Files
Nim/compiler/ccgutils.nim
Zahary Karadjov d0edb1826b adds an option to interleave the generated code with snippets from the original source
Lines from the original source are outputted as comments next to line directives.
Hopefully, this will make debugging codegen problems easier.

Other changes:
The frame setup code now uses a single-line C macro. My motivation was to reduce
the noise in the generated output and make it easier to step over the boiler-plate
code, but counter-intuitively this also improved the overall compilation speed a
little bit so I applied the same treatment to line tracking too (this reduces the size of
the generated files and the explanation is that probably the I/O overhead dominates
the macro expansion costs).
2012-12-02 20:36:29 +02:00

180 lines
5.5 KiB
Nim
Executable File

#
#
# The Nimrod Compiler
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# This module declares some helpers for the C code generator.
import
ast, astalgo, ropes, lists, hashes, strutils, types, msgs, wordrecg,
platform, trees
proc getPragmaStmt*(n: PNode, w: TSpecialWord): PNode =
case n.kind
of nkStmtList:
for i in 0 .. < n.len:
result = getPragmaStmt(n[i], w)
if result != nil: break
of nkPragma:
for i in 0 .. < n.len:
if whichPragma(n[i]) == w: return n[i]
else: nil
proc stmtsContainPragma*(n: PNode, w: TSpecialWord): bool =
result = getPragmaStmt(n, w) != nil
proc hashString*(s: string): biggestInt =
# has to be the same algorithm as system.hashString!
if CPU[targetCPU].bit == 64:
# we have to use the same bitwidth
# as the target CPU
var b = 0'i64
for i in countup(0, len(s) - 1):
b = b +% Ord(s[i])
b = b +% `shl`(b, 10)
b = b xor `shr`(b, 6)
b = b +% `shl`(b, 3)
b = b xor `shr`(b, 11)
b = b +% `shl`(b, 15)
result = b
else:
var a = 0'i32
for i in countup(0, len(s) - 1):
a = a +% Ord(s[i]).int32
a = a +% `shl`(a, 10'i32)
a = a xor `shr`(a, 6'i32)
a = a +% `shl`(a, 3'i32)
a = a xor `shr`(a, 11'i32)
a = a +% `shl`(a, 15'i32)
result = a
var
gTypeTable: array[TTypeKind, TIdTable]
gCanonicalTypes: array[TTypeKind, PType]
proc initTypeTables() =
for i in countup(low(TTypeKind), high(TTypeKind)): InitIdTable(gTypeTable[i])
proc resetCaches* =
## XXX: fix that more properly
initTypeTables()
for i in low(gCanonicalTypes)..high(gCanonicalTypes):
gCanonicalTypes[i] = nil
when false:
proc echoStats*() =
for i in countup(low(TTypeKind), high(TTypeKind)):
echo i, " ", gTypeTable[i].counter
proc GetUniqueType*(key: PType): PType =
# this is a hotspot in the compiler!
if key == nil: return
var k = key.kind
case k
of tyBool, tyChar,
tyInt..tyUInt64:
# no canonicalization for integral types, so that e.g. ``pid_t`` is
# produced instead of ``NI``.
result = key
of tyEmpty, tyNil, tyExpr, tyStmt, tyTypeDesc, tyPointer, tyString,
tyCString, tyNone, tyBigNum:
result = gCanonicalTypes[k]
if result == nil:
gCanonicalTypes[k] = key
result = key
of tyGenericParam, tyTypeClass:
InternalError("GetUniqueType")
of tyGenericInst, tyDistinct, tyOrdinal, tyMutable, tyConst, tyIter:
result = GetUniqueType(lastSon(key))
of tyArrayConstr, tyGenericInvokation, tyGenericBody,
tyOpenArray, tyArray, tySet, tyRange, tyTuple,
tyPtr, tyRef, tySequence, tyForward, tyVarargs, tyProxy, tyVar:
# tuples are quite horrible as C does not support them directly and
# tuple[string, string] is a (strange) subtype of
# tuple[nameA, nameB: string]. This bites us here, so we
# use 'sameBackendType' instead of 'sameType'.
# we have to do a slow linear search because types may need
# to be compared by their structure:
if IdTableHasObjectAsKey(gTypeTable[k], key): return key
for h in countup(0, high(gTypeTable[k].data)):
var t = PType(gTypeTable[k].data[h].key)
if t != nil and sameBackendType(t, key):
return t
IdTablePut(gTypeTable[k], key, key)
result = key
of tyObject:
if tfFromGeneric notin key.flags:
# fast case; lookup per id suffices:
result = PType(IdTableGet(gTypeTable[k], key))
if result == nil:
IdTablePut(gTypeTable[k], key, key)
result = key
else:
# ugly slow case: need to compare by structure
if IdTableHasObjectAsKey(gTypeTable[k], key): return key
for h in countup(0, high(gTypeTable[k].data)):
var t = PType(gTypeTable[k].data[h].key)
if t != nil and sameType(t, key):
return t
IdTablePut(gTypeTable[k], key, key)
result = key
of tyEnum:
result = PType(IdTableGet(gTypeTable[k], key))
if result == nil:
IdTablePut(gTypeTable[k], key, key)
result = key
of tyProc:
# tyVar is not 100% correct, but would speeds things up a little:
if key.callConv != ccClosure:
result = key
else:
# ugh, we need the canon here:
if IdTableHasObjectAsKey(gTypeTable[k], key): return key
for h in countup(0, high(gTypeTable[k].data)):
var t = PType(gTypeTable[k].data[h].key)
if t != nil and sameBackendType(t, key):
return t
IdTablePut(gTypeTable[k], key, key)
result = key
proc TableGetType*(tab: TIdTable, key: PType): PObject =
# returns nil if we need to declare this type
result = IdTableGet(tab, key)
if (result == nil) and (tab.counter > 0):
# we have to do a slow linear search because types may need
# to be compared by their structure:
for h in countup(0, high(tab.data)):
var t = PType(tab.data[h].key)
if t != nil:
if sameType(t, key):
return tab.data[h].val
proc makeSingleLineCString*(s: string): string =
result = "\""
for c in items(s):
result.add(c.toCChar)
result.add('\"')
proc makeLLVMString*(s: string): PRope =
const MaxLineLength = 64
result = nil
var res = "c\""
for i in countup(0, len(s) - 1):
if (i + 1) mod MaxLineLength == 0:
app(result, toRope(res))
setlen(res, 0)
case s[i]
of '\0'..'\x1F', '\x80'..'\xFF', '\"', '\\':
add(res, '\\')
add(res, toHex(ord(s[i]), 2))
else: add(res, s[i])
add(res, "\\00\"")
app(result, toRope(res))
InitTypeTables()