavaScript object hierarchy
|
||
|
||
proc unsafeNew*[T](a: var ref T, size: Natural) {.magic: "New", noSideEffect.}
|
||
## Creates a new object of type ``T`` and returns a safe (traced)
|
||
## reference to it in ``a``.
|
||
##
|
||
## This is **unsafe** as it allocates an object of the passed ``size``.
|
||
## This should only be used for optimization purposes when you know
|
||
## what you're doing!
|
||
##
|
||
## See also:
|
||
## * `new <#new,ref.T,proc(ref.T)>`_
|
||
|
||
proc sizeof*[T](x: T): int {.magic: "SizeOf", noSideEffect.}
|
||
## Returns the size of ``x`` in bytes.
|
||
##
|
||
## Since this is a low-level proc,
|
||
## its usage is discouraged - using `new <#new,ref.T,proc(ref.T)>`_ for
|
||
## the most cases suffices that one never needs to know ``x``'s size.
|
||
##
|
||
## As a special semantic rule, ``x`` may also be a type identifier
|
||
## (``sizeof(int)`` is valid).
|
||
##
|
||
## Limitations: If used for types that are imported from C or C++,
|
||
## sizeof should fallback to the ``sizeof`` in the C compiler. The
|
||
## result isn't available for the Nim compiler and therefore can't
|
||
## be used inside of macros.
|
||
##
|
||
## .. code-block:: Nim
|
||
## sizeof('A') # => 1
|
||
## sizeof(2) # => 8
|
||
|
||
when defined(nimHasalignOf):
|
||
proc alignof*[T](x: T): int {.magic: "AlignOf", noSideEffect.}
|
||
proc alignof*(x: typedesc): int {.magic: "AlignOf", noSideEffect.}
|
||
|
||
proc offsetOfDotExpr(typeAccess: typed): int {.magic: "OffsetOf", noSideEffect, compileTime.}
|
||
|
||
template offsetOf*[T](t: typedesc[T]; member: untyped): int =
|
||
var tmp {.noinit.}: ptr T
|
||
offsetOfDotExpr(tmp[].member)
|
||
|
||
template offsetOf*[T](value: T; member: untyped): int =
|
||
offsetOfDotExpr(value.member)
|
||
|
||
#proc offsetOf*(memberaccess: typed): int {.magic: "OffsetOf", noSideEffect.}
|
||
|
||
when defined(nimtypedescfixed):
|
||
proc sizeof*(x: typedesc): int {.magic: "SizeOf", noSideEffect.}
|
||
|
||
|
||
proc succ*[T: Ordinal](x: T, y = 1): T {.magic: "Succ", noSideEffect.}
|
||
## Returns the ``y``-th successor (default: 1) of the value ``x``.
|
||
## ``T`` has to be an `ordinal type <#Ordinal>`_.
|
||
##
|
||
## If such a value does not exist, ``OverflowError`` is raised
|
||
## or a compile time error occurs.
|
||
##
|
||
## .. code-block:: Nim
|
||
## let x = 5
|
||
## echo succ(5) # => 6
|
||
## echo succ(5, 3) # => 8
|
||
|
||
proc pred*[T: Ordinal](x: T, y = 1): T {.magic: "Pred", noSideEffect.}
|
||
## Returns the ``y``-th predecessor (default: 1) of the value ``x``.
|
||
## ``T`` has to be an `ordinal type <#Ordinal>`_.
|
||
##
|
||
## If such a value does not exist, ``OverflowError`` is raised
|
||
## or a compile time error occurs.
|
||
##
|
||
## .. code-block:: Nim
|
||
## let x = 5
|
||
## echo pred(5) # => 4
|
||
## echo pred(5, 3) # => 2
|
||
|
||
proc inc*[T: Ordinal|uint|uint64](x: var T, y = 1) {.magic: "Inc", noSideEffect.}
|
||
## Increments the ordinal ``x`` by ``y``.
|
||
##
|
||
## If such a value does not exist, ``OverflowError`` is raised or a compile
|
||
## time error occurs. This is a short notation for: ``x = succ(x, y)``.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var i = 2
|
||
## inc(i) # i <- 3
|
||
## inc(i, 3) # i <- 6
|
||
|
||
proc dec*[T: Ordinal|uint|uint64](x: var T, y = 1) {.magic: "Dec", noSideEffect.}
|
||
## Decrements the ordinal ``x`` by ``y``.
|
||
##
|
||
## If such a value does not exist, ``OverflowError`` is raised or a compile
|
||
## time error occurs. This is a short notation for: ``x = pred(x, y)``.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var i = 2
|
||
## dec(i) # i <- 1
|
||
## dec(i, 3) # i <- -2
|
||
|
||
proc newSeq*[T](s: var seq[T], len: Natural) {.magic: "NewSeq", noSideEffect.}
|
||
## Creates a new sequence of type ``seq[T]`` with length ``len``.
|
||
##
|
||
## This is equivalent to ``s = @[]; setlen(s, len)``, but more
|
||
## efficient since no reallocation is needed.
|
||
##
|
||
## Note that the sequence will be filled with zeroed entries.
|
||
## After the creation of the sequence you should assign entries to
|
||
## the sequence instead of adding them. Example:
|
||
##
|
||
## .. code-block:: Nim
|
||
## var inputStrings : seq[string]
|
||
## newSeq(inputStrings, 3)
|
||
## assert len(inputStrings) == 3
|
||
## inputStrings[0] = "The fourth"
|
||
## inputStrings[1] = "assignment"
|
||
## inputStrings[2] = "would crash"
|
||
## #inputStrings[3] = "out of bounds"
|
||
|
||
proc newSeq*[T](len = 0.Natural): seq[T] =
|
||
## Creates a new sequence of type ``seq[T]`` with length ``len``.
|
||
##
|
||
## Note that the sequence will be filled with zeroed entries.
|
||
## After the creation of the sequence you should assign entries to
|
||
## the sequence instead of adding them.
|
||
##
|
||
## See also:
|
||
## * `newSeqOfCap <#newSeqOfCap,Natural>`_
|
||
## * `newSeqUninitialized <#newSeqUninitialized,Natural>`_
|
||
##
|
||
## .. code-block:: Nim
|
||
## var inputStrings = newSeq[string](3)
|
||
## assert len(inputStrings) == 3
|
||
## inputStrings[0] = "The fourth"
|
||
## inputStrings[1] = "assignment"
|
||
## inputStrings[2] = "would crash"
|
||
## #inputStrings[3] = "out of bounds"
|
||
newSeq(result, len)
|
||
|
||
proc newSeqOfCap*[T](cap: Natural): seq[T] {.
|
||
magic: "NewSeqOfCap", noSideEffect.} =
|
||
## Creates a new sequence of type ``seq[T]`` with length zero and capacity
|
||
## ``cap``.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var x = newSeqOfCap[int](5)
|
||
## assert len(x) == 0
|
||
## x.add(10)
|
||
## assert len(x) == 1
|
||
discard
|
||
|
||
when not defined(JS):
|
||
proc newSeqUninitialized*[T: SomeNumber](len: Natural): seq[T] =
|
||
## Creates a new sequence of type ``seq[T]`` with length ``len``.
|
||
##
|
||
## Only available for numbers types. Note that the sequence will be
|
||
## uninitialized. After the creation of the sequence you should assign
|
||
## entries to the sequence instead of adding them.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var x = newSeqUninitialized[int](3)
|
||
## assert len(x) == 3
|
||
## x[0] = 10
|
||
result = newSeqOfCap[T](len)
|
||
when defined(nimSeqsV2):
|
||
cast[ptr int](addr result)[] = len
|
||
else:
|
||
var s = cast[PGenericSeq](result)
|
||
s.len = len
|
||
|
||
proc len*[TOpenArray: openArray|varargs](x: TOpenArray): int {.
|
||
magic: "LengthOpenArray", noSideEffect.}
|
||
## Returns the length of an openArray.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var s = [1, 1, 1, 1, 1]
|
||
## echo len(s) # => 5
|
||
|
||
proc len*(x: string): int {.magic: "LengthStr", noSideEffect.}
|
||
## Returns the length of a string.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var str = "Hello world!"
|
||
## echo len(str) # => 12
|
||
|
||
proc len*(x: cstring): int {.magic: "LengthStr", noSideEffect.}
|
||
## Returns the length of a compatible string. This is sometimes
|
||
## an O(n) operation.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var str: cstring = "Hello world!"
|
||
## len(str) # => 12
|
||
|
||
proc len*(x: (type array)|array): int {.magic: "LengthArray", noSideEffect.}
|
||
## Returns the length of an array or an array type.
|
||
## This is roughly the same as ``high(T)-low(T)+1``.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var arr = [1, 1, 1, 1, 1]
|
||
## echo len(arr) # => 5
|
||
## echo len(array[3..8, int]) # => 6
|
||
|
||
proc len*[T](x: seq[T]): int {.magic: "LengthSeq", noSideEffect.}
|
||
## Returns the length of a sequence.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var s = @[1, 1, 1, 1, 1]
|
||
## echo len(s) # => 5
|
||
|
||
# set routines:
|
||
proc incl*[T](x: var set[T], y: T) {.magic: "Incl", noSideEffect.}
|
||
## Includes element ``y`` in the set ``x``.
|
||
##
|
||
## This is the same as ``x = x + {y}``, but it might be more efficient.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var a = {1, 3, 5}
|
||
## a.incl(2) # a <- {1, 2, 3, 5}
|
||
## a.incl(4) # a <- {1, 2, 3, 4, 5}
|
||
|
||
template incl*[T](x: var set[T], y: set[T]) =
|
||
## Includes the set ``y`` in the set ``x``.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var a = {1, 3, 5, 7}
|
||
## var b = {4, 5, 6}
|
||
## a.incl(b) # a <- {1, 3, 4, 5, 6, 7}
|
||
x = x + y
|
||
|
||
proc excl*[T](x: var set[T], y: T) {.magic: "Excl", noSideEffect.}
|
||
## Excludes element ``y`` from the set ``x``.
|
||
##
|
||
## This is the same as ``x = x - {y}``, but it might be more efficient.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var b = {2, 3, 5, 6, 12, 545}
|
||
## b.excl(5) # b <- {2, 3, 6, 12, 545}
|
||
|
||
template excl*[T](x: var set[T], y: set[T]) =
|
||
## Excludes the set ``y`` from the set ``x``.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var a = {1, 3, 5, 7}
|
||
## var b = {3, 4, 5}
|
||
## a.excl(b) # a <- {1, 7}
|
||
x = x - y
|
||
|
||
proc card*[T](x: set[T]): int {.magic: "Card", noSideEffect.}
|
||
## Returns the cardinality of the set ``x``, i.e. the number of elements
|
||
## in the set.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var a = {1, 3, 5, 7}
|
||
## echo card(a) # => 4
|
||
|
||
proc len*[T](x: set[T]): int {.magic: "Card", noSideEffect.}
|
||
## An alias for `card(x)`.
|
||
|
||
proc ord*[T: Ordinal|enum](x: T): int {.magic: "Ord", noSideEffect.}
|
||
## Returns the internal `int` value of an ordinal value ``x``.
|
||
##
|
||
## .. code-block:: Nim
|
||
## echo ord('A') # => 65
|
||
## echo ord('a') # => 97
|
||
|
||
proc chr*(u: range[0..255]): char {.magic: "Chr", noSideEffect.}
|
||
## Converts an `int` in the range `0..255` to a character.
|
||
##
|
||
## .. code-block:: Nim
|
||
## echo chr(65) # => A
|
||
## echo chr(97) # => a
|
||
|
||
# --------------------------------------------------------------------------
|
||
# built-in operators
|
||
|
||
when defined(nimNoZeroExtendMagic):
|
||
proc ze*(x: int8): int {.deprecated.} =
|
||
## zero extends a smaller integer type to ``int``. This treats `x` as
|
||
## unsigned.
|
||
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
|
||
|
||
cast[int](uint(cast[uint8](x)))
|
||
|
||
proc ze*(x: int16): int {.deprecated.} =
|
||
## zero extends a smaller integer type to ``int``. This treats `x` as
|
||
## unsigned.
|
||
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
|
||
cast[int](uint(cast[uint16](x)))
|
||
|
||
proc ze64*(x: int8): int64 {.deprecated.} =
|
||
## zero extends a smaller integer type to ``int64``. This treats `x` as
|
||
## unsigned.
|
||
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
|
||
cast[int64](uint64(cast[uint8](x)))
|
||
|
||
proc ze64*(x: int16): int64 {.deprecated.} =
|
||
## zero extends a smaller integer type to ``int64``. This treats `x` as
|
||
## unsigned.
|
||
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
|
||
cast[int64](uint64(cast[uint16](x)))
|
||
|
||
proc ze64*(x: int32): int64 {.deprecated.} =
|
||
## zero extends a smaller integer type to ``int64``. This treats `x` as
|
||
## unsigned.
|
||
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
|
||
cast[int64](uint64(cast[uint32](x)))
|
||
|
||
proc ze64*(x: int): int64 {.deprecated.} =
|
||
## zero extends a smaller integer type to ``int64``. This treats `x` as
|
||
## unsigned. Does nothing if the size of an ``int`` is the same as ``int64``.
|
||
## (This is the case on 64 bit processors.)
|
||
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
|
||
cast[int64](uint64(cast[uint](x)))
|
||
|
||
proc toU8*(x: int): int8 {.deprecated.} =
|
||
## treats `x` as unsigned and converts it to a byte by taking the last 8 bits
|
||
## from `x`.
|
||
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
|
||
cast[int8](x)
|
||
|
||
proc toU16*(x: int): int16 {.deprecated.} =
|
||
## treats `x` as unsigned and converts it to an ``int16`` by taking the last
|
||
## 16 bits from `x`.
|
||
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
|
||
cast[int16](x)
|
||
|
||
proc toU32*(x: int64): int32 {.deprecated.} =
|
||
## treats `x` as unsigned and converts it to an ``int32`` by taking the
|
||
## last 32 bits from `x`.
|
||
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
|
||
cast[int32](x)
|
||
|
||
elif not defined(JS):
|
||
proc ze*(x: int8): int {.magic: "Ze8ToI", noSideEffect, deprecated.}
|
||
## zero extends a smaller integer type to ``int``. This treats `x` as
|
||
## unsigned.
|
||
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
|
||
|
||
proc ze*(x: int16): int {.magic: "Ze16ToI", noSideEffect, deprecated.}
|
||
## zero extends a smaller integer type to ``int``. This treats `x` as
|
||
## unsigned.
|
||
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
|
||
|
||
proc ze64*(x: int8): int64 {.magic: "Ze8ToI64", noSideEffect, deprecated.}
|
||
## zero extends a smaller integer type to ``int64``. This treats `x` as
|
||
## unsigned.
|
||
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
|
||
|
||
proc ze64*(x: int16): int64 {.magic: "Ze16ToI64", noSideEffect, deprecated.}
|
||
## zero extends a smaller integer type to ``int64``. This treats `x` as
|
||
## unsigned.
|
||
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
|
||
|
||
proc ze64*(x: int32): int64 {.magic: "Ze32ToI64", noSideEffect, deprecated.}
|
||
## zero extends a smaller integer type to ``int64``. This treats `x` as
|
||
## unsigned.
|
||
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
|
||
|
||
proc ze64*(x: int): int64 {.magic: "ZeIToI64", noSideEffect, deprecated.}
|
||
## zero extends a smaller integer type to ``int64``. This treats `x` as
|
||
## unsigned. Does nothing if the size of an ``int`` is the same as ``int64``.
|
||
## (This is the case on 64 bit processors.)
|
||
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
|
||
|
||
proc toU8*(x: int): int8 {.magic: "ToU8", noSideEffect, deprecated.}
|
||
## treats `x` as unsigned and converts it to a byte by taking the last 8 bits
|
||
## from `x`.
|
||
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
|
||
|
||
proc toU16*(x: int): int16 {.magic: "ToU16", noSideEffect, deprecated.}
|
||
## treats `x` as unsigned and converts it to an ``int16`` by taking the last
|
||
## 16 bits from `x`.
|
||
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
|
||
|
||
proc toU32*(x: int64): int32 {.magic: "ToU32", noSideEffect, deprecated.}
|
||
## treats `x` as unsigned and converts it to an ``int32`` by taking the
|
||
## last 32 bits from `x`.
|
||
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
|
||
|
||
# integer calculations:
|
||
proc `+`*(x: int): int {.magic: "UnaryPlusI", noSideEffect.}
|
||
## Unary `+` operator for an integer. Has no effect.
|
||
proc `+`*(x: int8): int8 {.magic: "UnaryPlusI", noSideEffect.}
|
||
proc `+`*(x: int16): int16 {.magic: "UnaryPlusI", noSideEffect.}
|
||
proc `+`*(x: int32): int32 {.magic: "UnaryPlusI", noSideEffect.}
|
||
proc `+`*(x: int64): int64 {.magic: "UnaryPlusI", noSideEffect.}
|
||
|
||
proc `-`*(x: int): int {.magic: "UnaryMinusI", noSideEffect.}
|
||
## Unary `-` operator for an integer. Negates `x`.
|
||
proc `-`*(x: int8): int8 {.magic: "UnaryMinusI", noSideEffect.}
|
||
proc `-`*(x: int16): int16 {.magic: "UnaryMinusI", noSideEffect.}
|
||
proc `-`*(x: int32): int32 {.magic: "UnaryMinusI", noSideEffect.}
|
||
proc `-`*(x: int64): int64 {.magic: "UnaryMinusI64", noSideEffect.}
|
||
|
||
proc `not`*(x: int): int {.magic: "BitnotI", noSideEffect.}
|
||
## Computes the `bitwise complement` of the integer `x`.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var
|
||
## a = 0'u8
|
||
## b = 0'i8
|
||
## c = 1000'u16
|
||
## d = 1000'i16
|
||
##
|
||
## echo not a # => 255
|
||
## echo not b # => -1
|
||
## echo not c # => 64535
|
||
## echo not d # => -1001
|
||
proc `not`*(x: int8): int8 {.magic: "BitnotI", noSideEffect.}
|
||
proc `not`*(x: int16): int16 {.magic: "BitnotI", noSideEffect.}
|
||
proc `not`*(x: int32): int32 {.magic: "BitnotI", noSideEffect.}
|
||
proc `not`*(x: int64): int64 {.magic: "BitnotI", noSideEffect.}
|
||
|
||
proc `+`*(x, y: int): int {.magic: "AddI", noSideEffect.}
|
||
## Binary `+` operator for an integer.
|
||
proc `+`*(x, y: int8): int8 {.magic: "AddI", noSideEffect.}
|
||
proc `+`*(x, y: int16): int16 {.magic: "AddI", noSideEffect.}
|
||
proc `+`*(x, y: int32): int32 {.magic: "AddI", noSideEffect.}
|
||
proc `+`*(x, y: int64): int64 {.magic: "AddI", noSideEffect.}
|
||
|
||
proc `-`*(x, y: int): int {.magic: "SubI", noSideEffect.}
|
||
## Binary `-` operator for an integer.
|
||
proc `-`*(x, y: int8): int8 {.magic: "SubI", noSideEffect.}
|
||
proc `-`*(x, y: int16): int16 {.magic: "SubI", noSideEffect.}
|
||
proc `-`*(x, y: int32): int32 {.magic: "SubI", noSideEffect.}
|
||
proc `-`*(x, y: int64): int64 {.magic: "SubI", noSideEffect.}
|
||
|
||
proc `*`*(x, y: int): int {.magic: "MulI", noSideEffect.}
|
||
## Binary `*` operator for an integer.
|
||
proc `*`*(x, y: int8): int8 {.magic: "MulI", noSideEffect.}
|
||
proc `*`*(x, y: int16): int16 {.magic: "MulI", noSideEffect.}
|
||
proc `*`*(x, y: int32): int32 {.magic: "MulI", noSideEffect.}
|
||
proc `*`*(x, y: int64): int64 {.magic: "MulI", noSideEffect.}
|
||
|
||
proc `div`*(x, y: int): int {.magic: "DivI", noSideEffect.}
|
||
## Computes the integer division.
|
||
##
|
||
## This is roughly the same as ``trunc(x/y)``.
|
||
##
|
||
## .. code-block:: Nim
|
||
## ( 1 div 2) == 0
|
||
## ( 2 div 2) == 1
|
||
## ( 3 div 2) == 1
|
||
## ( 7 div 3) == 2
|
||
## (-7 div 3) == -2
|
||
## ( 7 div -3) == -2
|
||
## (-7 div -3) == 2
|
||
proc `div`*(x, y: int8): int8 {.magic: "DivI", noSideEffect.}
|
||
proc `div`*(x, y: int16): int16 {.magic: "DivI", noSideEffect.}
|
||
proc `div`*(x, y: int32): int32 {.magic: "DivI", noSideEffect.}
|
||
proc `div`*(x, y: int64): int64 {.magic: "DivI", noSideEffect.}
|
||
|
||
proc `mod`*(x, y: int): int {.magic: "ModI", noSideEffect.}
|
||
## Computes the integer modulo operation (remainder).
|
||
##
|
||
## This is the same as ``x - (x div y) * y``.
|
||
##
|
||
## .. code-block:: Nim
|
||
## ( 7 mod 5) == 2
|
||
## (-7 mod 5) == -2
|
||
## ( 7 mod -5) == 2
|
||
## (-7 mod -5) == -2
|
||
proc `mod`*(x, y: int8): int8 {.magic: "ModI", noSideEffect.}
|
||
proc `mod`*(x, y: int16): int16 {.magic: "ModI", noSideEffect.}
|
||
proc `mod`*(x, y: int32): int32 {.magic: "ModI", noSideEffect.}
|
||
proc `mod`*(x, y: int64): int64 {.magic: "ModI", noSideEffect.}
|
||
|
||
when defined(nimOldShiftRight) or not defined(nimAshr):
|
||
const shrDepMessage = "`shr` will become sign preserving."
|
||
proc `shr`*(x: int, y: SomeInteger): int {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
|
||
proc `shr`*(x: int8, y: SomeInteger): int8 {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
|
||
proc `shr`*(x: int16, y: SomeInteger): int16 {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
|
||
proc `shr`*(x: int32, y: SomeInteger): int32 {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
|
||
proc `shr`*(x: int64, y: SomeInteger): int64 {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
|
||
else:
|
||
proc `shr`*(x: int, y: SomeInteger): int {.magic: "AshrI", noSideEffect.}
|
||
## Computes the `shift right` operation of `x` and `y`, filling
|
||
## vacant bit positions with the sign bit.
|
||
##
|
||
## **Note**: `Operator precedence <manual.html#syntax-precedence>`_
|
||
## is different than in *C*.
|
||
##
|
||
## See also:
|
||
## * `ashr proc <#ashr,int,SomeInteger>`_ for arithmetic shift right
|
||
##
|
||
## .. code-block:: Nim
|
||
## 0b0001_0000'i8 shr 2 == 0b0000_0100'i8
|
||
## 0b0000_0001'i8 shr 1 == 0b0000_0000'i8
|
||
## 0b1000_0000'i8 shr 4 == 0b1111_1000'i8
|
||
## -1 shr 5 == -1
|
||
## 1 shr 5 == 0
|
||
## 16 shr 2 == 4
|
||
## -16 shr 2 == -4
|
||
proc `shr`*(x: int8, y: SomeInteger): int8 {.magic: "AshrI", noSideEffect.}
|
||
proc `shr`*(x: int16, y: SomeInteger): int16 {.magic: "AshrI", noSideEffect.}
|
||
proc `shr`*(x: int32, y: SomeInteger): int32 {.magic: "AshrI", noSideEffect.}
|
||
proc `shr`*(x: int64, y: SomeInteger): int64 {.magic: "AshrI", noSideEffect.}
|
||
|
||
|
||
proc `shl`*(x: int, y: SomeInteger): int {.magic: "ShlI", noSideEffect.}
|
||
## Computes the `shift left` operation of `x` and `y`.
|
||
##
|
||
## **Note**: `Operator precedence <manual.html#syntax-precedence>`_
|
||
## is different than in *C*.
|
||
##
|
||
## .. code-block:: Nim
|
||
## 1'i32 shl 4 == 0x0000_0010
|
||
## 1'i64 shl 4 == 0x0000_0000_0000_0010
|
||
proc `shl`*(x: int8, y: SomeInteger): int8 {.magic: "ShlI", noSideEffect.}
|
||
proc `shl`*(x: int16, y: SomeInteger): int16 {.magic: "ShlI", noSideEffect.}
|
||
proc `shl`*(x: int32, y: SomeInteger): int32 {.magic: "ShlI", noSideEffect.}
|
||
proc `shl`*(x: int64, y: SomeInteger): int64 {.magic: "ShlI", noSideEffect.}
|
||
|
||
when defined(nimAshr):
|
||
proc ashr*(x: int, y: SomeInteger): int {.magic: "AshrI", noSideEffect.}
|
||
## Shifts right by pushing copies of the leftmost bit in from the left,
|
||
## and let the rightmost bits fall off.
|
||
##
|
||
## Note that `ashr` is not an operator so use the normal function
|
||
## call syntax for it.
|
||
##
|
||
## See also:
|
||
## * `shr proc <#shr,int,SomeInteger>`_
|
||
##
|
||
## .. code-block:: Nim
|
||
## ashr(0b0001_0000'i8, 2) == 0b0000_0100'i8
|
||
## ashr(0b1000_0000'i8, 8) == 0b1111_1111'i8
|
||
## ashr(0b1000_0000'i8, 1) == 0b1100_0000'i8
|
||
proc ashr*(x: int8, y: SomeInteger): int8 {.magic: "AshrI", noSideEffect.}
|
||
proc ashr*(x: int16, y: SomeInteger): int16 {.magic: "AshrI", noSideEffect.}
|
||
proc ashr*(x: int32, y: SomeInteger): int32 {.magic: "AshrI", noSideEffect.}
|
||
proc ashr*(x: int64, y: SomeInteger): int64 {.magic: "AshrI", noSideEffect.}
|
||
else:
|
||
# used for bootstrapping the compiler
|
||
proc ashr*[T](x: T, y: SomeInteger): T = discard
|
||
|
||
proc `and`*(x, y: int): int {.magic: "BitandI", noSideEffect.}
|
||
## Computes the `bitwise and` of numbers `x` and `y`.
|
||
##
|
||
## .. code-block:: Nim
|
||
## (0b0011 and 0b0101) == 0b0001
|
||
## (0b0111 and 0b1100) == 0b0100
|
||
proc `and`*(x, y: int8): int8 {.magic: "BitandI", noSideEffect.}
|
||
proc `and`*(x, y: int16): int16 {.magic: "BitandI", noSideEffect.}
|
||
proc `and`*(x, y: int32): int32 {.magic: "BitandI", noSideEffect.}
|
||
proc `and`*(x, y: int64): int64 {.magic: "BitandI", noSideEffect.}
|
||
|
||
proc `or`*(x, y: int): int {.magic: "BitorI", noSideEffect.}
|
||
## Computes the `bitwise or` of numbers `x` and `y`.
|
||
##
|
||
## .. code-block:: Nim
|
||
## (0b0011 or 0b0101) == 0b0111
|
||
## (0b0111 or 0b1100) == 0b1111
|
||
proc `or`*(x, y: int8): int8 {.magic: "BitorI", noSideEffect.}
|
||
proc `or`*(x, y: int16): int16 {.magic: "BitorI", noSideEffect.}
|
||
proc `or`*(x, y: int32): int32 {.magic: "BitorI", noSideEffect.}
|
||
proc `or`*(x, y: int64): int64 {.magic: "BitorI", noSideEffect.}
|
||
|
||
proc `xor`*(x, y: int): int {.magic: "BitxorI", noSideEffect.}
|
||
## Computes the `bitwise xor` of numbers `x` and `y`.
|
||
##
|
||
## .. code-block:: Nim
|
||
## (0b0011 xor 0b0101) == 0b0110
|
||
## (0b0111 xor 0b1100) == 0b1011
|
||
proc `xor`*(x, y: int8): int8 {.magic: "BitxorI", noSideEffect.}
|
||
proc `xor`*(x, y: int16): int16 {.magic: "BitxorI", noSideEffect.}
|
||
proc `xor`*(x, y: int32): int32 {.magic: "BitxorI", noSideEffect.}
|
||
proc `xor`*(x, y: int64): int64 {.magic: "BitxorI", noSideEffect.}
|
||
|
||
proc `==`*(x, y: int): bool {.magic: "EqI", noSideEffect.}
|
||
## Compares two integers for equality.
|
||
proc `==`*(x, y: int8): bool {.magic: "EqI", noSideEffect.}
|
||
proc `==`*(x, y: int16): bool {.magic: "EqI", noSideEffect.}
|
||
proc `==`*(x, y: int32): bool {.magic: "EqI", noSideEffect.}
|
||
proc `==`*(x, y: int64): bool {.magic: "EqI", noSideEffect.}
|
||
|
||
proc `<=`*(x, y: int): bool {.magic: "LeI", noSideEffect.}
|
||
## Returns true if `x` is less than or equal to `y`.
|
||
proc `<=`*(x, y: int8): bool {.magic: "LeI", noSideEffect.}
|
||
proc `<=`*(x, y: int16): bool {.magic: "LeI", noSideEffect.}
|
||
proc `<=`*(x, y: int32): bool {.magic: "LeI", noSideEffect.}
|
||
proc `<=`*(x, y: int64): bool {.magic: "LeI", noSideEffect.}
|
||
|
||
proc `<`*(x, y: int): bool {.magic: "LtI", noSideEffect.}
|
||
## Returns true if `x` is less than `y`.
|
||
proc `<`*(x, y: int8): bool {.magic: "LtI", noSideEffect.}
|
||
proc `<`*(x, y: int16): bool {.magic: "LtI", noSideEffect.}
|
||
proc `<`*(x, y: int32): bool {.magic: "LtI", noSideEffect.}
|
||
proc `<`*(x, y: int64): bool {.magic: "LtI", noSideEffect.}
|
||
|
||
type
|
||
IntMax32 = int|int8|int16|int32
|
||
|
||
proc `+%`*(x, y: IntMax32): IntMax32 {.magic: "AddU", noSideEffect.}
|
||
proc `+%`*(x, y: int64): int64 {.magic: "AddU", noSideEffect.}
|
||
## Treats `x` and `y` as unsigned and adds them.
|
||
##
|
||
## The result is truncated to fit into the result.
|
||
## This implements modulo arithmetic. No overflow errors are possible.
|
||
|
||
proc `-%`*(x, y: IntMax32): IntMax32 {.magic: "SubU", noSideEffect.}
|
||
proc `-%`*(x, y: int64): int64 {.magic: "SubU", noSideEffect.}
|
||
## Treats `x` and `y` as unsigned and subtracts them.
|
||
##
|
||
## The result is truncated to fit into the result.
|
||
## This implements modulo arithmetic. No overflow errors are possible.
|
||
|
||
proc `*%`*(x, y: IntMax32): IntMax32 {.magic: "MulU", noSideEffect.}
|
||
proc `*%`*(x, y: int64): int64 {.magic: "MulU", noSideEffect.}
|
||
## Treats `x` and `y` as unsigned and multiplies them.
|
||
##
|
||
## The result is truncated to fit into the result.
|
||
## This implements modulo arithmetic. No overflow errors are possible.
|
||
|
||
proc `/%`*(x, y: IntMax32): IntMax32 {.magic: "DivU", noSideEffect.}
|
||
proc `/%`*(x, y: int64): int64 {.magic: "DivU", noSideEffect.}
|
||
## Treats `x` and `y` as unsigned and divides them.
|
||
##
|
||
## The result is truncated to fit into the result.
|
||
## This implements modulo arithmetic. No overflow errors are possible.
|
||
|
||
proc `%%`*(x, y: IntMax32): IntMax32 {.magic: "ModU", noSideEffect.}
|
||
proc `%%`*(x, y: int64): int64 {.magic: "ModU", noSideEffect.}
|
||
## Treats `x` and `y` as unsigned and compute the modulo of `x` and `y`.
|
||
##
|
||
## The result is truncated to fit into the result.
|
||
## This implements modulo arithmetic. No overflow errors are possible.
|
||
|
||
proc `<=%`*(x, y: IntMax32): bool {.magic: "LeU", noSideEffect.}
|
||
proc `<=%`*(x, y: int64): bool {.magic: "LeU64", noSideEffect.}
|
||
## Treats `x` and `y` as unsigned and compares them.
|
||
## Returns true if ``unsigned(x) <= unsigned(y)``.
|
||
|
||
proc `<%`*(x, y: IntMax32): bool {.magic: "LtU", noSideEffect.}
|
||
proc `<%`*(x, y: int64): bool {.magic: "LtU64", noSideEffect.}
|
||
## Treats `x` and `y` as unsigned and compares them.
|
||
## Returns true if ``unsigned(x) < unsigned(y)``.
|
||
|
||
template `>=%`*(x, y: untyped): untyped = y <=% x
|
||
## Treats `x` and `y` as unsigned and compares them.
|
||
## Returns true if ``unsigned(x) >= unsigned(y)``.
|
||
|
||
template `>%`*(x, y: untyped): untyped = y <% x
|
||
## Treats `x` and `y` as unsigned and compares them.
|
||
## Returns true if ``unsigned(x) > unsigned(y)``.
|
||
|
||
|
||
# unsigned integer operations:
|
||
proc `not`*(x: uint): uint {.magic: "BitnotI", noSideEffect.}
|
||
## Computes the `bitwise complement` of the integer `x`.
|
||
proc `not`*(x: uint8): uint8 {.magic: "BitnotI", noSideEffect.}
|
||
proc `not`*(x: uint16): uint16 {.magic: "BitnotI", noSideEffect.}
|
||
proc `not`*(x: uint32): uint32 {.magic: "BitnotI", noSideEffect.}
|
||
proc `not`*(x: uint64): uint64 {.magic: "BitnotI", noSideEffect.}
|
||
|
||
proc `shr`*(x: uint, y: SomeInteger): uint {.magic: "ShrI", noSideEffect.}
|
||
## Computes the `shift right` operation of `x` and `y`.
|
||
proc `shr`*(x: uint8, y: SomeInteger): uint8 {.magic: "ShrI", noSideEffect.}
|
||
proc `shr`*(x: uint16, y: SomeInteger): uint16 {.magic: "ShrI", noSideEffect.}
|
||
proc `shr`*(x: uint32, y: SomeInteger): uint32 {.magic: "ShrI", noSideEffect.}
|
||
proc `shr`*(x: uint64, y: SomeInteger): uint64 {.magic: "ShrI", noSideEffect.}
|
||
|
||
proc `shl`*(x: uint, y: SomeInteger): uint {.magic: "ShlI", noSideEffect.}
|
||
## Computes the `shift left` operation of `x` and `y`.
|
||
proc `shl`*(x: uint8, y: SomeInteger): uint8 {.magic: "ShlI", noSideEffect.}
|
||
proc `shl`*(x: uint16, y: SomeInteger): uint16 {.magic: "ShlI", noSideEffect.}
|
||
proc `shl`*(x: uint32, y: SomeInteger): uint32 {.magic: "ShlI", noSideEffect.}
|
||
proc `shl`*(x: uint64, y: SomeInteger): uint64 {.magic: "ShlI", noSideEffect.}
|
||
|
||
proc `and`*(x, y: uint): uint {.magic: "BitandI", noSideEffect.}
|
||
## Computes the `bitwise and` of numbers `x` and `y`.
|
||
proc `and`*(x, y: uint8): uint8 {.magic: "BitandI", noSideEffect.}
|
||
proc `and`*(x, y: uint16): uint16 {.magic: "BitandI", noSideEffect.}
|
||
proc `and`*(x, y: uint32): uint32 {.magic: "BitandI", noSideEffect.}
|
||
proc `and`*(x, y: uint64): uint64 {.magic: "BitandI", noSideEffect.}
|
||
|
||
proc `or`*(x, y: uint): uint {.magic: "BitorI", noSideEffect.}
|
||
## Computes the `bitwise or` of numbers `x` and `y`.
|
||
proc `or`*(x, y: uint8): uint8 {.magic: "BitorI", noSideEffect.}
|
||
proc `or`*(x, y: uint16): uint16 {.magic: "BitorI", noSideEffect.}
|
||
proc `or`*(x, y: uint32): uint32 {.magic: "BitorI", noSideEffect.}
|
||
proc `or`*(x, y: uint64): uint64 {.magic: "BitorI", noSideEffect.}
|
||
|
||
proc `xor`*(x, y: uint): uint {.magic: "BitxorI", noSideEffect.}
|
||
## Computes the `bitwise xor` of numbers `x` and `y`.
|
||
proc `xor`*(x, y: uint8): uint8 {.magic: "BitxorI", noSideEffect.}
|
||
proc `xor`*(x, y: uint16): uint16 {.magic: "BitxorI", noSideEffect.}
|
||
proc `xor`*(x, y: uint32): uint32 {.magic: "BitxorI", noSideEffect.}
|
||
proc `xor`*(x, y: uint64): uint64 {.magic: "BitxorI", noSideEffect.}
|
||
|
||
proc `==`*(x, y: uint): bool {.magic: "EqI", noSideEffect.}
|
||
## Compares two unsigned integers for equality.
|
||
proc `==`*(x, y: uint8): bool {.magic: "EqI", noSideEffect.}
|
||
proc `==`*(x, y: uint16): bool {.magic: "EqI", noSideEffect.}
|
||
proc `==`*(x, y: uint32): bool {.magic: "EqI", noSideEffect.}
|
||
proc `==`*(x, y: uint64): bool {.magic: "EqI", noSideEffect.}
|
||
|
||
proc `+`*(x, y: uint): uint {.magic: "AddU", noSideEffect.}
|
||
## Binary `+` operator for unsigned integers.
|
||
proc `+`*(x, y: uint8): uint8 {.magic: "AddU", noSideEffect.}
|
||
proc `+`*(x, y: uint16): uint16 {.magic: "AddU", noSideEffect.}
|
||
proc `+`*(x, y: uint32): uint32 {.magic: "AddU", noSideEffect.}
|
||
proc `+`*(x, y: uint64): uint64 {.magic: "AddU", noSideEffect.}
|
||
|
||
proc `-`*(x, y: uint): uint {.magic: "SubU", noSideEffect.}
|
||
## Binary `-` operator for unsigned integers.
|
||
proc `-`*(x, y: uint8): uint8 {.magic: "SubU", noSideEffect.}
|
||
proc `-`*(x, y: uint16): uint16 {.magic: "SubU", noSideEffect.}
|
||
proc `-`*(x, y: uint32): uint32 {.magic: "SubU", noSideEffect.}
|
||
proc `-`*(x, y: uint64): uint64 {.magic: "SubU", noSideEffect.}
|
||
|
||
proc `*`*(x, y: uint): uint {.magic: "MulU", noSideEffect.}
|
||
## Binary `*` operator for unsigned integers.
|
||
proc `*`*(x, y: uint8): uint8 {.magic: "MulU", noSideEffect.}
|
||
proc `*`*(x, y: uint16): uint16 {.magic: "MulU", noSideEffect.}
|
||
proc `*`*(x, y: uint32): uint32 {.magic: "MulU", noSideEffect.}
|
||
proc `*`*(x, y: uint64): uint64 {.magic: "MulU", noSideEffect.}
|
||
|
||
proc `div`*(x, y: uint): uint {.magic: "DivU", noSideEffect.}
|
||
## Computes the integer division for unsigned integers.
|
||
## This is roughly the same as ``trunc(x/y)``.
|
||
proc `div`*(x, y: uint8): uint8 {.magic: "DivU", noSideEffect.}
|
||
proc `div`*(x, y: uint16): uint16 {.magic: "DivU", noSideEffect.}
|
||
proc `div`*(x, y: uint32): uint32 {.magic: "DivU", noSideEffect.}
|
||
proc `div`*(x, y: uint64): uint64 {.magic: "DivU", noSideEffect.}
|
||
|
||
proc `mod`*(x, y: uint): uint {.magic: "ModU", noSideEffect.}
|
||
## Computes the integer modulo operation (remainder) for unsigned integers.
|
||
## This is the same as ``x - (x div y) * y``.
|
||
proc `mod`*(x, y: uint8): uint8 {.magic: "ModU", noSideEffect.}
|
||
proc `mod`*(x, y: uint16): uint16 {.magic: "ModU", noSideEffect.}
|
||
proc `mod`*(x, y: uint32): uint32 {.magic: "ModU", noSideEffect.}
|
||
proc `mod`*(x, y: uint64): uint64 {.magic: "ModU", noSideEffect.}
|
||
|
||
proc `<=`*(x, y: uint): bool {.magic: "LeU", noSideEffect.}
|
||
## Returns true if ``x <= y``.
|
||
proc `<=`*(x, y: uint8): bool {.magic: "LeU", noSideEffect.}
|
||
proc `<=`*(x, y: uint16): bool {.magic: "LeU", noSideEffect.}
|
||
proc `<=`*(x, y: uint32): bool {.magic: "LeU", noSideEffect.}
|
||
proc `<=`*(x, y: uint64): bool {.magic: "LeU", noSideEffect.}
|
||
|
||
proc `<`*(x, y: uint): bool {.magic: "LtU", noSideEffect.}
|
||
## Returns true if ``unsigned(x) < unsigned(y)``.
|
||
proc `<`*(x, y: uint8): bool {.magic: "LtU", noSideEffect.}
|
||
proc `<`*(x, y: uint16): bool {.magic: "LtU", noSideEffect.}
|
||
proc `<`*(x, y: uint32): bool {.magic: "LtU", noSideEffect.}
|
||
proc `<`*(x, y: uint64): bool {.magic: "LtU", noSideEffect.}
|
||
|
||
# floating point operations:
|
||
proc `+`*(x: float32): float32 {.magic: "UnaryPlusF64", noSideEffect.}
|
||
proc `-`*(x: float32): float32 {.magic: "UnaryMinusF64", noSideEffect.}
|
||
proc `+`*(x, y: float32): float32 {.magic: "AddF64", noSideEffect.}
|
||
proc `-`*(x, y: float32): float32 {.magic: "SubF64", noSideEffect.}
|
||
proc `*`*(x, y: float32): float32 {.magic: "MulF64", noSideEffect.}
|
||
proc `/`*(x, y: float32): float32 {.magic: "DivF64", noSideEffect.}
|
||
|
||
proc `+`*(x: float): float {.magic: "UnaryPlusF64", noSideEffect.}
|
||
proc `-`*(x: float): float {.magic: "UnaryMinusF64", noSideEffect.}
|
||
proc `+`*(x, y: float): float {.magic: "AddF64", noSideEffect.}
|
||
proc `-`*(x, y: float): float {.magic: "SubF64", noSideEffect.}
|
||
proc `*`*(x, y: float): float {.magic: "MulF64", noSideEffect.}
|
||
proc `/`*(x, y: float): float {.magic: "DivF64", noSideEffect.}
|
||
|
||
proc `==`*(x, y: float32): bool {.magic: "EqF64", noSideEffect.}
|
||
proc `<=`*(x, y: float32): bool {.magic: "LeF64", noSideEffect.}
|
||
proc `<` *(x, y: float32): bool {.magic: "LtF64", noSideEffect.}
|
||
|
||
proc `==`*(x, y: float): bool {.magic: "EqF64", noSideEffect.}
|
||
proc `<=`*(x, y: float): bool {.magic: "LeF64", noSideEffect.}
|
||
proc `<`*(x, y: float): bool {.magic: "LtF64", noSideEffect.}
|
||
|
||
# set operators
|
||
proc `*`*[T](x, y: set[T]): set[T] {.magic: "MulSet", noSideEffect.}
|
||
## This operator computes the intersection of two sets.
|
||
##
|
||
## .. code-block:: Nim
|
||
## let
|
||
## a = {1, 2, 3}
|
||
## b = {2, 3, 4}
|
||
## echo a * b # => {2, 3}
|
||
proc `+`*[T](x, y: set[T]): set[T] {.magic: "PlusSet", noSideEffect.}
|
||
## This operator computes the union of two sets.
|
||
##
|
||
## .. code-block:: Nim
|
||
## let
|
||
## a = {1, 2, 3}
|
||
## b = {2, 3, 4}
|
||
## echo a + b # => {1, 2, 3, 4}
|
||
proc `-`*[T](x, y: set[T]): set[T] {.magic: "MinusSet", noSideEffect.}
|
||
## This operator computes the difference of two sets.
|
||
##
|
||
## .. code-block:: Nim
|
||
## let
|
||
## a = {1, 2, 3}
|
||
## b = {2, 3, 4}
|
||
## echo a - b # => {1}
|
||
|
||
proc contains*[T](x: set[T], y: T): bool {.magic: "InSet", noSideEffect.}
|
||
## One should overload this proc if one wants to overload the ``in`` operator.
|
||
##
|
||
## The parameters are in reverse order! ``a in b`` is a template for
|
||
## ``contains(b, a)``.
|
||
## This is because the unification algorithm that Nim uses for overload
|
||
## resolution works from left to right.
|
||
## But for the ``in`` operator that would be the wrong direction for this
|
||
## piece of code:
|
||
##
|
||
## .. code-block:: Nim
|
||
## var s: set[range['a'..'z']] = {'a'..'c'}
|
||
## assert s.contains('c')
|
||
## assert 'b' in s
|
||
##
|
||
## If ``in`` had been declared as ``[T](elem: T, s: set[T])`` then ``T`` would
|
||
## have been bound to ``char``. But ``s`` is not compatible to type
|
||
## ``set[char]``! The solution is to bind ``T`` to ``range['a'..'z']``. This
|
||
## is achieved by reversing the parameters for ``contains``; ``in`` then
|
||
## passes its arguments in reverse order.
|
||
|
||
proc contains*[U, V, W](s: HSlice[U, V], value: W): bool {.noSideEffect, inline.} =
|
||
## Checks if `value` is within the range of `s`; returns true if
|
||
## `value >= s.a and value <= s.b`
|
||
##
|
||
## .. code-block:: Nim
|
||
## assert((1..3).contains(1) == true)
|
||
## assert((1..3).contains(2) == true)
|
||
## assert((1..3).contains(4) == false)
|
||
result = s.a <= value and value <= s.b
|
||
|
||
template `in`*(x, y: untyped): untyped {.dirty.} = contains(y, x)
|
||
## Sugar for `contains`.
|
||
##
|
||
## .. code-block:: Nim
|
||
## assert(1 in (1..3) == true)
|
||
## assert(5 in (1..3) == false)
|
||
template `notin`*(x, y: untyped): untyped {.dirty.} = not contains(y, x)
|
||
## Sugar for `not contains`.
|
||
##
|
||
## .. code-block:: Nim
|
||
## assert(1 notin (1..3) == false)
|
||
## assert(5 notin (1..3) == true)
|
||
|
||
proc `is`*[T, S](x: T, y: S): bool {.magic: "Is", noSideEffect.}
|
||
## Checks if `T` is of the same type as `S`.
|
||
##
|
||
## For a negated version, use `isnot <#isnot.t,untyped,untyped>`_.
|
||
##
|
||
## .. code-block:: Nim
|
||
## assert 42 is int
|
||
## assert @[1, 2] is seq
|
||
##
|
||
## proc test[T](a: T): int =
|
||
## when (T is int):
|
||
## return a
|
||
## else:
|
||
## return 0
|
||
##
|
||
## assert(test[int](3) == 3)
|
||
## assert(test[string]("xyz") == 0)
|
||
template `isnot`*(x, y: untyped): untyped = not (x is y)
|
||
## Negated version of `is <#is,T,S>`_. Equivalent to ``not(x is y)``.
|
||
##
|
||
## .. code-block:: Nim
|
||
## assert 42 isnot float
|
||
## assert @[1, 2] isnot enum
|
||
|
||
when (defined(nimOwnedEnabled) and not defined(nimscript)) or defined(nimFixedOwned):
|
||
type owned*[T]{.magic: "BuiltinType".} ## type constructor to mark a ref/ptr or a closure as `owned`.
|
||
else:
|
||
template owned*(t: typedesc): typedesc = t
|
||
|
||
when defined(nimOwnedEnabled) and not defined(nimscript):
|
||
proc new*[T](a: var owned(ref T)) {.magic: "New", noSideEffect.}
|
||
## Creates a new object of type ``T`` and returns a safe (traced)
|
||
## reference to it in ``a``.
|
||
|
||
proc new*(t: typedesc): auto =
|
||
## Creates a new object of type ``T`` and returns a safe (traced)
|
||
## reference to it as result value.
|
||
##
|
||
## When ``T`` is a ref type then the resulting type will be ``T``,
|
||
## otherwise it will be ``ref T``.
|
||
when (t is ref):
|
||
var r: owned t
|
||
else:
|
||
var r: owned(ref t)
|
||
new(r)
|
||
return r
|
||
|
||
proc unown*[T](x: T): T {.magic: "Unown", noSideEffect.}
|
||
## Use the expression ``x`` ignoring its ownership attribute.
|
||
|
||
# This is only required to make 0.20 compile with the 0.19 line.
|
||
template `<//>`*(t: untyped): untyped = owned(t)
|
||
|
||
else:
|
||
template unown*(x: typed): untyped = x
|
||
|
||
proc new*[T](a: var ref T) {.magic: "New", noSideEffect.}
|
||
## Creates a new object of type ``T`` and returns a safe (traced)
|
||
## reference to it in ``a``.
|
||
|
||
proc new*(t: typedesc): auto =
|
||
## Creates a new object of type ``T`` and returns a safe (traced)
|
||
## reference to it as result value.
|
||
##
|
||
## When ``T`` is a ref type then the resulting type will be ``T``,
|
||
## otherwise it will be ``ref T``.
|
||
when (t is ref):
|
||
var r: t
|
||
else:
|
||
var r: ref t
|
||
new(r)
|
||
return r
|
||
|
||
# This is only required to make 0.20 compile with the 0.19 line.
|
||
template `<//>`*(t: untyped): untyped = t
|
||
|
||
template disarm*(x: typed) =
|
||
## Useful for ``disarming`` dangling pointers explicitly for the
|
||
## --newruntime. Regardless of whether --newruntime is used or not
|
||
## this sets the pointer or callback ``x`` to ``nil``. This is an
|
||
## experimental API!
|
||
x = nil
|
||
|
||
proc `of`*[T, S](x: typedesc[T], y: typedesc[S]): bool {.magic: "Of", noSideEffect.}
|
||
proc `of`*[T, S](x: T, y: typedesc[S]): bool {.magic: "Of", noSideEffect.}
|
||
proc `of`*[T, S](x: T, y: S): bool {.magic: "Of", noSideEffect.}
|
||
## Checks if `x` has a type of `y`.
|
||
##
|
||
## .. code-block:: Nim
|
||
## assert(FloatingPointError of Exception)
|
||
## assert(DivByZeroError of Exception)
|
||
|
||
proc cmp*[T](x, y: T): int {.procvar.} =
|
||
## Generic compare proc.
|
||
##
|
||
## Returns:
|
||
## * a value less than zero, if `x < y`
|
||
## * a value greater than zero, if `x > y`
|
||
## * zero, if `x == y`
|
||
##
|
||
## This is useful for writing generic algorithms without performance loss.
|
||
## This generic implementation uses the `==` and `<` operators.
|
||
##
|
||
## .. code-block:: Nim
|
||
## import algorithm
|
||
## echo sorted(@[4, 2, 6, 5, 8, 7], cmp[int])
|
||
if x == y: return 0
|
||
if x < y: return -1
|
||
return 1
|
||
|
||
proc cmp*(x, y: string): int {.noSideEffect, procvar.}
|
||
## Compare proc for strings. More efficient than the generic version.
|
||
##
|
||
## **Note**: The precise result values depend on the used C runtime library and
|
||
## can differ between operating systems!
|
||
|
||
when defined(nimHasDefault):
|
||
proc `@`* [IDX, T](a: sink array[IDX, T]): seq[T] {.
|
||
magic: "ArrToSeq", noSideEffect.}
|
||
## Turns an array into a sequence.
|
||
##
|
||
## This most often useful for constructing
|
||
## sequences with the array constructor: ``@[1, 2, 3]`` has the type
|
||
## ``seq[int]``, while ``[1, 2, 3]`` has the type ``array[0..2, int]``.
|
||
##
|
||
## .. code-block:: Nim
|
||
## let
|
||
## a = [1, 3, 5]
|
||
## b = "foo"
|
||
##
|
||
## echo @a # => @[1, 3, 5]
|
||
## echo @b # => @['f', 'o', 'o']
|
||
else:
|
||
proc `@`* [IDX, T](a: array[IDX, T]): seq[T] {.
|
||
magic: "ArrToSeq", noSideEffect.}
|
||
|
||
when defined(nimHasDefault):
|
||
proc default*(T: typedesc): T {.magic: "Default", noSideEffect.}
|
||
## returns the default value of the type ``T``.
|
||
|
||
proc setLen*[T](s: var seq[T], newlen: Natural) {.
|
||
magic: "SetLengthSeq", noSideEffect.}
|
||
## Sets the length of seq `s` to `newlen`. ``T`` may be any sequence type.
|
||
##
|
||
## If the current length is greater than the new length,
|
||
## ``s`` will be truncated.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var x = @[10, 20]
|
||
## x.setLen(5)
|
||
## x[4] = 50
|
||
## assert x == @[10, 20, 0, 0, 50]
|
||
## x.setLen(1)
|
||
## assert x == @[10]
|
||
|
||
proc setLen*(s: var string, newlen: Natural) {.
|
||
magic: "SetLengthStr", noSideEffect.}
|
||
## Sets the length of string `s` to `newlen`.
|
||
##
|
||
## If the current length is greater than the new length,
|
||
## ``s`` will be truncated.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var myS = "Nim is great!!"
|
||
## myS.setLen(3) # myS <- "Nim"
|
||
## echo myS, " is fantastic!!"
|
||
|
||
proc newString*(len: Natural): string {.
|
||
magic: "NewString", importc: "mnewString", noSideEffect.}
|
||
## Returns a new string of length ``len`` but with uninitialized
|
||
## content. One needs to fill the string character after character
|
||
## with the index operator ``s[i]``.
|
||
##
|
||
## This procedure exists only for optimization purposes;
|
||
## the same effect can be achieved with the ``&`` operator or with ``add``.
|
||
|
||
proc newStringOfCap*(cap: Natural): string {.
|
||
magic: "NewStringOfCap", importc: "rawNewString", noSideEffect.}
|
||
## Returns a new string of length ``0`` but with capacity `cap`.
|
||
##
|
||
## This procedure exists only for optimization purposes; the same effect can
|
||
## be achieved with the ``&`` operator or with ``add``.
|
||
|
||
proc `&`*(x: string, y: char): string {.
|
||
magic: "ConStrStr", noSideEffect, merge.}
|
||
## Concatenates `x` with `y`.
|
||
##
|
||
## .. code-block:: Nim
|
||
## assert("ab" & 'c' == "abc")
|
||
proc `&`*(x, y: char): string {.
|
||
magic: "ConStrStr", noSideEffect, merge.}
|
||
## Concatenates characters `x` and `y` into a string.
|
||
##
|
||
## .. code-block:: Nim
|
||
## assert('a' & 'b' == "ab")
|
||
proc `&`*(x, y: string): string {.
|
||
magic: "ConStrStr", noSideEffect, merge.}
|
||
## Concatenates strings `x` and `y`.
|
||
##
|
||
## .. code-block:: Nim
|
||
## assert("ab" & "cd" == "abcd")
|
||
proc `&`*(x: char, y: string): string {.
|
||
magic: "ConStrStr", noSideEffect, merge.}
|
||
## Concatenates `x` with `y`.
|
||
##
|
||
## .. code-block:: Nim
|
||
## assert('a' & "bc" == "abc")
|
||
|
||
# implementation note: These must all have the same magic value "ConStrStr" so
|
||
# that the merge optimization works properly.
|
||
|
||
proc add*(x: var string, y: char) {.magic: "AppendStrCh", noSideEffect.}
|
||
## Appends `y` to `x` in place.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var tmp = ""
|
||
## tmp.add('a')
|
||
## tmp.add('b')
|
||
## assert(tmp == "ab")
|
||
proc add*(x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.}
|
||
## Concatenates `x` and `y` in place.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var tmp = ""
|
||
## tmp.add("ab")
|
||
## tmp.add("cd")
|
||
## assert(tmp == "abcd")
|
||
|
||
|
||
type
|
||
Endianness* = enum ## Type describing the endianness of a processor.
|
||
littleEndian, bigEndian
|
||
|
||
const
|
||
isMainModule* {.magic: "IsMainModule".}: bool = false
|
||
## True only when accessed in the main module. This works thanks to
|
||
## compiler magic. It is useful to embed testing code in a module.
|
||
|
||
CompileDate* {.magic: "CompileDate"}: string = "0000-00-00"
|
||
## The date (in UTC) of compilation as a string of the form
|
||
## ``YYYY-MM-DD``. This works thanks to compiler magic.
|
||
|
||
CompileTime* {.magic: "CompileTime"}: string = "00:00:00"
|
||
## The time (in UTC) of compilation as a string of the form
|
||
## ``HH:MM:SS``. This works thanks to compiler magic.
|
||
|
||
cpuEndian* {.magic: "CpuEndian"}: Endianness = littleEndian
|
||
## The endianness of the target CPU. This is a valuable piece of
|
||
## information for low-level code only. This works thanks to compiler
|
||
## magic.
|
||
|
||
hostOS* {.magic: "HostOS".}: string = ""
|
||
## A string that describes the host operating system.
|
||
##
|
||
## Possible values:
|
||
## `"windows"`, `"macosx"`, `"linux"`, `"netbsd"`, `"freebsd"`,
|
||
## `"openbsd"`, `"solaris"`, `"aix"`, `"haiku"`, `"standalone"`.
|
||
|
||
hostCPU* {.magic: "HostCPU".}: string = ""
|
||
## A string that describes the host CPU.
|
||
##
|
||
## Possible values:
|
||
## `"i386"`, `"alpha"`, `"powerpc"`, `"powerpc64"`, `"powerpc64el"`,
|
||
## `"sparc"`, `"amd64"`, `"mips"`, `"mipsel"`, `"arm"`, `"arm64"`,
|
||
## `"mips64"`, `"mips64el"`, `"riscv64"`.
|
||
|
||
seqShallowFlag = low(int)
|
||
strlitFlag = 1 shl (sizeof(int)*8 - 2) # later versions of the codegen \
|
||
# emit this flag
|
||
# for string literals, it allows for some optimizations.
|
||
|
||
{.push profiler: off.}
|
||
let nimvm* {.magic: "Nimvm", compileTime.}: bool = false
|
||
## May be used only in `when` expression.
|
||
## It is true in Nim VM context and false otherwise.
|
||
{.pop.}
|
||
|
||
proc compileOption*(option: string): bool {.
|
||
magic: "CompileOption", noSideEffect.}
|
||
## Can be used to determine an `on|off` compile-time option. Example:
|
||
##
|
||
## .. code-block:: Nim
|
||
## when compileOption("floatchecks"):
|
||
## echo "compiled with floating point NaN and Inf checks"
|
||
|
||
proc compileOption*(option, arg: string): bool {.
|
||
magic: "CompileOptionArg", noSideEffect.}
|
||
## Can be used to determine an enum compile-time option. Example:
|
||
##
|
||
## .. code-block:: Nim
|
||
## when compileOption("opt", "size") and compileOption("gc", "boehm"):
|
||
## echo "compiled with optimization for size and uses Boehm's GC"
|
||
|
||
const
|
||
hasThreadSupport = compileOption("threads") and not defined(nimscript)
|
||
hasSharedHeap = defined(boehmgc) or defined(gogc) # don't share heaps; every thread has its own
|
||
taintMode = compileOption("taintmode")
|
||
nimEnableCovariance* = defined(nimEnableCovariance) # or true
|
||
|
||
when hasThreadSupport and defined(tcc) and not compileOption("tlsEmulation"):
|
||
# tcc doesn't support TLS
|
||
{.error: "``--tlsEmulation:on`` must be used when using threads with tcc backend".}
|
||
|
||
when defined(boehmgc):
|
||
when defined(windows):
|
||
when sizeof(int) == 8:
|
||
const boehmLib = "boehmgc64.dll"
|
||
else:
|
||
const boehmLib = "boehmgc.dll"
|
||
elif defined(macosx):
|
||
const boehmLib = "libgc.dylib"
|
||
elif defined(openbsd):
|
||
const boehmLib = "libgc.so.4.0"
|
||
elif defined(freebsd):
|
||
const boehmLib = "libgc-threaded.so.1"
|
||
else:
|
||
const boehmLib = "libgc.so.1"
|
||
{.pragma: boehmGC, noconv, dynlib: boehmLib.}
|
||
|
||
when taintMode:
|
||
type TaintedString* = distinct string ## A distinct string type that
|
||
## is `tainted`:idx:, see `taint mode
|
||
## <manual_experimental.html#taint-mode>`_
|
||
## for details. It is an alias for
|
||
## ``string`` if the taint mode is not
|
||
## turned on.
|
||
|
||
proc len*(s: TaintedString): int {.borrow.}
|
||
else:
|
||
type TaintedString* = string ## A distinct string type that
|
||
## is `tainted`:idx:, see `taint mode
|
||
## <manual_experimental.html#taint-mode>`_
|
||
## for details. It is an alias for
|
||
## ``string`` if the taint mode is not
|
||
## turned on.
|
||
|
||
when defined(profiler) and not defined(nimscript):
|
||
proc nimProfile() {.compilerproc, noinline.}
|
||
when hasThreadSupport:
|
||
{.pragma: rtlThreadVar, threadvar.}
|
||
else:
|
||
{.pragma: rtlThreadVar.}
|
||
|
||
const
|
||
QuitSuccess* = 0
|
||
## is the value that should be passed to `quit <#quit,int>`_ to indicate
|
||
## success.
|
||
|
||
QuitFailure* = 1
|
||
## is the value that should be passed to `quit <#quit,int>`_ to indicate
|
||
## failure.
|
||
|
||
when defined(js) and defined(nodejs) and not defined(nimscript):
|
||
var programResult* {.importc: "process.exitCode".}: int
|
||
programResult = 0
|
||
elif hostOS != "standalone":
|
||
var programResult* {.compilerproc, exportc: "nim_program_result".}: int
|
||
## deprecated, prefer ``quit``
|
||
|
||
when defined(nimdoc):
|
||
proc quit*(errorcode: int = QuitSuccess) {.magic: "Exit", noreturn.}
|
||
## Stops the program immediately with an exit code.
|
||
##
|
||
## Before stopping the program the "quit procedures" are called in the
|
||
## opposite order they were added with `addQuitProc <#addQuitProc,proc>`_.
|
||
## ``quit`` never returns and ignores any exception that may have been raised
|
||
## by the quit procedures. It does *not* call the garbage collector to free
|
||
## all the memory, unless a quit procedure calls `GC_fullCollect
|
||
## <#GC_fullCollect>`_.
|
||
##
|
||
## The proc ``quit(QuitSuccess)`` is called implicitly when your nim
|
||
## program finishes without incident for platforms where this is the
|
||
## expected behavior. A raised unhandled exception is
|
||
## equivalent to calling ``quit(QuitFailure)``.
|
||
##
|
||
## Note that this is a *runtime* call and using ``quit`` inside a macro won't
|
||
## have any compile time effect. If you need to stop the compiler inside a
|
||
## macro, use the `error <manual.html#pragmas-error-pragma>`_ or `fatal
|
||
## <manual.html#pragmas-fatal-pragma>`_ pragmas.
|
||
|
||
elif defined(genode):
|
||
include genode/env
|
||
|
||
var systemEnv {.exportc: runtimeEnvSym.}: GenodeEnvPtr
|
||
|
||
type GenodeEnv* = GenodeEnvPtr
|
||
## Opaque type representing Genode environment.
|
||
|
||
proc quit*(env: GenodeEnv; errorcode: int) {.magic: "Exit", noreturn,
|
||
importcpp: "#->parent().exit(@); Genode::sleep_forever()", header: "<base/sleep.h>".}
|
||
|
||
proc quit*(errorcode: int = QuitSuccess) =
|
||
systemEnv.quit(errorcode)
|
||
|
||
|
||
|
||
elif defined(js) and defined(nodejs) and not defined(nimscript):
|
||
proc quit*(errorcode: int = QuitSuccess) {.magic: "Exit",
|
||
importc: "process.exit", noreturn.}
|
||
|
||
else:
|
||
proc quit*(errorcode: int = QuitSuccess) {.
|
||
magic: "Exit", importc: "exit", header: "<stdlib.h>", noreturn.}
|
||
|
||
template sysAssert(cond: bool, msg: string) =
|
||
when defined(useSysAssert):
|
||
if not cond:
|
||
cstderr.rawWrite "[SYSASSERT] "
|
||
cstderr.rawWrite msg
|
||
cstderr.rawWrite "\n"
|
||
quit 1
|
||
|
||
const hasAlloc = (hostOS != "standalone" or not defined(nogc)) and not defined(nimscript)
|
||
|
||
when not defined(JS) and not defined(nimscript) and hostOS != "standalone":
|
||
include "system/cgprocs"
|
||
when not defined(JS) and not defined(nimscript) and hasAlloc and not defined(nimSeqsV2):
|
||
proc addChar(s: NimString, c: char): NimString {.compilerproc, benign.}
|
||
|
||
when not defined(nimSeqsV2) or defined(nimscript):
|
||
proc add*[T](x: var seq[T], y: T) {.magic: "AppendSeqElem", noSideEffect.}
|
||
## Generic proc for adding a data item `y` to a container `x`.
|
||
##
|
||
## For containers that have an order, `add` means *append*. New generic
|
||
## containers should also call their adding proc `add` for consistency.
|
||
## Generic code becomes much easier to write if the Nim naming scheme is
|
||
## respected.
|
||
|
||
proc add*[T](x: var seq[T], y: openArray[T]) {.noSideEffect.} =
|
||
## Generic proc for adding a container `y` to a container `x`.
|
||
##
|
||
## For containers that have an order, `add` means *append*. New generic
|
||
## containers should also call their adding proc `add` for consistency.
|
||
## Generic code becomes much easier to write if the Nim naming scheme is
|
||
## respected.
|
||
##
|
||
## See also:
|
||
## * `& proc <#&,seq[T][T],seq[T][T]>`_
|
||
##
|
||
## .. code-block:: Nim
|
||
## var s: seq[string] = @["test2","test2"]
|
||
## s.add("test") # s <- @[test2, test2, test]
|
||
let xl = x.len
|
||
setLen(x, xl + y.len)
|
||
for i in 0..high(y): x[xl+i] = y[i]
|
||
|
||
when defined(nimSeqsV2):
|
||
template movingCopy(a, b) =
|
||
a = move(b)
|
||
else:
|
||
template movingCopy(a, b) =
|
||
shallowCopy(a, b)
|
||
|
||
proc del*[T](x: var seq[T], i: Natural) {.noSideEffect.} =
|
||
## Deletes the item at index `i` by putting ``x[high(x)]`` into position `i`.
|
||
##
|
||
## This is an `O(1)` operation.
|
||
##
|
||
## See also:
|
||
## * `delete <#delete,seq[T][T],Natural>`_ for preserving the order
|
||
##
|
||
## .. code-block:: Nim
|
||
## var i = @[1, 2, 3, 4, 5]
|
||
## i.del(2) # => @[1, 2, 5, 4]
|
||
let xl = x.len - 1
|
||
movingCopy(x[i], x[xl])
|
||
setLen(x, xl)
|
||
|
||
proc delete*[T](x: var seq[T], i: Natural) {.noSideEffect.} =
|
||
## Deletes the item at index `i` by moving all ``x[i+1..]`` items by one position.
|
||
##
|
||
## This is an `O(n)` operation.
|
||
##
|
||
## See also:
|
||
## * `del <#delete,seq[T][T],Natural>`_ for O(1) operation
|
||
##
|
||
## .. code-block:: Nim
|
||
## var i = @[1, 2, 3, 4, 5]
|
||
## i.delete(2) # => @[1, 2, 4, 5]
|
||
template defaultImpl =
|
||
let xl = x.len
|
||
for j in i.int..xl-2: movingCopy(x[j], x[j+1])
|
||
setLen(x, xl-1)
|
||
|
||
when nimvm:
|
||
defaultImpl()
|
||
else:
|
||
when defined(js):
|
||
{.emit: "`x`.splice(`i`, 1);".}
|
||
else:
|
||
defaultImpl()
|
||
|
||
proc insert*[T](x: var seq[T], item: T, i = 0.Natural) {.noSideEffect.} =
|
||
## Inserts `item` into `x` at position `i`.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var i = @[1, 3, 5]
|
||
## i.insert(99, 0) # i <- @[99, 1, 3, 5]
|
||
template defaultImpl =
|
||
let xl = x.len
|
||
setLen(x, xl+1)
|
||
var j = xl-1
|
||
while j >= i:
|
||
movingCopy(x[j+1], x[j])
|
||
dec(j)
|
||
when nimvm:
|
||
defaultImpl()
|
||
else:
|
||
when defined(js):
|
||
var it : T
|
||
{.emit: "`x` = `x` || []; `x`.splice(`i`, 0, `it`);".}
|
||
else:
|
||
defaultImpl()
|
||
x[i] = item
|
||
|
||
proc repr*[T](x: T): string {.magic: "Repr", noSideEffect.}
|
||
## Takes any Nim variable and returns its string representation.
|
||
##
|
||
## It works even for complex data graphs with cycles. This is a great
|
||
## debugging tool.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var s: seq[string] = @["test2", "test2"]
|
||
## var i = @[1, 2, 3, 4, 5]
|
||
## echo repr(s) # => 0x1055eb050[0x1055ec050"test2", 0x1055ec078"test2"]
|
||
## echo repr(i) # => 0x1055ed050[1, 2, 3, 4, 5]
|
||
|
||
type
|
||
ByteAddress* = int
|
||
## is the signed integer type that should be used for converting
|
||
## pointers to integer addresses for readability.
|
||
|
||
BiggestInt* = int64
|
||
## is an alias for the biggest signed integer type the Nim compiler
|
||
## supports. Currently this is ``int64``, but it is platform-dependent
|
||
## in general.
|
||
|
||
BiggestFloat* = float64
|
||
## is an alias for the biggest floating point type the Nim
|
||
## compiler supports. Currently this is ``float64``, but it is
|
||
## platform-dependent in general.
|
||
|
||
when defined(JS):
|
||
type BiggestUInt* = uint32
|
||
## is an alias for the biggest unsigned integer type the Nim compiler
|
||
## supports. Currently this is ``uint32`` for JS and ``uint64`` for other
|
||
## targets.
|
||
else:
|
||
type BiggestUInt* = uint64
|
||
## is an alias for the biggest unsigned integer type the Nim compiler
|
||
## supports. Currently this is ``uint32`` for JS and ``uint64`` for other
|
||
## targets.
|
||
|
||
when defined(windows):
|
||
type
|
||
clong* {.importc: "long", nodecl.} = int32
|
||
## This is the same as the type ``long`` in *C*.
|
||
culong* {.importc: "unsigned long", nodecl.} = uint32
|
||
## This is the same as the type ``unsigned long`` in *C*.
|
||
else:
|
||
type
|
||
clong* {.importc: "long", nodecl.} = int
|
||
## This is the same as the type ``long`` in *C*.
|
||
culong* {.importc: "unsigned long", nodecl.} = uint
|
||
## This is the same as the type ``unsigned long`` in *C*.
|
||
|
||
type # these work for most platforms:
|
||
cchar* {.importc: "char", nodecl.} = char
|
||
## This is the same as the type ``char`` in *C*.
|
||
cschar* {.importc: "signed char", nodecl.} = int8
|
||
## This is the same as the type ``signed char`` in *C*.
|
||
cshort* {.importc: "short", nodecl.} = int16
|
||
## This is the same as the type ``short`` in *C*.
|
||
cint* {.importc: "int", nodecl.} = int32
|
||
## This is the same as the type ``int`` in *C*.
|
||
csize* {.importc: "size_t", nodecl, deprecated: "use `csize_t` instead".} = int
|
||
## This isn't the same as ``size_t`` in *C*. Don't use it.
|
||
csize_t* {.importc: "size_t", nodecl.} = uint
|
||
## This is the same as the type ``size_t`` in *C*.
|
||
clonglong* {.importc: "long long", nodecl.} = int64
|
||
## This is the same as the type ``long long`` in *C*.
|
||
cfloat* {.importc: "float", nodecl.} = float32
|
||
## This is the same as the type ``float`` in *C*.
|
||
cdouble* {.importc: "double", nodecl.} = float64
|
||
## This is the same as the type ``double`` in *C*.
|
||
clongdouble* {.importc: "long double", nodecl.} = BiggestFloat
|
||
## This is the same as the type ``long double`` in *C*.
|
||
## This C type is not supported by Nim's code generator.
|
||
|
||
cuchar* {.importc: "unsigned char", nodecl.} = char
|
||
## This is the same as the type ``unsigned char`` in *C*.
|
||
cushort* {.importc: "unsigned short", nodecl.} = uint16
|
||
## This is the same as the type ``unsigned short`` in *C*.
|
||
cuint* {.importc: "unsigned int", nodecl.} = uint32
|
||
## This is the same as the type ``unsigned int`` in *C*.
|
||
culonglong* {.importc: "unsigned long long", nodecl.} = uint64
|
||
## This is the same as the type ``unsigned long long`` in *C*.
|
||
|
||
cstringArray* {.importc: "char**", nodecl.} = ptr UncheckedArray[cstring]
|
||
## This is binary compatible to the type ``char**`` in *C*. The array's
|
||
## high value is large enough to disable bounds checking in practice.
|
||
## Use `cstringArrayToSeq proc <#cstringArrayToSeq,cstringArray,Natural>`_
|
||
## to convert it into a ``seq[string]``.
|
||
|
||
PFloat32* = ptr float32 ## An alias for ``ptr float32``.
|
||
PFloat64* = ptr float64 ## An alias for ``ptr float64``.
|
||
PInt64* = ptr int64 ## An alias for ``ptr int64``.
|
||
PInt32* = ptr int32 ## An alias for ``ptr int32``.
|
||
|
||
proc toFloat*(i: int): float {.noSideEffect, inline.} =
|
||
## Converts an integer `i` into a ``float``.
|
||
##
|
||
## If the conversion fails, `ValueError` is raised.
|
||
## However, on most platforms the conversion cannot fail.
|
||
##
|
||
## .. code-block:: Nim
|
||
## let
|
||
## a = 2
|
||
## b = 3.7
|
||
##
|
||
## echo a.toFloat + b # => 5.7
|
||
float(i)
|
||
|
||
proc toBiggestFloat*(i: BiggestInt): BiggestFloat {.noSideEffect, inline.} =
|
||
## Same as `toFloat <#toFloat,int>`_ but for ``BiggestInt`` to ``BiggestFloat``.
|
||
BiggestFloat(i)
|
||
|
||
proc toInt*(f: float): int {.noSideEffect.} =
|
||
## Converts a floating point number `f` into an ``int``.
|
||
##
|
||
## Conversion rounds `f` half away from 0, see
|
||
## `Round half away from zero
|
||
## <https://en.wikipedia.org/wiki/Rounding#Round_half_away_from_zero>`_.
|
||
##
|
||
## Note that some floating point numbers (e.g. infinity or even 1e19)
|
||
## cannot be accurately converted.
|
||
##
|
||
## .. code-block:: Nim
|
||
## doAssert toInt(0.49) == 0
|
||
## doAssert toInt(0.5) == 1
|
||
## doAssert toInt(-0.5) == -1 # rounding is symmetrical
|
||
if f >= 0: int(f+0.5) else: int(f-0.5)
|
||
|
||
proc toBiggestInt*(f: BiggestFloat): BiggestInt {.noSideEffect.} =
|
||
## Same as `toInt <#toInt,float>`_ but for ``BiggestFloat`` to ``BiggestInt``.
|
||
if f >= 0: BiggestInt(f+0.5) else: BiggestInt(f-0.5)
|
||
|
||
proc addQuitProc*(quitProc: proc() {.noconv.}) {.
|
||
importc: "atexit", header: "<stdlib.h>".}
|
||
## Adds/registers a quit procedure.
|
||
##
|
||
## Each call to ``addQuitProc`` registers another quit procedure. Up to 30
|
||
## procedures can be registered. They are executed on a last-in, first-out
|
||
## basis (that is, the last function registered is the first to be executed).
|
||
## ``addQuitProc`` raises an EOutOfIndex exception if ``quitProc`` cannot be
|
||
## registered.
|
||
|
||
# Support for addQuitProc() is done by Ansi C's facilities here.
|
||
# In case of an unhandled exception the exit handlers should
|
||
# not be called explicitly! The user may decide to do this manually though.
|
||
|
||
when not defined(nimscript) and not defined(JS):
|
||
proc zeroMem*(p: pointer, size: Natural) {.inline, noSideEffect,
|
||
tags: [], locks: 0, raises: [].}
|
||
## Overwrites the contents of the memory at ``p`` with the value 0.
|
||
##
|
||
## Exactly ``size`` bytes will be overwritten. Like any procedure
|
||
## dealing with raw memory this is **unsafe**.
|
||
|
||
proc copyMem*(dest, source: pointer, size: Natural) {.inline, benign,
|
||
tags: [], locks: 0, raises: [].}
|
||
## Copies the contents from the memory at ``source`` to the memory
|
||
## at ``dest``.
|
||
## Exactly ``size`` bytes will be copied. The memory
|
||
## regions may not overlap. Like any procedure dealing with raw
|
||
## memory this is **unsafe**.
|
||
|
||
proc moveMem*(dest, source: pointer, size: Natural) {.inline, benign,
|
||
tags: [], locks: 0, raises: [].}
|
||
## Copies the contents from the memory at ``source`` to the memory
|
||
## at ``dest``.
|
||
##
|
||
## Exactly ``size`` bytes will be copied. The memory
|
||
## regions may overlap, ``moveMem`` handles this case appropriately
|
||
## and is thus somewhat more safe than ``copyMem``. Like any procedure
|
||
## dealing with raw memory this is still **unsafe**, though.
|
||
|
||
proc equalMem*(a, b: pointer, size: Natural): bool {.inline, noSideEffect,
|
||
tags: [], locks: 0, raises: [].}
|
||
## Compares the memory blocks ``a`` and ``b``. ``size`` bytes will
|
||
## be compared.
|
||
##
|
||
## If the blocks are equal, `true` is returned, `false`
|
||
## otherwise. Like any procedure dealing with raw memory this is
|
||
## **unsafe**.
|
||
|
||
when not defined(nimscript):
|
||
when hasAlloc:
|
||
proc alloc*(size: Natural): pointer {.noconv, rtl, tags: [], benign, raises: [].}
|
||
## Allocates a new memory block with at least ``size`` bytes.
|
||
##
|
||
## The block has to be freed with `realloc(block, 0) <#realloc,pointer,Natural>`_
|
||
## or `dealloc(block) <#dealloc,pointer>`_.
|
||
## The block is not initialized, so reading
|
||
## from it before writing to it is undefined behaviour!
|
||
##
|
||
## The allocated memory belongs to its allocating thread!
|
||
## Use `allocShared <#allocShared,Natural>`_ to allocate from a shared heap.
|
||
##
|
||
## See also:
|
||
## * `alloc0 <#alloc0,Natural>`_
|
||
proc createU*(T: typedesc, size = 1.Positive): ptr T {.inline, benign, raises: [].} =
|
||
## Allocates a new memory block with at least ``T.sizeof * size`` bytes.
|
||
##
|
||
## The block has to be freed with `resize(block, 0) <#resize,ptr.T,Natural>`_
|
||
## or `dealloc(block) <#dealloc,pointer>`_.
|
||
## The block is not initialized, so reading
|
||
## from it before writing to it is undefined behaviour!
|
||
##
|
||
## The allocated memory belongs to its allocating thread!
|
||
## Use `createSharedU <#createSharedU,typedesc>`_ to allocate from a shared heap.
|
||
##
|
||
## See also:
|
||
## * `create <#create,typedesc>`_
|
||
cast[ptr T](alloc(T.sizeof * size))
|
||
|
||
proc alloc0*(size: Natural): pointer {.noconv, rtl, tags: [], benign, raises: [].}
|
||
## Allocates a new memory block with at least ``size`` bytes.
|
||
##
|
||
## The block has to be freed with `realloc(block, 0) <#realloc,pointer,Natural>`_
|
||
## or `dealloc(block) <#dealloc,pointer>`_.
|
||
## The block is initialized with all bytes containing zero, so it is
|
||
## somewhat safer than `alloc <#alloc,Natural>`_.
|
||
##
|
||
## The allocated memory belongs to its allocating thread!
|
||
## Use `allocShared0 <#allocShared0,Natural>`_ to allocate from a shared heap.
|
||
proc create*(T: typedesc, size = 1.Positive): ptr T {.inline, benign, raises: [].} =
|
||
## Allocates a new memory block with at least ``T.sizeof * size`` bytes.
|
||
##
|
||
## The block has to be freed with `resize(block, 0) <#resize,ptr.T,Natural>`_
|
||
## or `dealloc(block) <#dealloc,pointer>`_.
|
||
## The block is initialized with all bytes containing zero, so it is
|
||
## somewhat safer than `createU <#createU,typedesc>`_.
|
||
##
|
||
## The allocated memory belongs to its allocating thread!
|
||
## Use `createShared <#createShared,typedesc>`_ to allocate from a shared heap.
|
||
cast[ptr T](alloc0(sizeof(T) * size))
|
||
|
||
proc realloc*(p: pointer, newSize: Natural): pointer {.noconv, rtl, tags: [],
|
||
benign, raises: [].}
|
||
## Grows or shrinks a given memory block.
|
||
##
|
||
## If `p` is **nil** then a new memory block is returned.
|
||
## In either way the block has at least ``newSize`` bytes.
|
||
## If ``newSize == 0`` and `p` is not **nil** ``realloc`` calls ``dealloc(p)``.
|
||
## In other cases the block has to be freed with
|
||
## `dealloc(block) <#dealloc,pointer>`_.
|
||
##
|
||
## The allocated memory belongs to its allocating thread!
|
||
## Use `reallocShared <#reallocShared,pointer,Natural>`_ to reallocate
|
||
## from a shared heap.
|
||
proc resize*[T](p: ptr T, newSize: Natural): ptr T {.inline, benign, raises: [].} =
|
||
## Grows or shrinks a given memory block.
|
||
##
|
||
## If `p` is **nil** then a new memory block is returned.
|
||
## In either way the block has at least ``T.sizeof * newSize`` bytes.
|
||
## If ``newSize == 0`` and `p` is not **nil** ``resize`` calls ``dealloc(p)``.
|
||
## In other cases the block has to be freed with ``free``.
|
||
##
|
||
## The allocated memory belongs to its allocating thread!
|
||
## Use `resizeShared <#resizeShared,ptr.T,Natural>`_ to reallocate
|
||
## from a shared heap.
|
||
cast[ptr T](realloc(p, T.sizeof * newSize))
|
||
|
||
proc dealloc*(p: pointer) {.noconv, rtl, tags: [], benign, raises: [].}
|
||
## Frees the memory allocated with ``alloc``, ``alloc0`` or
|
||
## ``realloc``.
|
||
##
|
||
## **This procedure is dangerous!**
|
||
## If one forgets to free the memory a leak occurs; if one tries to
|
||
## access freed memory (or just freeing it twice!) a core dump may happen
|
||
## or other memory may be corrupted.
|
||
##
|
||
## The freed memory must belong to its allocating thread!
|
||
## Use `deallocShared <#deallocShared,pointer>`_ to deallocate from a shared heap.
|
||
|
||
proc allocShared*(size: Natural): pointer {.noconv, rtl, benign, raises: [].}
|
||
## Allocates a new memory block on the shared heap with at
|
||
## least ``size`` bytes.
|
||
##
|
||
## The block has to be freed with
|
||
## `reallocShared(block, 0) <#reallocShared,pointer,Natural>`_
|
||
## or `deallocShared(block) <#deallocShared,pointer>`_.
|
||
##
|
||
## The block is not initialized, so reading from it before writing
|
||
## to it is undefined behaviour!
|
||
##
|
||
## See also:
|
||
## `allocShared0 <#allocShared0,Natural>`_.
|
||
proc createSharedU*(T: typedesc, size = 1.Positive): ptr T {.inline,
|
||
benign, raises: [].} =
|
||
## Allocates a new memory block on the shared heap with at
|
||
## least ``T.sizeof * size`` bytes.
|
||
##
|
||
## The block has to be freed with
|
||
## `resizeShared(block, 0) <#resizeShared,ptr.T,Natural>`_ or
|
||
## `freeShared(block) <#freeShared,ptr.T>`_.
|
||
##
|
||
## The block is not initialized, so reading from it before writing
|
||
## to it is undefined behaviour!
|
||
##
|
||
## See also:
|
||
## * `createShared <#createShared,typedesc>`_
|
||
cast[ptr T](allocShared(T.sizeof * size))
|
||
|
||
proc allocShared0*(size: Natural): pointer {.noconv, rtl, benign, raises: [].}
|
||
## Allocates a new memory block on the shared heap with at
|
||
## least ``size`` bytes.
|
||
##
|
||
## The block has to be freed with
|
||
## `reallocShared(block, 0) <#reallocShared,pointer,Natural>`_
|
||
## or `deallocShared(block) <#deallocShared,pointer>`_.
|
||
##
|
||
## The block is initialized with all bytes
|
||
## containing zero, so it is somewhat safer than
|
||
## `allocShared <#allocShared,Natural>`_.
|
||
proc createShared*(T: typedesc, size = 1.Positive): ptr T {.inline.} =
|
||
## Allocates a new memory block on the shared heap with at
|
||
## least ``T.sizeof * size`` bytes.
|
||
##
|
||
## The block has to be freed with
|
||
## `resizeShared(block, 0) <#resizeShared,ptr.T,Natural>`_ or
|
||
## `freeShared(block) <#freeShared,ptr.T>`_.
|
||
##
|
||
## The block is initialized with all bytes
|
||
## containing zero, so it is somewhat safer than
|
||
## `createSharedU <#createSharedU,typedesc>`_.
|
||
cast[ptr T](allocShared0(T.sizeof * size))
|
||
|
||
proc reallocShared*(p: pointer, newSize: Natural): pointer {.noconv, rtl,
|
||
benign, raises: [].}
|
||
## Grows or shrinks a given memory block on the heap.
|
||
##
|
||
## If `p` is **nil** then a new memory block is returned.
|
||
## In either way the block has at least ``newSize`` bytes.
|
||
## If ``newSize == 0`` and `p` is not **nil** ``reallocShared`` calls
|
||
## ``deallocShared(p)``.
|
||
## In other cases the block has to be freed with
|
||
## `deallocShared <#deallocShared,pointer>`_.
|
||
proc resizeShared*[T](p: ptr T, newSize: Natural): ptr T {.inline, raises: [].} =
|
||
## Grows or shrinks a given memory block on the heap.
|
||
##
|
||
## If `p` is **nil** then a new memory block is returned.
|
||
## In either way the block has at least ``T.sizeof * newSize`` bytes.
|
||
## If ``newSize == 0`` and `p` is not **nil** ``resizeShared`` calls
|
||
## ``freeShared(p)``.
|
||
## In other cases the block has to be freed with
|
||
## `freeShared <#freeShared,ptr.T>`_.
|
||
cast[ptr T](reallocShared(p, T.sizeof * newSize))
|
||
|
||
proc deallocShared*(p: pointer) {.noconv, rtl, benign, raises: [].}
|
||
## Frees the memory allocated with ``allocShared``, ``allocShared0`` or
|
||
## ``reallocShared``.
|
||
##
|
||
## **This procedure is dangerous!**
|
||
## If one forgets to free the memory a leak occurs; if one tries to
|
||
## access freed memory (or just freeing it twice!) a core dump may happen
|
||
## or other memory may be corrupted.
|
||
proc freeShared*[T](p: ptr T) {.inline, benign, raises: [].} =
|
||
## Frees the memory allocated with ``createShared``, ``createSharedU`` or
|
||
## ``resizeShared``.
|
||
##
|
||
## **This procedure is dangerous!**
|
||
## If one forgets to free the memory a leak occurs; if one tries to
|
||
## access freed memory (or just freeing it twice!) a core dump may happen
|
||
## or other memory may be corrupted.
|
||
deallocShared(p)
|
||
|
||
proc swap*[T](a, b: var T) {.magic: "Swap", noSideEffect.}
|
||
## Swaps the values `a` and `b`.
|
||
##
|
||
## This is often more efficient than ``tmp = a; a = b; b = tmp``.
|
||
## Particularly useful for sorting algorithms.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var
|
||
## a = 5
|
||
## b = 9
|
||
##
|
||
## swap(a, b)
|
||
##
|
||
## assert a == 9
|
||
## assert b == 5
|
||
|
||
when not defined(js) and not defined(booting) and defined(nimTrMacros):
|
||
template swapRefsInArray*{swap(arr[a], arr[b])}(arr: openArray[ref], a, b: int) =
|
||
# Optimize swapping of array elements if they are refs. Default swap
|
||
# implementation will cause unsureAsgnRef to be emitted which causes
|
||
# unnecessary slow down in this case.
|
||
swap(cast[ptr pointer](addr arr[a])[], cast[ptr pointer](addr arr[b])[])
|
||
|
||
const
|
||
Inf* = 0x7FF0000000000000'f64
|
||
## Contains the IEEE floating point value of positive infinity.
|
||
NegInf* = 0xFFF0000000000000'f64
|
||
## Contains the IEEE floating point value of negative infinity.
|
||
NaN* = 0x7FF7FFFFFFFFFFFF'f64
|
||
## Contains an IEEE floating point value of *Not A Number*.
|
||
##
|
||
## Note that you cannot compare a floating point value to this value
|
||
## and expect a reasonable result - use the `classify` procedure
|
||
## in the `math module <math.html>`_ for checking for NaN.
|
||
|
||
# GC interface:
|
||
|
||
when not defined(nimscript) and hasAlloc:
|
||
proc getOccupiedMem*(): int {.rtl.}
|
||
## Returns the number of bytes that are owned by the process and hold data.
|
||
|
||
proc getFreeMem*(): int {.rtl.}
|
||
## Returns the number of bytes that are owned by the process, but do not
|
||
## hold any meaningful data.
|
||
|
||
proc getTotalMem*(): int {.rtl.}
|
||
## Returns the number of bytes that are owned by the process.
|
||
|
||
when hasThreadSupport:
|
||
proc getOccupiedSharedMem*(): int {.rtl.}
|
||
## Returns the number of bytes that are owned by the process
|
||
## on the shared heap and hold data. This is only available when
|
||
## threads are enabled.
|
||
|
||
proc getFreeSharedMem*(): int {.rtl.}
|
||
## Returns the number of bytes that are owned by the
|
||
## process on the shared heap, but do not hold any meaningful data.
|
||
## This is only available when threads are enabled.
|
||
|
||
proc getTotalSharedMem*(): int {.rtl.}
|
||
## Returns the number of bytes on the shared heap that are owned by the
|
||
## process. This is only available when threads are enabled.
|
||
|
||
proc `|`*(a, b: typedesc): typedesc = discard
|
||
|
||
when sizeof(int) <= 2:
|
||
type IntLikeForCount = int|int8|int16|char|bool|uint8|enum
|
||
else:
|
||
type IntLikeForCount = int|int8|int16|int32|char|bool|uint8|uint16|enum
|
||
|
||
iterator countdown*[T](a, b: T, step: Positive = 1): T {.inline.} =
|
||
## Counts from ordinal value `a` down to `b` (inclusive) with the given
|
||
## step count.
|
||
##
|
||
## `T` may be any ordinal type, `step` may only be positive.
|
||
##
|
||
## **Note**: This fails to count to ``low(int)`` if T = int for
|
||
## efficiency reasons.
|
||
##
|
||
## .. code-block:: Nim
|
||
## for i in countdown(7, 3):
|
||
## echo i # => 7; 6; 5; 4; 3
|
||
##
|
||
## for i in countdown(9, 2, 3):
|
||
## echo i # => 9; 6; 3
|
||
when T is (uint|uint64):
|
||
var res = a
|
||
while res >= b:
|
||
yield res
|
||
if res == b: break
|
||
dec(res, step)
|
||
elif T is IntLikeForCount:
|
||
var res = int(a)
|
||
while res >= int(b):
|
||
yield T(res)
|
||
dec(res, step)
|
||
else:
|
||
var res = a
|
||
while res >= b:
|
||
yield res
|
||
dec(res, step)
|
||
|
||
when defined(nimNewRoof):
|
||
iterator countup*[T](a, b: T, step: Positive = 1): T {.inline.} =
|
||
## Counts from ordinal value `a` to `b` (inclusive) with the given
|
||
## step count.
|
||
##
|
||
## `T` may be any ordinal type, `step` may only be positive.
|
||
##
|
||
## **Note**: This fails to count to ``high(int)`` if T = int for
|
||
## efficiency reasons.
|
||
##
|
||
## .. code-block:: Nim
|
||
## for i in countup(3, 7):
|
||
## echo i # => 3; 4; 5; 6; 7
|
||
##
|
||
## for i in countup(2, 9, 3):
|
||
## echo i # => 2; 5; 8
|
||
mixin inc
|
||
when T is IntLikeForCount:
|
||
var res = int(a)
|
||
while res <= int(b):
|
||
yield T(res)
|
||
inc(res, step)
|
||
else:
|
||
var res = a
|
||
while res <= b:
|
||
yield res
|
||
inc(res, step)
|
||
|
||
iterator `..`*[T](a, b: T): T {.inline.} =
|
||
## An alias for `countup(a, b, 1)`.
|
||
##
|
||
## See also:
|
||
## * [..<](#..<.i,T,T)
|
||
##
|
||
## .. code-block:: Nim
|
||
## for i in 3 .. 7:
|
||
## echo i # => 3; 4; 5; 6; 7
|
||
mixin inc
|
||
when T is IntLikeForCount:
|
||
var res = int(a)
|
||
while res <= int(b):
|
||
yield T(res)
|
||
inc(res)
|
||
else:
|
||
var res = a
|
||
while res <= b:
|
||
yield res
|
||
inc(res)
|
||
|
||
template dotdotImpl(t) {.dirty.} =
|
||
iterator `..`*(a, b: t): t {.inline.} =
|
||
## A type specialized version of ``..`` for convenience so that
|
||
## mixing integer types works better.
|
||
##
|
||
## See also:
|
||
## * [..<](#..<.i,T,T)
|
||
var res = a
|
||
while res <= b:
|
||
yield res
|
||
inc(res)
|
||
|
||
dotdotImpl(int64)
|
||
dotdotImpl(int32)
|
||
dotdotImpl(uint64)
|
||
dotdotImpl(uint32)
|
||
|
||
iterator `..<`*[T](a, b: T): T {.inline.} =
|
||
mixin inc
|
||
var i = a
|
||
while i < b:
|
||
yield i
|
||
inc i
|
||
|
||
template dotdotLessImpl(t) {.dirty.} =
|
||
iterator `..<`*(a, b: t): t {.inline.} =
|
||
## A type specialized version of ``..<`` for convenience so that
|
||
## mixing integer types works better.
|
||
var res = a
|
||
while res < b:
|
||
yield res
|
||
inc(res)
|
||
|
||
dotdotLessImpl(int64)
|
||
dotdotLessImpl(int32)
|
||
dotdotLessImpl(uint64)
|
||
dotdotLessImpl(uint32)
|
||
|
||
else:
|
||
iterator countup*[S, T](a: S, b: T, step = 1): T {.inline.} =
|
||
## Counts from ordinal value `a` up to `b` (inclusive) with the given
|
||
## step count.
|
||
##
|
||
## `S`, `T` may be any ordinal type, `step` may only be positive.
|
||
##
|
||
## **Note**: This fails to count to ``high(int)`` if T = int for
|
||
## efficiency reasons.
|
||
##
|
||
## .. code-block:: Nim
|
||
## for i in countup(3, 7):
|
||
## echo i # => 3; 4; 5; 6; 7
|
||
##
|
||
## for i in countup(2, 9, 3):
|
||
## echo i # => 2; 5; 8
|
||
when T is IntLikeForCount:
|
||
var res = int(a)
|
||
while res <= int(b):
|
||
yield T(res)
|
||
inc(res, step)
|
||
else:
|
||
var res = T(a)
|
||
while res <= b:
|
||
yield res
|
||
inc(res, step)
|
||
|
||
iterator `..`*[S, T](a: S, b: T): T {.inline.} =
|
||
## An alias for `countup(a, b, 1)`.
|
||
##
|
||
## See also:
|
||
## * [..<](#..<.i,T,T)
|
||
##
|
||
## .. code-block:: Nim
|
||
## for i in 3 .. 7:
|
||
## echo i # => 3; 4; 5; 6; 7
|
||
mixin inc
|
||
when T is IntLikeForCount:
|
||
var res = int(a)
|
||
while res <= int(b):
|
||
yield T(res)
|
||
inc(res)
|
||
else:
|
||
var res = T(a)
|
||
while res <= b:
|
||
yield res
|
||
inc(res)
|
||
|
||
iterator `..<`*[S, T](a: S, b: T): T {.inline.} =
|
||
mixin inc
|
||
var i = T(a)
|
||
while i < b:
|
||
yield i
|
||
inc i
|
||
|
||
|
||
iterator `||`*[S, T](a: S, b: T, annotation: static string = "parallel for"): T {.
|
||
inline, magic: "OmpParFor", sideEffect.} =
|
||
## OpenMP parallel loop iterator. Same as `..` but the loop may run in parallel.
|
||
##
|
||
## `annotation` is an additional annotation for the code generator to use.
|
||
## The default annotation is `parallel for`.
|
||
## Please refer to the `OpenMP Syntax Reference
|
||
## <https://www.openmp.org/wp-content/uploads/OpenMP-4.5-1115-CPP-web.pdf>`_
|
||
## for further information.
|
||
##
|
||
## Note that the compiler maps that to
|
||
## the ``#pragma omp parallel for`` construct of `OpenMP`:idx: and as
|
||
## such isn't aware of the parallelism in your code! Be careful! Later
|
||
## versions of ``||`` will get proper support by Nim's code generator
|
||
## and GC.
|
||
discard
|
||
|
||
iterator `||`*[S, T](a: S, b: T, step: Positive, annotation: static string = "parallel for"): T {.
|
||
inline, magic: "OmpParFor", sideEffect.} =
|
||
## OpenMP parallel loop iterator with stepping.
|
||
## Same as `countup` but the loop may run in parallel.
|
||
##
|
||
## `annotation` is an additional annotation for the code generator to use.
|
||
## The default annotation is `parallel for`.
|
||
## Please refer to the `OpenMP Syntax Reference
|
||
## <https://www.openmp.org/wp-content/uploads/OpenMP-4.5-1115-CPP-web.pdf>`_
|
||
## for further information.
|
||
##
|
||
## Note that the compiler maps that to
|
||
## the ``#pragma omp parallel for`` construct of `OpenMP`:idx: and as
|
||
## such isn't aware of the parallelism in your code! Be careful! Later
|
||
## versions of ``||`` will get proper support by Nim's code generator
|
||
## and GC.
|
||
discard
|
||
|
||
{.push stackTrace:off.}
|
||
proc min*(x, y: int): int {.magic: "MinI", noSideEffect.} =
|
||
if x <= y: x else: y
|
||
proc min*(x, y: int8): int8 {.magic: "MinI", noSideEffect.} =
|
||
if x <= y: x else: y
|
||
proc min*(x, y: int16): int16 {.magic: "MinI", noSideEffect.} =
|
||
if x <= y: x else: y
|
||
proc min*(x, y: int32): int32 {.magic: "MinI", noSideEffect.} =
|
||
if x <= y: x else: y
|
||
proc min*(x, y: int64): int64 {.magic: "MinI", noSideEffect.} =
|
||
## The minimum value of two integers.
|
||
if x <= y: x else: y
|
||
|
||
proc min*[T](x: openArray[T]): T =
|
||
## The minimum value of `x`. ``T`` needs to have a ``<`` operator.
|
||
result = x[0]
|
||
for i in 1..high(x):
|
||
if x[i] < result: result = x[i]
|
||
|
||
proc max*(x, y: int): int {.magic: "MaxI", noSideEffect.} =
|
||
if y <= x: x else: y
|
||
proc max*(x, y: int8): int8 {.magic: "MaxI", noSideEffect.} =
|
||
if y <= x: x else: y
|
||
proc max*(x, y: int16): int16 {.magic: "MaxI", noSideEffect.} =
|
||
if y <= x: x else: y
|
||
proc max*(x, y: int32): int32 {.magic: "MaxI", noSideEffect.} =
|
||
if y <= x: x else: y
|
||
proc max*(x, y: int64): int64 {.magic: "MaxI", noSideEffect.} =
|
||
## The maximum value of two integers.
|
||
if y <= x: x else: y
|
||
|
||
proc max*[T](x: openArray[T]): T =
|
||
## The maximum value of `x`. ``T`` needs to have a ``<`` operator.
|
||
result = x[0]
|
||
for i in 1..high(x):
|
||
if result < x[i]: result = x[i]
|
||
|
||
proc abs*(x: float64): float64 {.noSideEffect, inline.} =
|
||
if x < 0.0: -x else: x
|
||
proc abs*(x: float32): float32 {.noSideEffect, inline.} =
|
||
if x < 0.0: -x else: x
|
||
proc min*(x, y: float32): float32 {.noSideEffect, inline.} =
|
||
if x <= y or y != y: x else: y
|
||
proc min*(x, y: float64): float64 {.noSideEffect, inline.} =
|
||
if x <= y or y != y: x else: y
|
||
proc max*(x, y: float32): float32 {.noSideEffect, inline.} =
|
||
if y <= x or y != y: x else: y
|
||
proc max*(x, y: float64): float64 {.noSideEffect, inline.} =
|
||
if y <= x or y != y: x else: y
|
||
proc min*[T: not SomeFloat](x, y: T): T {.inline.} =
|
||
if x <= y: x else: y
|
||
proc max*[T: not SomeFloat](x, y: T): T {.inline.} =
|
||
if y <= x: x else: y
|
||
{.pop.}
|
||
|
||
proc high*(T: typedesc[SomeFloat]): T = Inf
|
||
proc low*(T: typedesc[SomeFloat]): T = NegInf
|
||
|
||
proc clamp*[T](x, a, b: T): T =
|
||
## Limits the value ``x`` within the interval [a, b].
|
||
##
|
||
## .. code-block:: Nim
|
||
## assert((1.4).clamp(0.0, 1.0) == 1.0)
|
||
## assert((0.5).clamp(0.0, 1.0) == 0.5)
|
||
if x < a: return a
|
||
if x > b: return b
|
||
return x
|
||
|
||
proc len*[U: Ordinal; V: Ordinal](x: HSlice[U, V]): int {.noSideEffect, inline.} =
|
||
## Length of ordinal slice. When x.b < x.a returns zero length.
|
||
##
|
||
## .. code-block:: Nim
|
||
## assert((0..5).len == 6)
|
||
## assert((5..2).len == 0)
|
||
result = max(0, ord(x.b) - ord(x.a) + 1)
|
||
|
||
when defined(nimNoNilSeqs2):
|
||
when not compileOption("nilseqs"):
|
||
{.pragma: nilError, error.}
|
||
else:
|
||
{.pragma: nilError.}
|
||
else:
|
||
{.pragma: nilError.}
|
||
|
||
proc isNil*[T](x: seq[T]): bool {.noSideEffect, magic: "IsNil", nilError.}
|
||
proc isNil*[T](x: ref T): bool {.noSideEffect, magic: "IsNil".}
|
||
proc isNil*(x: string): bool {.noSideEffect, magic: "IsNil", nilError.}
|
||
|
||
proc isNil*[T](x: ptr T): bool {.noSideEffect, magic: "IsNil".}
|
||
proc isNil*(x: pointer): bool {.noSideEffect, magic: "IsNil".}
|
||
proc isNil*(x: cstring): bool {.noSideEffect, magic: "IsNil".}
|
||
proc isNil*[T: proc](x: T): bool {.noSideEffect, magic: "IsNil".}
|
||
## Fast check whether `x` is nil. This is sometimes more efficient than
|
||
## ``== nil``.
|
||
|
||
proc `==`*[I, T](x, y: array[I, T]): bool =
|
||
for f in low(x)..high(x):
|
||
if x[f] != y[f]:
|
||
return
|
||
result = true
|
||
|
||
proc `==`*[T](x, y: openArray[T]): bool =
|
||
if x.len != y.len:
|
||
return false
|
||
|
||
for f in low(x)..high(x):
|
||
if x[f] != y[f]:
|
||
return false
|
||
|
||
result = true
|
||
|
||
proc `@`*[T](a: openArray[T]): seq[T] =
|
||
## Turns an *openArray* into a sequence.
|
||
##
|
||
## This is not as efficient as turning a fixed length array into a sequence
|
||
## as it always copies every element of `a`.
|
||
newSeq(result, a.len)
|
||
for i in 0..a.len-1: result[i] = a[i]
|
||
|
||
proc `&`*[T](x, y: seq[T]): seq[T] {.noSideEffect.} =
|
||
## Concatenates two sequences.
|
||
##
|
||
## Requires copying of the sequences.
|
||
##
|
||
## See also:
|
||
## * `add(var seq[T], openArray[T]) <#add,seq[T][T],openArray[T]>`_
|
||
##
|
||
## .. code-block:: Nim
|
||
## assert(@[1, 2, 3, 4] & @[5, 6] == @[1, 2, 3, 4, 5, 6])
|
||
newSeq(result, x.len + y.len)
|
||
for i in 0..x.len-1:
|
||
result[i] = x[i]
|
||
for i in 0..y.len-1:
|
||
result[i+x.len] = y[i]
|
||
|
||
proc `&`*[T](x: seq[T], y: T): seq[T] {.noSideEffect.} =
|
||
## Appends element y to the end of the sequence.
|
||
##
|
||
## Requires copying of the sequence.
|
||
##
|
||
## See also:
|
||
## * `add(var seq[T], T) <#add,seq[T][T],T>`_
|
||
##
|
||
## .. code-block:: Nim
|
||
## assert(@[1, 2, 3] & 4 == @[1, 2, 3, 4])
|
||
newSeq(result, x.len + 1)
|
||
for i in 0..x.len-1:
|
||
result[i] = x[i]
|
||
result[x.len] = y
|
||
|
||
proc `&`*[T](x: T, y: seq[T]): seq[T] {.noSideEffect.} =
|
||
## Prepends the element x to the beginning of the sequence.
|
||
##
|
||
## Requires copying of the sequence.
|
||
##
|
||
## .. code-block:: Nim
|
||
## assert(1 & @[2, 3, 4] == @[1, 2, 3, 4])
|
||
newSeq(result, y.len + 1)
|
||
result[0] = x
|
||
for i in 0..y.len-1:
|
||
result[i+1] = y[i]
|
||
|
||
proc `==`*[T](x, y: seq[T]): bool {.noSideEffect.} =
|
||
## Generic equals operator for sequences: relies on a equals operator for
|
||
## the element type `T`.
|
||
when nimvm:
|
||
when not defined(nimNoNil):
|
||
if x.isNil and y.isNil:
|
||
return true
|
||
else:
|
||
if x.len == 0 and y.len == 0:
|
||
return true
|
||
else:
|
||
when not defined(JS):
|
||
proc seqToPtr[T](x: seq[T]): pointer {.inline, noSideEffect.} =
|
||
when defined(nimSeqsV2):
|
||
result = cast[NimSeqV2[T]](x).p
|
||
else:
|
||
result = cast[pointer](x)
|
||
|
||
if seqToPtr(x) == seqToPtr(y):
|
||
return true
|
||
else:
|
||
var sameObject = false
|
||
asm """`sameObject` = `x` === `y`"""
|
||
if sameObject: return true
|
||
|
||
when not defined(nimNoNil):
|
||
if x.isNil or y.isNil:
|
||
return false
|
||
|
||
if x.len != y.len:
|
||
return false
|
||
|
||
for i in 0..x.len-1:
|
||
if x[i] != y[i]:
|
||
return false
|
||
|
||
return true
|
||
|
||
proc astToStr*[T](x: T): string {.magic: "AstToStr", noSideEffect.}
|
||
## Converts the AST of `x` into a string representation. This is very useful
|
||
## for debugging.
|
||
|
||
proc instantiationInfo*(index = -1, fullPaths = false): tuple[
|
||
filename: string, line: int, column: int] {.magic: "InstantiationInfo", noSideEffect.}
|
||
## Provides access to the compiler's instantiation stack line information
|
||
## of a template.
|
||
##
|
||
## While similar to the `caller info`:idx: of other languages, it is determined
|
||
## at compile time.
|
||
##
|
||
## This proc is mostly useful for meta programming (eg. ``assert`` template)
|
||
## to retrieve information about the current filename and line number.
|
||
## Example:
|
||
##
|
||
## .. code-block:: nim
|
||
## import strutils
|
||
##
|
||
## template testException(exception, code: untyped): typed =
|
||
## try:
|
||
## let pos = instantiationInfo()
|
||
## discard(code)
|
||
## echo "Test failure at $1:$2 with '$3'" % [pos.filename,
|
||
## $pos.line, astToStr(code)]
|
||
## assert false, "A test expecting failure succeeded?"
|
||
## except exception:
|
||
## discard
|
||
##
|
||
## proc tester(pos: int): int =
|
||
## let
|
||
## a = @[1, 2, 3]
|
||
## result = a[pos]
|
||
##
|
||
## when isMainModule:
|
||
## testException(IndexError, tester(30))
|
||
## testException(IndexError, tester(1))
|
||
## # --> Test failure at example.nim:20 with 'tester(1)'
|
||
|
||
proc compiles*(x: untyped): bool {.magic: "Compiles", noSideEffect, compileTime.} =
|
||
## Special compile-time procedure that checks whether `x` can be compiled
|
||
## without any semantic error.
|
||
## This can be used to check whether a type supports some operation:
|
||
##
|
||
## .. code-block:: Nim
|
||
## when compiles(3 + 4):
|
||
## echo "'+' for integers is available"
|
||
discard
|
||
|
||
when not defined(js) and not defined(nimscript):
|
||
import "system/ansi_c"
|
||
import "system/memory"
|
||
|
||
when not defined(js):
|
||
{.push stackTrace:off.}
|
||
|
||
when hasThreadSupport and hostOS != "standalone":
|
||
const insideRLocksModule = false
|
||
include "system/syslocks"
|
||
include "system/threadlocalstorage"
|
||
|
||
when defined(nimV2):
|
||
type
|
||
TNimNode {.compilerproc.} = object # to keep the code generator simple
|
||
DestructorProc = proc (p: pointer) {.nimcall, benign.}
|
||
TNimType {.compilerproc.} = object
|
||
destructor: pointer
|
||
size: int
|
||
name: cstring
|
||
PNimType = ptr TNimType
|
||
|
||
when defined(nimSeqsV2) and not defined(nimscript):
|
||
include "core/strs"
|
||
include "core/seqs"
|
||
|
||
{.pop.}
|
||
|
||
when not declared(sysFatal):
|
||
include "system/fatal"
|
||
|
||
when not defined(JS) and not defined(nimscript):
|
||
{.push stackTrace: off, profiler:off.}
|
||
|
||
proc atomicInc*(memLoc: var int, x: int = 1): int {.inline,
|
||
discardable, benign.}
|
||
## Atomic increment of `memLoc`. Returns the value after the operation.
|
||
|
||
proc atomicDec*(memLoc: var int, x: int = 1): int {.inline,
|
||
discardable, benign.}
|
||
## Atomic decrement of `memLoc`. Returns the value after the operation.
|
||
|
||
include "system/atomics"
|
||
|
||
{.pop.}
|
||
|
||
when defined(nimV2):
|
||
include core/runtime_v2
|
||
|
||
import system/assertions
|
||
export assertions
|
||
|
||
import system/iterators
|
||
export iterators
|
||
|
||
|
||
proc find*[T, S](a: T, item: S): int {.inline.}=
|
||
## Returns the first index of `item` in `a` or -1 if not found. This requires
|
||
## appropriate `items` and `==` operations to work.
|
||
for i in items(a):
|
||
if i == item: return
|
||
inc(result)
|
||
result = -1
|
||
|
||
proc contains*[T](a: openArray[T], item: T): bool {.inline.}=
|
||
## Returns true if `item` is in `a` or false if not found. This is a shortcut
|
||
## for ``find(a, item) >= 0``.
|
||
##
|
||
## This allows the `in` operator: `a.contains(item)` is the same as
|
||
## `item in a`.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var a = @[1, 3, 5]
|
||
## assert a.contains(5)
|
||
## assert 3 in a
|
||
## assert 99 notin a
|
||
return find(a, item) >= 0
|
||
|
||
proc pop*[T](s: var seq[T]): T {.inline, noSideEffect.} =
|
||
## Returns the last item of `s` and decreases ``s.len`` by one. This treats
|
||
## `s` as a stack and implements the common *pop* operation.
|
||
runnableExamples:
|
||
var a = @[1, 3, 5, 7]
|
||
let b = pop(a)
|
||
assert b == 7
|
||
assert a == @[1, 3, 5]
|
||
|
||
var L = s.len-1
|
||
when defined(nimV2):
|
||
result = move s[L]
|
||
shrink(s, L)
|
||
else:
|
||
result = s[L]
|
||
setLen(s, L)
|
||
|
||
proc `==`*[T: tuple|object](x, y: T): bool =
|
||
## Generic ``==`` operator for tuples that is lifted from the components.
|
||
## of `x` and `y`.
|
||
for a, b in fields(x, y):
|
||
if a != b: return false
|
||
return true
|
||
|
||
proc `<=`*[T: tuple](x, y: T): bool =
|
||
## Generic lexicographic ``<=`` operator for tuples that is lifted from the
|
||
## components of `x` and `y`. This implementation uses `cmp`.
|
||
for a, b in fields(x, y):
|
||
var c = cmp(a, b)
|
||
if c < 0: return true
|
||
if c > 0: return false
|
||
return true
|
||
|
||
proc `<`*[T: tuple](x, y: T): bool =
|
||
## Generic lexicographic ``<`` operator for tuples that is lifted from the
|
||
## components of `x` and `y`. This implementation uses `cmp`.
|
||
for a, b in fields(x, y):
|
||
var c = cmp(a, b)
|
||
if c < 0: return true
|
||
if c > 0: return false
|
||
return false
|
||
|
||
|
||
|
||
# ----------------- GC interface ---------------------------------------------
|
||
const
|
||
usesDestructors = defined(gcDestructors) or defined(gcHooks)
|
||
|
||
when not defined(nimscript) and hasAlloc:
|
||
type
|
||
GC_Strategy* = enum ## The strategy the GC should use for the application.
|
||
gcThroughput, ## optimize for throughput
|
||
gcResponsiveness, ## optimize for responsiveness (default)
|
||
gcOptimizeTime, ## optimize for speed
|
||
gcOptimizeSpace ## optimize for memory footprint
|
||
|
||
when not defined(JS) and not usesDestructors:
|
||
proc GC_disable*() {.rtl, inl, benign.}
|
||
## Disables the GC. If called `n` times, `n` calls to `GC_enable`
|
||
## are needed to reactivate the GC.
|
||
##
|
||
## Note that in most circumstances one should only disable
|
||
## the mark and sweep phase with
|
||
## `GC_disableMarkAndSweep <#GC_disableMarkAndSweep>`_.
|
||
|
||
proc GC_enable*() {.rtl, inl, benign.}
|
||
## Enables the GC again.
|
||
|
||
proc GC_fullCollect*() {.rtl, benign.}
|
||
## Forces a full garbage collection pass.
|
||
## Ordinary code does not need to call this (and should not).
|
||
|
||
proc GC_enableMarkAndSweep*() {.rtl, benign.}
|
||
proc GC_disableMarkAndSweep*() {.rtl, benign.}
|
||
## The current implementation uses a reference counting garbage collector
|
||
## with a seldomly run mark and sweep phase to free cycles. The mark and
|
||
## sweep phase may take a long time and is not needed if the application
|
||
## does not create cycles. Thus the mark and sweep phase can be deactivated
|
||
## and activated separately from the rest of the GC.
|
||
|
||
proc GC_getStatistics*(): string {.rtl, benign.}
|
||
## Returns an informative string about the GC's activity. This may be useful
|
||
## for tweaking.
|
||
|
||
proc GC_ref*[T](x: ref T) {.magic: "GCref", benign.}
|
||
proc GC_ref*[T](x: seq[T]) {.magic: "GCref", benign.}
|
||
proc GC_ref*(x: string) {.magic: "GCref", benign.}
|
||
## Marks the object `x` as referenced, so that it will not be freed until
|
||
## it is unmarked via `GC_unref`.
|
||
## If called n-times for the same object `x`,
|
||
## n calls to `GC_unref` are needed to unmark `x`.
|
||
|
||
proc GC_unref*[T](x: ref T) {.magic: "GCunref", benign.}
|
||
proc GC_unref*[T](x: seq[T]) {.magic: "GCunref", benign.}
|
||
proc GC_unref*(x: string) {.magic: "GCunref", benign.}
|
||
## See the documentation of `GC_ref <#GC_ref,string>`_.
|
||
|
||
when not defined(JS) and not defined(nimscript) and hasAlloc:
|
||
proc nimGC_setStackBottom*(theStackBottom: pointer) {.compilerRtl, noinline, benign.}
|
||
## Expands operating GC stack range to `theStackBottom`. Does nothing
|
||
## if current stack bottom is already lower than `theStackBottom`.
|
||
|
||
elif defined(JS):
|
||
template GC_disable* =
|
||
{.warning: "GC_disable is a no-op in JavaScript".}
|
||
|
||
template GC_enable* =
|
||
{.warning: "GC_enable is a no-op in JavaScript".}
|
||
|
||
template GC_fullCollect* =
|
||
{.warning: "GC_fullCollect is a no-op in JavaScript".}
|
||
|
||
template GC_setStrategy* =
|
||
{.warning: "GC_setStrategy is a no-op in JavaScript".}
|
||
|
||
template GC_enableMarkAndSweep* =
|
||
{.warning: "GC_enableMarkAndSweep is a no-op in JavaScript".}
|
||
|
||
template GC_disableMarkAndSweep* =
|
||
{.warning: "GC_disableMarkAndSweep is a no-op in JavaScript".}
|
||
|
||
template GC_ref*[T](x: ref T) =
|
||
{.warning: "GC_ref is a no-op in JavaScript".}
|
||
|
||
template GC_ref*[T](x: seq[T]) =
|
||
{.warning: "GC_ref is a no-op in JavaScript".}
|
||
|
||
template GC_ref*(x: string) =
|
||
{.warning: "GC_ref is a no-op in JavaScript".}
|
||
|
||
template GC_unref*[T](x: ref T) =
|
||
{.warning: "GC_unref is a no-op in JavaScript".}
|
||
|
||
template GC_unref*[T](x: seq[T]) =
|
||
{.warning: "GC_unref is a no-op in JavaScript".}
|
||
|
||
template GC_unref*(x: string) =
|
||
{.warning: "GC_unref is a no-op in JavaScript".}
|
||
|
||
template GC_getStatistics*(): string =
|
||
{.warning: "GC_getStatistics is a no-op in JavaScript".}
|
||
""
|
||
|
||
# we have to compute this here before turning it off in except.nim anyway ...
|
||
const NimStackTrace = compileOption("stacktrace")
|
||
|
||
template coroutinesSupportedPlatform(): bool =
|
||
when defined(sparc) or defined(ELATE) or compileOption("gc", "v2") or
|
||
defined(boehmgc) or defined(gogc) or defined(nogc) or defined(gcRegions) or
|
||
defined(gcMarkAndSweep):
|
||
false
|
||
else:
|
||
true
|
||
|
||
when defined(nimCoroutines):
|
||
# Explicit opt-in.
|
||
when not coroutinesSupportedPlatform():
|
||
{.error: "Coroutines are not supported on this architecture and/or garbage collector.".}
|
||
const nimCoroutines* = true
|
||
elif defined(noNimCoroutines):
|
||
# Explicit opt-out.
|
||
const nimCoroutines* = false
|
||
else:
|
||
# Autodetect coroutine support.
|
||
const nimCoroutines* = false
|
||
|
||
{.push checks: off.}
|
||
# obviously we cannot generate checking operations here :-)
|
||
# because it would yield into an endless recursion
|
||
# however, stack-traces are available for most parts
|
||
# of the code
|
||
|
||
var
|
||
globalRaiseHook*: proc (e: ref Exception): bool {.nimcall, benign.}
|
||
## With this hook you can influence exception handling on a global level.
|
||
## If not nil, every 'raise' statement ends up calling this hook.
|
||
##
|
||
## **Warning**: Ordinary application code should never set this hook!
|
||
## You better know what you do when setting this.
|
||
##
|
||
## If ``globalRaiseHook`` returns false, the exception is caught and does
|
||
## not propagate further through the call stack.
|
||
|
||
localRaiseHook* {.threadvar.}: proc (e: ref Exception): bool {.nimcall, benign.}
|
||
## With this hook you can influence exception handling on a
|
||
## thread local level.
|
||
## If not nil, every 'raise' statement ends up calling this hook.
|
||
##
|
||
## **Warning**: Ordinary application code should never set this hook!
|
||
## You better know what you do when setting this.
|
||
##
|
||
## If ``localRaiseHook`` returns false, the exception
|
||
## is caught and does not propagate further through the call stack.
|
||
|
||
outOfMemHook*: proc () {.nimcall, tags: [], benign, raises: [].}
|
||
## Set this variable to provide a procedure that should be called
|
||
## in case of an `out of memory`:idx: event. The standard handler
|
||
## writes an error message and terminates the program.
|
||
##
|
||
## `outOfMemHook` can be used to raise an exception in case of OOM like so:
|
||
##
|
||
## .. code-block:: Nim
|
||
##
|
||
## var gOutOfMem: ref EOutOfMemory
|
||
## new(gOutOfMem) # need to be allocated *before* OOM really happened!
|
||
## gOutOfMem.msg = "out of memory"
|
||
##
|
||
## proc handleOOM() =
|
||
## raise gOutOfMem
|
||
##
|
||
## system.outOfMemHook = handleOOM
|
||
##
|
||
## If the handler does not raise an exception, ordinary control flow
|
||
## continues and the program is terminated.
|
||
|
||
type
|
||
PFrame* = ptr TFrame ## Represents a runtime frame of the call stack;
|
||
## part of the debugger API.
|
||
TFrame* {.importc, nodecl, final.} = object ## The frame itself.
|
||
prev*: PFrame ## Previous frame; used for chaining the call stack.
|
||
procname*: cstring ## Name of the proc that is currently executing.
|
||
line*: int ## Line number of the proc that is currently executing.
|
||
filename*: cstring ## Filename of the proc that is currently executing.
|
||
len*: int16 ## Length of the inspectable slots.
|
||
calldepth*: int16 ## Used for max call depth checking.
|
||
|
||
when defined(JS):
|
||
proc add*(x: var string, y: cstring) {.asmNoStackFrame.} =
|
||
asm """
|
||
if (`x` === null) { `x` = []; }
|
||
var off = `x`.length;
|
||
`x`.length += `y`.length;
|
||
for (var i = 0; i < `y`.length; ++i) {
|
||
`x`[off+i] = `y`.charCodeAt(i);
|
||
}
|
||
"""
|
||
proc add*(x: var cstring, y: cstring) {.magic: "AppendStrStr".}
|
||
|
||
elif hasAlloc:
|
||
{.push stack_trace:off, profiler:off.}
|
||
proc add*(x: var string, y: cstring) =
|
||
var i = 0
|
||
while y[i] != '\0':
|
||
add(x, y[i])
|
||
inc(i)
|
||
{.pop.}
|
||
|
||
when defined(nimvarargstyped):
|
||
proc echo*(x: varargs[typed, `$`]) {.magic: "Echo", tags: [WriteIOEffect],
|
||
benign, sideEffect.}
|
||
## Writes and flushes the parameters to the standard output.
|
||
##
|
||
## Special built-in that takes a variable number of arguments. Each argument
|
||
## is converted to a string via ``$``, so it works for user-defined
|
||
## types that have an overloaded ``$`` operator.
|
||
## It is roughly equivalent to ``writeLine(stdout, x); flushFile(stdout)``, but
|
||
## available for the JavaScript target too.
|
||
##
|
||
## Unlike other IO operations this is guaranteed to be thread-safe as
|
||
## ``echo`` is very often used for debugging convenience. If you want to use
|
||
## ``echo`` inside a `proc without side effects
|
||
## <manual.html#pragmas-nosideeffect-pragma>`_ you can use `debugEcho
|
||
## <#debugEcho,varargs[typed,]>`_ instead.
|
||
|
||
proc debugEcho*(x: varargs[typed, `$`]) {.magic: "Echo", noSideEffect,
|
||
tags: [], raises: [].}
|
||
## Same as `echo <#echo,varargs[typed,]>`_, but as a special semantic rule,
|
||
## ``debugEcho`` pretends to be free of side effects, so that it can be used
|
||
## for debugging routines marked as `noSideEffect
|
||
## <manual.html#pragmas-nosideeffect-pragma>`_.
|
||
else:
|
||
proc echo*(x: varargs[untyped, `$`]) {.magic: "Echo", tags: [WriteIOEffect],
|
||
benign, sideEffect.}
|
||
proc debugEcho*(x: varargs[untyped, `$`]) {.magic: "Echo", noSideEffect,
|
||
tags: [], raises: [].}
|
||
|
||
template newException*(exceptn: typedesc, message: string;
|
||
parentException: ref Exception = nil): untyped =
|
||
## Creates an exception object of type ``exceptn`` and sets its ``msg`` field
|
||
## to `message`. Returns the new exception object.
|
||
when declared(owned):
|
||
var e: owned(ref exceptn)
|
||
else:
|
||
var e: ref exceptn
|
||
new(e)
|
||
e.msg = message
|
||
e.parent = parentException
|
||
e
|
||
|
||
when hostOS == "standalone" and defined(nogc):
|
||
proc nimToCStringConv(s: NimString): cstring {.compilerproc, inline.} =
|
||
if s == nil or s.len == 0: result = cstring""
|
||
else: result = cstring(addr s.data)
|
||
|
||
proc getTypeInfo*[T](x: T): pointer {.magic: "GetTypeInfo", benign.}
|
||
## Get type information for `x`.
|
||
##
|
||
## Ordinary code should not use this, but the `typeinfo module
|
||
## <typeinfo.html>`_ instead.
|
||
|
||
{.push stackTrace: off.}
|
||
proc abs*(x: int): int {.magic: "AbsI", noSideEffect.} =
|
||
if x < 0: -x else: x
|
||
proc abs*(x: int8): int8 {.magic: "AbsI", noSideEffect.} =
|
||
if x < 0: -x else: x
|
||
proc abs*(x: int16): int16 {.magic: "AbsI", noSideEffect.} =
|
||
if x < 0: -x else: x
|
||
proc abs*(x: int32): int32 {.magic: "AbsI", noSideEffect.} =
|
||
if x < 0: -x else: x
|
||
proc abs*(x: int64): int64 {.magic: "AbsI", noSideEffect.} =
|
||
## Returns the absolute value of `x`.
|
||
##
|
||
## If `x` is ``low(x)`` (that is -MININT for its type),
|
||
## an overflow exception is thrown (if overflow checking is turned on).
|
||
result = if x < 0: -x else: x
|
||
{.pop.}
|
||
|
||
|
||
when not defined(JS):
|
||
proc likelyProc(val: bool): bool {.importc: "NIM_LIKELY", nodecl, noSideEffect.}
|
||
proc unlikelyProc(val: bool): bool {.importc: "NIM_UNLIKELY", nodecl, noSideEffect.}
|
||
|
||
template likely*(val: bool): bool =
|
||
## Hints the optimizer that `val` is likely going to be true.
|
||
##
|
||
## You can use this template to decorate a branch condition. On certain
|
||
## platforms this can help the processor predict better which branch is
|
||
## going to be run. Example:
|
||
##
|
||
## .. code-block:: Nim
|
||
## for value in inputValues:
|
||
## if likely(value <= 100):
|
||
## process(value)
|
||
## else:
|
||
## echo "Value too big!"
|
||
##
|
||
## On backends without branch prediction (JS and the nimscript VM), this
|
||
## template will not affect code execution.
|
||
when nimvm:
|
||
val
|
||
else:
|
||
when defined(JS):
|
||
val
|
||
else:
|
||
likelyProc(val)
|
||
|
||
template unlikely*(val: bool): bool =
|
||
## Hints the optimizer that `val` is likely going to be false.
|
||
##
|
||
## You can use this proc to decorate a branch condition. On certain
|
||
## platforms this can help the processor predict better which branch is
|
||
## going to be run. Example:
|
||
##
|
||
## .. code-block:: Nim
|
||
## for value in inputValues:
|
||
## if unlikely(value > 100):
|
||
## echo "Value too big!"
|
||
## else:
|
||
## process(value)
|
||
##
|
||
## On backends without branch prediction (JS and the nimscript VM), this
|
||
## template will not affect code execution.
|
||
when nimvm:
|
||
val
|
||
else:
|
||
when defined(JS):
|
||
val
|
||
else:
|
||
unlikelyProc(val)
|
||
|
||
|
||
import system/dollars
|
||
export dollars
|
||
|
||
|
||
const
|
||
NimMajor* {.intdefine.}: int = 1
|
||
## is the major number of Nim's version.
|
||
|
||
NimMinor* {.intdefine.}: int = 1
|
||
## is the minor number of Nim's version.
|
||
|
||
NimPatch* {.intdefine.}: int = 1
|
||
## is the patch number of Nim's version.
|
||
|
||
NimVersion*: string = $NimMajor & "." & $NimMinor & "." & $NimPatch
|
||
## is the version of Nim as a string.
|
||
|
||
|
||
type
|
||
FileSeekPos* = enum ## Position relative to which seek should happen.
|
||
# The values are ordered so that they match with stdio
|
||
# SEEK_SET, SEEK_CUR and SEEK_END respectively.
|
||
fspSet ## Seek to absolute value
|
||
fspCur ## Seek relative to current position
|
||
fspEnd ## Seek relative to end
|
||
|
||
|
||
when not defined(JS): #and not defined(nimscript):
|
||
{.push stack_trace: off, profiler:off.}
|
||
|
||
when hasAlloc:
|
||
when not defined(gcRegions) and not usesDestructors:
|
||
proc initGC() {.gcsafe.}
|
||
|
||
proc initStackBottom() {.inline, compilerproc.} =
|
||
# WARNING: This is very fragile! An array size of 8 does not work on my
|
||
# Linux 64bit system. -- That's because the stack direction is the other
|
||
# way around.
|
||
when declared(nimGC_setStackBottom):
|
||
var locals {.volatile.}: pointer
|
||
locals = addr(locals)
|
||
nimGC_setStackBottom(locals)
|
||
|
||
proc initStackBottomWith(locals: pointer) {.inline, compilerproc.} =
|
||
# We need to keep initStackBottom around for now to avoid
|
||
# bootstrapping problems.
|
||
when declared(nimGC_setStackBottom):
|
||
nimGC_setStackBottom(locals)
|
||
|
||
when not usesDestructors:
|
||
{.push profiler: off.}
|
||
var
|
||
strDesc = TNimType(size: sizeof(string), kind: tyString, flags: {ntfAcyclic})
|
||
{.pop.}
|
||
|
||
when not defined(nimscript):
|
||
proc zeroMem(p: pointer, size: Natural) =
|
||
nimZeroMem(p, size)
|
||
when declared(memTrackerOp):
|
||
memTrackerOp("zeroMem", p, size)
|
||
proc copyMem(dest, source: pointer, size: Natural) =
|
||
nimCopyMem(dest, source, size)
|
||
when declared(memTrackerOp):
|
||
memTrackerOp("copyMem", dest, size)
|
||
proc moveMem(dest, source: pointer, size: Natural) =
|
||
c_memmove(dest, source, csize_t(size))
|
||
when declared(memTrackerOp):
|
||
memTrackerOp("moveMem", dest, size)
|
||
proc equalMem(a, b: pointer, size: Natural): bool =
|
||
nimCmpMem(a, b, size) == 0
|
||
|
||
proc cmp(x, y: string): int =
|
||
when defined(nimscript):
|
||
if x < y: result = -1
|
||
elif x > y: result = 1
|
||
else: result = 0
|
||
else:
|
||
when nimvm:
|
||
if x < y: result = -1
|
||
elif x > y: result = 1
|
||
else: result = 0
|
||
else:
|
||
let minlen = min(x.len, y.len)
|
||
result = int(nimCmpMem(x.cstring, y.cstring, cast[csize_t](minlen)))
|
||
if result == 0:
|
||
result = x.len - y.len
|
||
|
||
when declared(newSeq):
|
||
proc cstringArrayToSeq*(a: cstringArray, len: Natural): seq[string] =
|
||
## Converts a ``cstringArray`` to a ``seq[string]``. `a` is supposed to be
|
||
## of length ``len``.
|
||
newSeq(result, len)
|
||
for i in 0..len-1: result[i] = $a[i]
|
||
|
||
proc cstringArrayToSeq*(a: cstringArray): seq[string] =
|
||
## Converts a ``cstringArray`` to a ``seq[string]``. `a` is supposed to be
|
||
## terminated by ``nil``.
|
||
var L = 0
|
||
while a[L] != nil: inc(L)
|
||
result = cstringArrayToSeq(a, L)
|
||
|
||
# -------------------------------------------------------------------------
|
||
|
||
when declared(alloc0) and declared(dealloc):
|
||
proc allocCStringArray*(a: openArray[string]): cstringArray =
|
||
## Creates a NULL terminated cstringArray from `a`. The result has to
|
||
## be freed with `deallocCStringArray` after it's not needed anymore.
|
||
result = cast[cstringArray](alloc0((a.len+1) * sizeof(cstring)))
|
||
|
||
let x = cast[ptr UncheckedArray[string]](a)
|
||
for i in 0 .. a.high:
|
||
result[i] = cast[cstring](alloc0(x[i].len+1))
|
||
copyMem(result[i], addr(x[i][0]), x[i].len)
|
||
|
||
proc deallocCStringArray*(a: cstringArray) =
|
||
## Frees a NULL terminated cstringArray.
|
||
var i = 0
|
||
while a[i] != nil:
|
||
dealloc(a[i])
|
||
inc(i)
|
||
dealloc(a)
|
||
|
||
when not defined(nimscript):
|
||
type
|
||
PSafePoint = ptr TSafePoint
|
||
TSafePoint {.compilerproc, final.} = object
|
||
prev: PSafePoint # points to next safe point ON THE STACK
|
||
status: int
|
||
context: C_JmpBuf
|
||
hasRaiseAction: bool
|
||
raiseAction: proc (e: ref Exception): bool {.closure.}
|
||
SafePoint = TSafePoint
|
||
|
||
when declared(initAllocator):
|
||
initAllocator()
|
||
when hasThreadSupport:
|
||
when hostOS != "standalone": include "system/threads"
|
||
elif not defined(nogc) and not defined(nimscript):
|
||
when not defined(useNimRtl) and not defined(createNimRtl): initStackBottom()
|
||
when declared(initGC): initGC()
|
||
|
||
when not defined(nimscript):
|
||
proc setControlCHook*(hook: proc () {.noconv.})
|
||
## Allows you to override the behaviour of your application when CTRL+C
|
||
## is pressed. Only one such hook is supported.
|
||
|
||
when not defined(noSignalHandler) and not defined(useNimRtl):
|
||
proc unsetControlCHook*()
|
||
## Reverts a call to setControlCHook.
|
||
|
||
proc writeStackTrace*() {.tags: [], gcsafe.}
|
||
## Writes the current stack trace to ``stderr``. This is only works
|
||
## for debug builds. Since it's usually used for debugging, this
|
||
## is proclaimed to have no IO effect!
|
||
when hostOS != "standalone":
|
||
proc getStackTrace*(): string {.gcsafe.}
|
||
## Gets the current stack trace. This only works for debug builds.
|
||
|
||
proc getStackTrace*(e: ref Exception): string {.gcsafe.}
|
||
## Gets the stack trace associated with `e`, which is the stack that
|
||
## lead to the ``raise`` statement. This only works for debug builds.
|
||
|
||
{.push stackTrace: off, profiler:off.}
|
||
when defined(memtracker):
|
||
include "system/memtracker"
|
||
|
||
when hostOS == "standalone":
|
||
include "system/embedded"
|
||
else:
|
||
include "system/excpt"
|
||
include "system/chcks"
|
||
|
||
# we cannot compile this with stack tracing on
|
||
# as it would recurse endlessly!
|
||
include "system/arithm"
|
||
{.pop.} # stack trace
|
||
{.pop.} # stack trace
|
||
|
||
when hostOS != "standalone" and not defined(nimscript):
|
||
include "system/dyncalls"
|
||
when not defined(nimscript):
|
||
include "system/sets"
|
||
|
||
when defined(gogc):
|
||
const GenericSeqSize = (3 * sizeof(int))
|
||
else:
|
||
const GenericSeqSize = (2 * sizeof(int))
|
||
|
||
when not defined(nimV2):
|
||
proc getDiscriminant(aa: pointer, n: ptr TNimNode): uint =
|
||
sysAssert(n.kind == nkCase, "getDiscriminant: node != nkCase")
|
||
var d: uint
|
||
var a = cast[uint](aa)
|
||
case n.typ.size
|
||
of 1: d = uint(cast[ptr uint8](a + uint(n.offset))[])
|
||
of 2: d = uint(cast[ptr uint16](a + uint(n.offset))[])
|
||
of 4: d = uint(cast[ptr uint32](a + uint(n.offset))[])
|
||
of 8: d = uint(cast[ptr uint64](a + uint(n.offset))[])
|
||
else: sysAssert(false, "getDiscriminant: invalid n.typ.size")
|
||
return d
|
||
|
||
proc selectBranch(aa: pointer, n: ptr TNimNode): ptr TNimNode =
|
||
var discr = getDiscriminant(aa, n)
|
||
if discr < cast[uint](n.len):
|
||
result = n.sons[discr]
|
||
if result == nil: result = n.sons[n.len]
|
||
# n.sons[n.len] contains the ``else`` part (but may be nil)
|
||
else:
|
||
result = n.sons[n.len]
|
||
|
||
{.push profiler:off.}
|
||
when hasAlloc: include "system/mmdisp"
|
||
{.pop.}
|
||
{.push stack_trace: off, profiler:off.}
|
||
when hasAlloc:
|
||
when not defined(nimSeqsV2):
|
||
include "system/sysstr"
|
||
{.pop.}
|
||
when hasAlloc: include "system/strmantle"
|
||
|
||
when hasThreadSupport:
|
||
when hostOS != "standalone" and not usesDestructors: include "system/channels"
|
||
|
||
when not defined(nimscript) and hasAlloc:
|
||
when not usesDestructors:
|
||
include "system/assign"
|
||
when not defined(nimV2):
|
||
include "system/repr"
|
||
|
||
when hostOS != "standalone" and not defined(nimscript):
|
||
proc getCurrentException*(): ref Exception {.compilerRtl, inl, benign.} =
|
||
## Retrieves the current exception; if there is none, `nil` is returned.
|
||
result = currException
|
||
|
||
proc getCurrentExceptionMsg*(): string {.inline, benign.} =
|
||
## Retrieves the error message that was attached to the current
|
||
## exception; if there is none, `""` is returned.
|
||
var e = getCurrentException()
|
||
return if e == nil: "" else: e.msg
|
||
|
||
proc setCurrentException*(exc: ref Exception) {.inline, benign.} =
|
||
## Sets the current exception.
|
||
##
|
||
## **Warning**: Only use this if you know what you are doing.
|
||
currException = exc
|
||
|
||
{.push stack_trace: off, profiler:off.}
|
||
when (defined(profiler) or defined(memProfiler)) and not defined(nimscript):
|
||
include "system/profiler"
|
||
{.pop.} # stacktrace
|
||
|
||
when not defined(nimscript):
|
||
proc rawProc*[T: proc](x: T): pointer {.noSideEffect, inline.} =
|
||
## Retrieves the raw proc pointer of the closure `x`. This is
|
||
## useful for interfacing closures with C.
|
||
{.emit: """
|
||
`result` = `x`.ClP_0;
|
||
""".}
|
||
|
||
proc rawEnv*[T: proc](x: T): pointer {.noSideEffect, inline.} =
|
||
## Retrieves the raw environment pointer of the closure `x`. This is
|
||
## useful for interfacing closures with C.
|
||
{.emit: """
|
||
`result` = `x`.ClE_0;
|
||
""".}
|
||
|
||
proc finished*[T: proc](x: T): bool {.noSideEffect, inline.} =
|
||
## can be used to determine if a first class iterator has finished.
|
||
{.emit: """
|
||
`result` = ((NI*) `x`.ClE_0)[1] < 0;
|
||
""".}
|
||
|
||
elif defined(JS):
|
||
# Stubs:
|
||
proc getOccupiedMem(): int = return -1
|
||
proc getFreeMem(): int = return -1
|
||
proc getTotalMem(): int = return -1
|
||
|
||
proc dealloc(p: pointer) = discard
|
||
proc alloc(size: Natural): pointer = discard
|
||
proc alloc0(size: Natural): pointer = discard
|
||
proc realloc(p: pointer, newsize: Natural): pointer = discard
|
||
|
||
proc allocShared(size: Natural): pointer = discard
|
||
proc allocShared0(size: Natural): pointer = discard
|
||
proc deallocShared(p: pointer) = discard
|
||
proc reallocShared(p: pointer, newsize: Natural): pointer = discard
|
||
|
||
|
||
when defined(JS) and not defined(nimscript):
|
||
include "system/jssys"
|
||
include "system/reprjs"
|
||
elif defined(nimscript):
|
||
proc cmp(x, y: string): int =
|
||
if x == y: return 0
|
||
if x < y: return -1
|
||
return 1
|
||
|
||
when defined(JS) or defined(nimscript):
|
||
proc addInt*(result: var string; x: int64) =
|
||
result.add $x
|
||
|
||
proc addFloat*(result: var string; x: float) =
|
||
result.add $x
|
||
|
||
proc quit*(errormsg: string, errorcode = QuitFailure) {.noreturn.} =
|
||
## A shorthand for ``echo(errormsg); quit(errorcode)``.
|
||
when defined(nimscript) or defined(js) or (hostOS == "standalone"):
|
||
echo errormsg
|
||
else:
|
||
when nimvm:
|
||
echo errormsg
|
||
else:
|
||
cstderr.rawWrite(errormsg)
|
||
cstderr.rawWrite("\n")
|
||
quit(errorcode)
|
||
|
||
{.pop.} # checks
|
||
{.pop.} # hints
|
||
|
||
proc `/`*(x, y: int): float {.inline, noSideEffect.} =
|
||
## Division of integers that results in a float.
|
||
##
|
||
## See also:
|
||
## * `div <#div,int,int>`_
|
||
## * `mod <#mod,int,int>`_
|
||
##
|
||
## .. code-block:: Nim
|
||
## echo 7 / 5 # => 1.4
|
||
result = toFloat(x) / toFloat(y)
|
||
|
||
type
|
||
BackwardsIndex* = distinct int ## Type that is constructed by ``^`` for
|
||
## reversed array accesses.
|
||
## (See `^ template <#^.t,int>`_)
|
||
|
||
template `^`*(x: int): BackwardsIndex = BackwardsIndex(x)
|
||
## Builtin `roof`:idx: operator that can be used for convenient array access.
|
||
## ``a[^x]`` is a shortcut for ``a[a.len-x]``.
|
||
##
|
||
## .. code-block:: Nim
|
||
## let
|
||
## a = [1, 3, 5, 7, 9]
|
||
## b = "abcdefgh"
|
||
##
|
||
## echo a[^1] # => 9
|
||
## echo b[^2] # => g
|
||
|
||
template `..^`*(a, b: untyped): untyped =
|
||
## A shortcut for `.. ^` to avoid the common gotcha that a space between
|
||
## '..' and '^' is required.
|
||
a .. ^b
|
||
|
||
template `..<`*(a, b: untyped): untyped =
|
||
## A shortcut for `a .. pred(b)`.
|
||
##
|
||
## .. code-block:: Nim
|
||
## for i in 5 ..< 9:
|
||
## echo i # => 5; 6; 7; 8
|
||
a .. (when b is BackwardsIndex: succ(b) else: pred(b))
|
||
|
||
template spliceImpl(s, a, L, b: untyped): untyped =
|
||
# make room for additional elements or cut:
|
||
var shift = b.len - max(0,L) # ignore negative slice size
|
||
var newLen = s.len + shift
|
||
if shift > 0:
|
||
# enlarge:
|
||
setLen(s, newLen)
|
||
for i in countdown(newLen-1, a+b.len): movingCopy(s[i], s[i-shift])
|
||
else:
|
||
for i in countup(a+b.len, newLen-1): movingCopy(s[i], s[i-shift])
|
||
# cut down:
|
||
setLen(s, newLen)
|
||
# fill the hole:
|
||
for i in 0 ..< b.len: s[a+i] = b[i]
|
||
|
||
template `^^`(s, i: untyped): untyped =
|
||
(when i is BackwardsIndex: s.len - int(i) else: int(i))
|
||
|
||
template `[]`*(s: string; i: int): char = arrGet(s, i)
|
||
template `[]=`*(s: string; i: int; val: char) = arrPut(s, i, val)
|
||
|
||
proc `[]`*[T, U](s: string, x: HSlice[T, U]): string {.inline.} =
|
||
## Slice operation for strings.
|
||
## Returns the inclusive range `[s[x.a], s[x.b]]`:
|
||
##
|
||
## .. code-block:: Nim
|
||
## var s = "abcdef"
|
||
## assert s[1..3] == "bcd"
|
||
let a = s ^^ x.a
|
||
let L = (s ^^ x.b) - a + 1
|
||
result = newString(L)
|
||
for i in 0 ..< L: result[i] = s[i + a]
|
||
|
||
proc `[]=`*[T, U](s: var string, x: HSlice[T, U], b: string) =
|
||
## Slice assignment for strings.
|
||
##
|
||
## If ``b.len`` is not exactly the number of elements that are referred to
|
||
## by `x`, a `splice`:idx: is performed:
|
||
##
|
||
runnableExamples:
|
||
var s = "abcdefgh"
|
||
s[1 .. ^2] = "xyz"
|
||
assert s == "axyzh"
|
||
|
||
var a = s ^^ x.a
|
||
var L = (s ^^ x.b) - a + 1
|
||
if L == b.len:
|
||
for i in 0..<L: s[i+a] = b[i]
|
||
else:
|
||
spliceImpl(s, a, L, b)
|
||
|
||
proc `[]`*[Idx, T, U, V](a: array[Idx, T], x: HSlice[U, V]): seq[T] =
|
||
## Slice operation for arrays.
|
||
## Returns the inclusive range `[a[x.a], a[x.b]]`:
|
||
##
|
||
## .. code-block:: Nim
|
||
## var a = [1, 2, 3, 4]
|
||
## assert a[0..2] == @[1, 2, 3]
|
||
let xa = a ^^ x.a
|
||
let L = (a ^^ x.b) - xa + 1
|
||
result = newSeq[T](L)
|
||
for i in 0..<L: result[i] = a[Idx(i + xa)]
|
||
|
||
proc `[]=`*[Idx, T, U, V](a: var array[Idx, T], x: HSlice[U, V], b: openArray[T]) =
|
||
## Slice assignment for arrays.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var a = [10, 20, 30, 40, 50]
|
||
## a[1..2] = @[99, 88]
|
||
## assert a == [10, 99, 88, 40, 50]
|
||
let xa = a ^^ x.a
|
||
let L = (a ^^ x.b) - xa + 1
|
||
if L == b.len:
|
||
for i in 0..<L: a[Idx(i + xa)] = b[i]
|
||
else:
|
||
sysFatal(RangeError, "different lengths for slice assignment")
|
||
|
||
proc `[]`*[T, U, V](s: openArray[T], x: HSlice[U, V]): seq[T] =
|
||
## Slice operation for sequences.
|
||
## Returns the inclusive range `[s[x.a], s[x.b]]`:
|
||
##
|
||
## .. code-block:: Nim
|
||
## var s = @[1, 2, 3, 4]
|
||
## assert s[0..2] == @[1, 2, 3]
|
||
let a = s ^^ x.a
|
||
let L = (s ^^ x.b) - a + 1
|
||
newSeq(result, L)
|
||
for i in 0 ..< L: result[i] = s[i + a]
|
||
|
||
proc `[]=`*[T, U, V](s: var seq[T], x: HSlice[U, V], b: openArray[T]) =
|
||
## Slice assignment for sequences.
|
||
##
|
||
## If ``b.len`` is not exactly the number of elements that are referred to
|
||
## by `x`, a `splice`:idx: is performed.
|
||
runnableExamples:
|
||
var s = @"abcdefgh"
|
||
s[1 .. ^2] = @"xyz"
|
||
assert s == @"axyzh"
|
||
|
||
let a = s ^^ x.a
|
||
let L = (s ^^ x.b) - a + 1
|
||
if L == b.len:
|
||
for i in 0 ..< L: s[i+a] = b[i]
|
||
else:
|
||
spliceImpl(s, a, L, b)
|
||
|
||
proc `[]`*[T](s: openArray[T]; i: BackwardsIndex): T {.inline.} =
|
||
system.`[]`(s, s.len - int(i))
|
||
|
||
proc `[]`*[Idx, T](a: array[Idx, T]; i: BackwardsIndex): T {.inline.} =
|
||
a[Idx(a.len - int(i) + int low(a))]
|
||
proc `[]`*(s: string; i: BackwardsIndex): char {.inline.} = s[s.len - int(i)]
|
||
|
||
proc `[]`*[T](s: var openArray[T]; i: BackwardsIndex): var T {.inline.} =
|
||
system.`[]`(s, s.len - int(i))
|
||
proc `[]`*[Idx, T](a: var array[Idx, T]; i: BackwardsIndex): var T {.inline.} =
|
||
a[Idx(a.len - int(i) + int low(a))]
|
||
|
||
proc `[]=`*[T](s: var openArray[T]; i: BackwardsIndex; x: T) {.inline.} =
|
||
system.`[]=`(s, s.len - int(i), x)
|
||
proc `[]=`*[Idx, T](a: var array[Idx, T]; i: BackwardsIndex; x: T) {.inline.} =
|
||
a[Idx(a.len - int(i) + int low(a))] = x
|
||
proc `[]=`*(s: var string; i: BackwardsIndex; x: char) {.inline.} =
|
||
s[s.len - int(i)] = x
|
||
|
||
proc slurp*(filename: string): string {.magic: "Slurp".}
|
||
## This is an alias for `staticRead <#staticRead,string>`_.
|
||
|
||
proc staticRead*(filename: string): string {.magic: "Slurp".}
|
||
## Compile-time `readFile <io.html#readFile,string>`_ proc for easy
|
||
## `resource`:idx: embedding:
|
||
##
|
||
## .. code-block:: Nim
|
||
## const myResource = staticRead"mydatafile.bin"
|
||
##
|
||
## `slurp <#slurp,string>`_ is an alias for ``staticRead``.
|
||
|
||
proc gorge*(command: string, input = "", cache = ""): string {.
|
||
magic: "StaticExec".} = discard
|
||
## This is an alias for `staticExec <#staticExec,string,string,string>`_.
|
||
|
||
proc staticExec*(command: string, input = "", cache = ""): string {.
|
||
magic: "StaticExec".} = discard
|
||
## Executes an external process at compile-time and returns its text output
|
||
## (stdout + stderr).
|
||
##
|
||
## If `input` is not an empty string, it will be passed as a standard input
|
||
## to the executed program.
|
||
##
|
||
## .. code-block:: Nim
|
||
## const buildInfo = "Revision " & staticExec("git rev-parse HEAD") &
|
||
## "\nCompiled on " & staticExec("uname -v")
|
||
##
|
||
## `gorge <#gorge,string,string,string>`_ is an alias for ``staticExec``.
|
||
##
|
||
## Note that you can use this proc inside a pragma like
|
||
## `passc <manual.html#implementation-specific-pragmas-passc-pragma>`_ or
|
||
## `passl <manual.html#implementation-specific-pragmas-passl-pragma>`_.
|
||
##
|
||
## If ``cache`` is not empty, the results of ``staticExec`` are cached within
|
||
## the ``nimcache`` directory. Use ``--forceBuild`` to get rid of this caching
|
||
## behaviour then. ``command & input & cache`` (the concatenated string) is
|
||
## used to determine whether the entry in the cache is still valid. You can
|
||
## use versioning information for ``cache``:
|
||
##
|
||
## .. code-block:: Nim
|
||
## const stateMachine = staticExec("dfaoptimizer", "input", "0.8.0")
|
||
|
||
proc gorgeEx*(command: string, input = "", cache = ""): tuple[output: string,
|
||
exitCode: int] =
|
||
## Similar to `gorge <#gorge,string,string,string>`_ but also returns the
|
||
## precious exit code.
|
||
discard
|
||
|
||
proc `+=`*[T: SomeInteger](x: var T, y: T) {.
|
||
magic: "Inc", noSideEffect.}
|
||
## Increments an integer.
|
||
|
||
proc `+=`*[T: enum|bool](x: var T, y: T) {.
|
||
magic: "Inc", noSideEffect, deprecated: "use `inc` instead".}
|
||
## **Deprecated since v0.20**: use `inc` instead.
|
||
|
||
proc `-=`*[T: SomeInteger](x: var T, y: T) {.
|
||
magic: "Dec", noSideEffect.}
|
||
## Decrements an integer.
|
||
|
||
proc `-=`*[T: enum|bool](x: var T, y: T) {.
|
||
magic: "Dec", noSideEffect, deprecated: "0.20.0, use `dec` instead".}
|
||
## **Deprecated since v0.20**: use `dec` instead.
|
||
|
||
proc `*=`*[T: SomeInteger](x: var T, y: T) {.
|
||
inline, noSideEffect.} =
|
||
## Binary `*=` operator for integers.
|
||
x = x * y
|
||
|
||
proc `+=`*[T: float|float32|float64] (x: var T, y: T) {.
|
||
inline, noSideEffect.} =
|
||
## Increments in place a floating point number.
|
||
x = x + y
|
||
|
||
proc `-=`*[T: float|float32|float64] (x: var T, y: T) {.
|
||
inline, noSideEffect.} =
|
||
## Decrements in place a floating point number.
|
||
x = x - y
|
||
|
||
proc `*=`*[T: float|float32|float64] (x: var T, y: T) {.
|
||
inline, noSideEffect.} =
|
||
## Multiplies in place a floating point number.
|
||
x = x * y
|
||
|
||
proc `/=`*(x: var float64, y: float64) {.inline, noSideEffect.} =
|
||
## Divides in place a floating point number.
|
||
x = x / y
|
||
|
||
proc `/=`*[T: float|float32](x: var T, y: T) {.inline, noSideEffect.} =
|
||
## Divides in place a floating point number.
|
||
x = x / y
|
||
|
||
proc `&=`*(x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.}
|
||
## Appends in place to a string.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var a = "abc"
|
||
## a &= "de" # a <- "abcde"
|
||
|
||
template `&=`*(x, y: typed) =
|
||
## Generic 'sink' operator for Nim.
|
||
##
|
||
## For files an alias for ``write``.
|
||
## If not specialized further, an alias for ``add``.
|
||
add(x, y)
|
||
when declared(File):
|
||
template `&=`*(f: File, x: typed) = write(f, x)
|
||
|
||
template currentSourcePath*: string = instantiationInfo(-1, true).filename
|
||
## Returns the full file-system path of the current source.
|
||
##
|
||
## To get the directory containing the current source, use it with
|
||
## `os.parentDir() <os.html#parentDir%2Cstring>`_ as ``currentSourcePath.parentDir()``.
|
||
##
|
||
## The path returned by this template is set at compile time.
|
||
##
|
||
## See the docstring of `macros.getProjectPath() <macros.html#getProjectPath>`_
|
||
## for an example to see the distinction between the ``currentSourcePath``
|
||
## and ``getProjectPath``.
|
||
##
|
||
## See also:
|
||
## * `getCurrentDir proc <os.html#getCurrentDir>`_
|
||
|
||
when compileOption("rangechecks"):
|
||
template rangeCheck*(cond) =
|
||
## Helper for performing user-defined range checks.
|
||
## Such checks will be performed only when the ``rangechecks``
|
||
## compile-time option is enabled.
|
||
if not cond: sysFatal(RangeError, "range check failed")
|
||
else:
|
||
template rangeCheck*(cond) = discard
|
||
|
||
when not defined(nimhygiene):
|
||
{.pragma: inject.}
|
||
|
||
proc shallow*[T](s: var seq[T]) {.noSideEffect, inline.} =
|
||
## Marks a sequence `s` as `shallow`:idx:. Subsequent assignments will not
|
||
## perform deep copies of `s`.
|
||
##
|
||
## This is only useful for optimization purposes.
|
||
if s.len == 0: return
|
||
when not defined(JS) and not defined(nimscript) and not defined(nimSeqsV2):
|
||
var s = cast[PGenericSeq](s)
|
||
s.reserved = s.reserved or seqShallowFlag
|
||
|
||
proc shallow*(s: var string) {.noSideEffect, inline.} =
|
||
## Marks a string `s` as `shallow`:idx:. Subsequent assignments will not
|
||
## perform deep copies of `s`.
|
||
##
|
||
## This is only useful for optimization purposes.
|
||
when not defined(JS) and not defined(nimscript) and not defined(nimSeqsV2):
|
||
var s = cast[PGenericSeq](s)
|
||
if s == nil:
|
||
s = cast[PGenericSeq](newString(0))
|
||
# string literals cannot become 'shallow':
|
||
if (s.reserved and strlitFlag) == 0:
|
||
s.reserved = s.reserved or seqShallowFlag
|
||
|
||
type
|
||
NimNodeObj = object
|
||
|
||
NimNode* {.magic: "PNimrodNode".} = ref NimNodeObj
|
||
## Represents a Nim AST node. Macros operate on this type.
|
||
|
||
when false:
|
||
template eval*(blk: typed): typed =
|
||
## Executes a block of code at compile time just as if it was a macro.
|
||
##
|
||
## Optionally, the block can return an AST tree that will replace the
|
||
## eval expression.
|
||
macro payload: typed {.gensym.} = blk
|
||
payload()
|
||
|
||
when hasAlloc or defined(nimscript):
|
||
proc insert*(x: var string, item: string, i = 0.Natural) {.noSideEffect.} =
|
||
## Inserts `item` into `x` at position `i`.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var a = "abc"
|
||
## a.insert("zz", 0) # a <- "zzabc"
|
||
var xl = x.len
|
||
setLen(x, xl+item.len)
|
||
var j = xl-1
|
||
while j >= i:
|
||
shallowCopy(x[j+item.len], x[j])
|
||
dec(j)
|
||
j = 0
|
||
while j < item.len:
|
||
x[j+i] = item[j]
|
||
inc(j)
|
||
|
||
when declared(initDebugger):
|
||
initDebugger()
|
||
|
||
proc addEscapedChar*(s: var string, c: char) {.noSideEffect, inline.} =
|
||
## Adds a char to string `s` and applies the following escaping:
|
||
##
|
||
## * replaces any ``\`` by ``\\``
|
||
## * replaces any ``'`` by ``\'``
|
||
## * replaces any ``"`` by ``\"``
|
||
## * replaces any ``\a`` by ``\\a``
|
||
## * replaces any ``\b`` by ``\\b``
|
||
## * replaces any ``\t`` by ``\\t``
|
||
## * replaces any ``\n`` by ``\\n``
|
||
## * replaces any ``\v`` by ``\\v``
|
||
## * replaces any ``\f`` by ``\\f``
|
||
## * replaces any ``\c`` by ``\\c``
|
||
## * replaces any ``\e`` by ``\\e``
|
||
## * replaces any other character not in the set ``{'\21..'\126'}
|
||
## by ``\xHH`` where ``HH`` is its hexadecimal value.
|
||
##
|
||
## The procedure has been designed so that its output is usable for many
|
||
## different common syntaxes.
|
||
##
|
||
## **Note**: This is **not correct** for producing Ansi C code!
|
||
case c
|
||
of '\a': s.add "\\a" # \x07
|
||
of '\b': s.add "\\b" # \x08
|
||
of '\t': s.add "\\t" # \x09
|
||
of '\L': s.add "\\n" # \x0A
|
||
of '\v': s.add "\\v" # \x0B
|
||
of '\f': s.add "\\f" # \x0C
|
||
of '\c': s.add "\\c" # \x0D
|
||
of '\e': s.add "\\e" # \x1B
|
||
of '\\': s.add("\\\\")
|
||
of '\'': s.add("\\'")
|
||
of '\"': s.add("\\\"")
|
||
of {'\32'..'\126'} - {'\\', '\'', '\"'}: s.add(c)
|
||
else:
|
||
s.add("\\x")
|
||
const HexChars = "0123456789ABCDEF"
|
||
let n = ord(c)
|
||
s.add(HexChars[int((n and 0xF0) shr 4)])
|
||
s.add(HexChars[int(n and 0xF)])
|
||
|
||
proc addQuoted*[T](s: var string, x: T) =
|
||
## Appends `x` to string `s` in place, applying quoting and escaping
|
||
## if `x` is a string or char.
|
||
##
|
||
## See `addEscapedChar <#addEscapedChar,string,char>`_
|
||
## for the escaping scheme. When `x` is a string, characters in the
|
||
## range ``{\128..\255}`` are never escaped so that multibyte UTF-8
|
||
## characters are untouched (note that this behavior is different from
|
||
## ``addEscapedChar``).
|
||
##
|
||
## The Nim standard library uses this function on the elements of
|
||
## collections when producing a string representation of a collection.
|
||
## It is recommended to use this function as well for user-side collections.
|
||
## Users may overload `addQuoted` for custom (string-like) types if
|
||
## they want to implement a customized element representation.
|
||
##
|
||
## .. code-block:: Nim
|
||
## var tmp = ""
|
||
## tmp.addQuoted(1)
|
||
## tmp.add(", ")
|
||
## tmp.addQuoted("string")
|
||
## tmp.add(", ")
|
||
## tmp.addQuoted('c')
|
||
## assert(tmp == """1, "string", 'c'""")
|
||
when T is string or T is cstring:
|
||
s.add("\"")
|
||
for c in x:
|
||
# Only ASCII chars are escaped to avoid butchering
|
||
# multibyte UTF-8 characters.
|
||
if c <= 127.char:
|
||
s.addEscapedChar(c)
|
||
else:
|
||
s.add c
|
||
s.add("\"")
|
||
elif T is char:
|
||
s.add("'")
|
||
s.addEscapedChar(x)
|
||
s.add("'")
|
||
# prevent temporary string allocation
|
||
elif T is SomeSignedInt:
|
||
s.addInt(x)
|
||
elif T is SomeFloat:
|
||
s.addFloat(x)
|
||
elif compiles(s.add(x)):
|
||
s.add(x)
|
||
else:
|
||
s.add($x)
|
||
|
||
proc locals*(): RootObj {.magic: "Plugin", noSideEffect.} =
|
||
## Generates a tuple constructor expression listing all the local variables
|
||
## in the current scope.
|
||
##
|
||
## This is quite fast as it does not rely
|
||
## on any debug or runtime information. Note that in contrast to what
|
||
## the official signature says, the return type is *not* ``RootObj`` but a
|
||
## tuple of a structure that depends on the current scope. Example:
|
||
##
|
||
## .. code-block:: Nim
|
||
## proc testLocals() =
|
||
## var
|
||
## a = "something"
|
||
## b = 4
|
||
## c = locals()
|
||
## d = "super!"
|
||
##
|
||
## b = 1
|
||
## for name, value in fieldPairs(c):
|
||
## echo "name ", name, " with value ", value
|
||
## echo "B is ", b
|
||
## # -> name a with value something
|
||
## # -> name b with value 4
|
||
## # -> B is 1
|
||
discard
|
||
|
||
when hasAlloc and not defined(nimscript) and not defined(JS) and
|
||
not usesDestructors:
|
||
# XXX how to implement 'deepCopy' is an open problem.
|
||
proc deepCopy*[T](x: var T, y: T) {.noSideEffect, magic: "DeepCopy".} =
|
||
## Performs a deep copy of `y` and copies it into `x`.
|
||
##
|
||
## This is also used by the code generator
|
||
## for the implementation of ``spawn``.
|
||
discard
|
||
|
||
proc deepCopy*[T](y: T): T =
|
||
## Convenience wrapper around `deepCopy` overload.
|
||
deepCopy(result, y)
|
||
|
||
include "system/deepcopy"
|
||
|
||
proc procCall*(x: untyped) {.magic: "ProcCall", compileTime.} =
|
||
## Special magic to prohibit dynamic binding for `method`:idx: calls.
|
||
## This is similar to `super`:idx: in ordinary OO languages.
|
||
##
|
||
## .. code-block:: Nim
|
||
## # 'someMethod' will be resolved fully statically:
|
||
## procCall someMethod(a, b)
|
||
discard
|
||
|
||
|
||
proc `==`*(x, y: cstring): bool {.magic: "EqCString", noSideEffect,
|
||
inline.} =
|
||
## Checks for equality between two `cstring` variables.
|
||
proc strcmp(a, b: cstring): cint {.noSideEffect,
|
||
importc, header: "<string.h>".}
|
||
if pointer(x) == pointer(y): result = true
|
||
elif x.isNil or y.isNil: result = false
|
||
else: result = strcmp(x, y) == 0
|
||
|
||
when defined(nimNoNilSeqs2):
|
||
when not compileOption("nilseqs"):
|
||
when defined(nimHasUserErrors):
|
||
# bug #9149; ensure that 'type(nil)' does not match *too* well by using 'type(nil) | type(nil)'.
|
||
# Eventually (in 0.20?) we will be able to remove this hack completely.
|
||
proc `==`*(x: string; y: type(nil) | type(nil)): bool {.
|
||
error: "'nil' is now invalid for 'string'; compile with --nilseqs:on for a migration period".} =
|
||
discard
|
||
proc `==`*(x: type(nil) | type(nil); y: string): bool {.
|
||
error: "'nil' is now invalid for 'string'; compile with --nilseqs:on for a migration period".} =
|
||
discard
|
||
else:
|
||
proc `==`*(x: string; y: type(nil) | type(nil)): bool {.error.} = discard
|
||
proc `==`*(x: type(nil) | type(nil); y: string): bool {.error.} = discard
|
||
|
||
template closureScope*(body: untyped): untyped =
|
||
## Useful when creating a closure in a loop to capture local loop variables by
|
||
## their current iteration values. Example:
|
||
##
|
||
## .. code-block:: Nim
|
||
## var myClosure : proc()
|
||
## # without closureScope:
|
||
## for i in 0 .. 5:
|
||
## let j = i
|
||
## if j == 3:
|
||
## myClosure = proc() = echo j
|
||
## myClosure() # outputs 5. `j` is changed after closure creation
|
||
## # with closureScope:
|
||
## for i in 0 .. 5:
|
||
## closureScope: # Everything in this scope is locked after closure creation
|
||
## let j = i
|
||
## if j == 3:
|
||
## myClosure = proc() = echo j
|
||
## myClosure() # outputs 3
|
||
(proc() = body)()
|
||
|
||
template once*(body: untyped): untyped =
|
||
## Executes a block of code only once (the first time the block is reached).
|
||
##
|
||
## .. code-block:: Nim
|
||
##
|
||
## proc draw(t: Triangle) =
|
||
## once:
|
||
## graphicsInit()
|
||
## line(t.p1, t.p2)
|
||
## line(t.p2, t.p3)
|
||
## line(t.p3, t.p1)
|
||
##
|
||
var alreadyExecuted {.global.} = false
|
||
if not alreadyExecuted:
|
||
alreadyExecuted = true
|
||
body
|
||
|
||
{.pop.} #{.push warning[GcMem]: off, warning[Uninit]: off.}
|
||
|
||
proc substr*(s: string, first, last: int): string =
|
||
## Copies a slice of `s` into a new string and returns this new
|
||
## string.
|
||
##
|
||
## The bounds `first` and `last` denote the indices of
|
||
## the first and last characters that shall be copied. If ``last``
|
||
## is omitted, it is treated as ``high(s)``. If ``last >= s.len``, ``s.len``
|
||
## is used instead: This means ``substr`` can also be used to `cut`:idx:
|
||
## or `limit`:idx: a string's length.
|
||
runnableExamples:
|
||
let a = "abcdefgh"
|
||
assert a.substr(2, 5) == "cdef"
|
||
assert a.substr(2) == "cdefgh"
|
||
assert a.substr(5, 99) == "fgh"
|
||
|
||
let first = max(first, 0)
|
||
let L = max(min(last, high(s)) - first + 1, 0)
|
||
result = newString(L)
|
||
for i in 0 .. L-1:
|
||
result[i] = s[i+first]
|
||
|
||
proc substr*(s: string, first = 0): string =
|
||
result = substr(s, first, high(s))
|
||
|
||
when defined(nimconfig):
|
||
include "system/nimscript"
|
||
|
||
when not defined(js):
|
||
proc toOpenArray*[T](x: ptr UncheckedArray[T]; first, last: int): openArray[T] {.
|
||
magic: "Slice".}
|
||
when defined(nimToOpenArrayCString):
|
||
proc toOpenArray*(x: cstring; first, last: int): openArray[char] {.
|
||
magic: "Slice".}
|
||
proc toOpenArrayByte*(x: cstring; first, last: int): openArray[byte] {.
|
||
magic: "Slice".}
|
||
|
||
proc toOpenArray*[T](x: seq[T]; first, last: int): openArray[T] {.
|
||
magic: "Slice".}
|
||
proc toOpenArray*[T](x: openArray[T]; first, last: int): openArray[T] {.
|
||
magic: "Slice".}
|
||
proc toOpenArray*[I, T](x: array[I, T]; first, last: I): openArray[T] {.
|
||
magic: "Slice".}
|
||
proc toOpenArray*(x: string; first, last: int): openArray[char] {.
|
||
magic: "Slice".}
|
||
|
||
proc toOpenArrayByte*(x: string; first, last: int): openArray[byte] {.
|
||
magic: "Slice".}
|
||
proc toOpenArrayByte*(x: openArray[char]; first, last: int): openArray[byte] {.
|
||
magic: "Slice".}
|
||
proc toOpenArrayByte*(x: seq[char]; first, last: int): openArray[byte] {.
|
||
magic: "Slice".}
|
||
|
||
type
|
||
ForLoopStmt* {.compilerproc.} = object ## \
|
||
## A special type that marks a macro as a `for-loop macro`:idx:.
|
||
## See `"For Loop Macro" <manual.html#macros-for-loop-macro>`_.
|
||
|
||
when defined(genode):
|
||
var componentConstructHook*: proc (env: GenodeEnv) {.nimcall.}
|
||
## Hook into the Genode component bootstrap process.
|
||
##
|
||
## This hook is called after all globals are initialized.
|
||
## When this hook is set the component will not automatically exit,
|
||
## call ``quit`` explicitly to do so. This is the only available method
|
||
## of accessing the initial Genode environment.
|
||
|
||
proc nim_component_construct(env: GenodeEnv) {.exportc.} =
|
||
## Procedure called during ``Component::construct`` by the loader.
|
||
if componentConstructHook.isNil:
|
||
env.quit(programResult)
|
||
# No native Genode application initialization,
|
||
# exit as would POSIX.
|
||
else:
|
||
componentConstructHook(env)
|
||
# Perform application initialization
|
||
# and return to thread entrypoint.
|
||
|
||
|
||
import system/widestrs
|
||
export widestrs
|
||
|
||
import system/io
|
||
export io
|
||
|
||
when not defined(createNimHcr):
|
||
include nimhcr
|