mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 17:34:43 +00:00
Make "newSha1State", "update" and "finalize" procedures from the sha1 module public in order to be possible to compute single sha1 hash of multiple separate blocks of data.
268 lines
8.2 KiB
Nim
268 lines
8.2 KiB
Nim
#
|
|
#
|
|
# The Nim Compiler
|
|
# (c) Copyright 2015 Nim Contributors
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
## **Note:** Import ``std/sha1`` to use this module
|
|
##
|
|
## SHA-1 (Secure Hash Algorithm 1) is a cryptographic hash function which
|
|
## takes an input and produces a 160-bit (20-byte) hash value known as a
|
|
## message digest.
|
|
##
|
|
## .. code-block::
|
|
## import std/sha1
|
|
##
|
|
## let accessName = secureHash("John Doe")
|
|
## assert $accessName == "AE6E4D1209F17B460503904FAD297B31E9CF6362"
|
|
##
|
|
## .. code-block::
|
|
## import std/sha1
|
|
##
|
|
## let
|
|
## a = secureHashFile("myFile.nim")
|
|
## b = parseSecureHash("10DFAEBF6BFDBC7939957068E2EFACEC4972933C")
|
|
##
|
|
## if a == b:
|
|
## echo "Files match"
|
|
##
|
|
## **See also:**
|
|
## * `base64 module<base64.html>`_ implements a base64 encoder and decoder
|
|
## * `hashes module<hashes.html>`_ for efficient computations of hash values for diverse Nim types
|
|
## * `md5 module<md5.html>`_ implements the MD5 checksum algorithm
|
|
|
|
import strutils
|
|
from endians import bigEndian32, bigEndian64
|
|
|
|
const Sha1DigestSize = 20
|
|
|
|
type
|
|
Sha1Digest = array[0 .. Sha1DigestSize-1, uint8]
|
|
SecureHash* = distinct Sha1Digest
|
|
|
|
type
|
|
Sha1State = object
|
|
count: int
|
|
state: array[5, uint32]
|
|
buf: array[64, byte]
|
|
|
|
# This implementation of the SHA1 algorithm was ported from the Chromium OS one
|
|
# with minor modifications that should not affect its functionality.
|
|
|
|
proc newSha1State*(): Sha1State =
|
|
result.count = 0
|
|
result.state[0] = 0x67452301'u32
|
|
result.state[1] = 0xEFCDAB89'u32
|
|
result.state[2] = 0x98BADCFE'u32
|
|
result.state[3] = 0x10325476'u32
|
|
result.state[4] = 0xC3D2E1F0'u32
|
|
|
|
template ror27(val: uint32): uint32 = (val shr 27) or (val shl 5)
|
|
template ror2 (val: uint32): uint32 = (val shr 2) or (val shl 30)
|
|
template ror31(val: uint32): uint32 = (val shr 31) or (val shl 1)
|
|
|
|
proc transform(ctx: var Sha1State) =
|
|
var W: array[80, uint32]
|
|
var A, B, C, D, E: uint32
|
|
var t = 0
|
|
|
|
A = ctx.state[0]
|
|
B = ctx.state[1]
|
|
C = ctx.state[2]
|
|
D = ctx.state[3]
|
|
E = ctx.state[4]
|
|
|
|
template SHA_F1(A, B, C, D, E, t: untyped) =
|
|
bigEndian32(addr W[t], addr ctx.buf[t * 4])
|
|
E += ror27(A) + W[t] + (D xor (B and (C xor D))) + 0x5A827999'u32
|
|
B = ror2(B)
|
|
|
|
while t < 15:
|
|
SHA_F1(A, B, C, D, E, t + 0)
|
|
SHA_F1(E, A, B, C, D, t + 1)
|
|
SHA_F1(D, E, A, B, C, t + 2)
|
|
SHA_F1(C, D, E, A, B, t + 3)
|
|
SHA_F1(B, C, D, E, A, t + 4)
|
|
t += 5
|
|
SHA_F1(A, B, C, D, E, t + 0) # 16th one, t == 15
|
|
|
|
template SHA_F11(A, B, C, D, E, t: untyped) =
|
|
W[t] = ror31(W[t-3] xor W[t-8] xor W[t-14] xor W[t-16])
|
|
E += ror27(A) + W[t] + (D xor (B and (C xor D))) + 0x5A827999'u32
|
|
B = ror2(B)
|
|
|
|
SHA_F11(E, A, B, C, D, t + 1)
|
|
SHA_F11(D, E, A, B, C, t + 2)
|
|
SHA_F11(C, D, E, A, B, t + 3)
|
|
SHA_F11(B, C, D, E, A, t + 4)
|
|
|
|
template SHA_F2(A, B, C, D, E, t: untyped) =
|
|
W[t] = ror31(W[t-3] xor W[t-8] xor W[t-14] xor W[t-16])
|
|
E += ror27(A) + W[t] + (B xor C xor D) + 0x6ED9EBA1'u32
|
|
B = ror2(B)
|
|
|
|
t = 20
|
|
while t < 40:
|
|
SHA_F2(A, B, C, D, E, t + 0)
|
|
SHA_F2(E, A, B, C, D, t + 1)
|
|
SHA_F2(D, E, A, B, C, t + 2)
|
|
SHA_F2(C, D, E, A, B, t + 3)
|
|
SHA_F2(B, C, D, E, A, t + 4)
|
|
t += 5
|
|
|
|
template SHA_F3(A, B, C, D, E, t: untyped) =
|
|
W[t] = ror31(W[t-3] xor W[t-8] xor W[t-14] xor W[t-16])
|
|
E += ror27(A) + W[t] + ((B and C) or (D and (B or C))) + 0x8F1BBCDC'u32
|
|
B = ror2(B)
|
|
|
|
while t < 60:
|
|
SHA_F3(A, B, C, D, E, t + 0)
|
|
SHA_F3(E, A, B, C, D, t + 1)
|
|
SHA_F3(D, E, A, B, C, t + 2)
|
|
SHA_F3(C, D, E, A, B, t + 3)
|
|
SHA_F3(B, C, D, E, A, t + 4)
|
|
t += 5
|
|
|
|
template SHA_F4(A, B, C, D, E, t: untyped) =
|
|
W[t] = ror31(W[t-3] xor W[t-8] xor W[t-14] xor W[t-16])
|
|
E += ror27(A) + W[t] + (B xor C xor D) + 0xCA62C1D6'u32
|
|
B = ror2(B)
|
|
|
|
while t < 80:
|
|
SHA_F4(A, B, C, D, E, t + 0)
|
|
SHA_F4(E, A, B, C, D, t + 1)
|
|
SHA_F4(D, E, A, B, C, t + 2)
|
|
SHA_F4(C, D, E, A, B, t + 3)
|
|
SHA_F4(B, C, D, E, A, t + 4)
|
|
t += 5
|
|
|
|
ctx.state[0] += A
|
|
ctx.state[1] += B
|
|
ctx.state[2] += C
|
|
ctx.state[3] += D
|
|
ctx.state[4] += E
|
|
|
|
proc update*(ctx: var Sha1State, data: openArray[char]) =
|
|
var i = ctx.count mod 64
|
|
var j = 0
|
|
var len = data.len
|
|
# Gather 64-bytes worth of data in order to perform a round with the leftover
|
|
# data we had stored (but not processed yet)
|
|
if len > 64 - i:
|
|
copyMem(addr ctx.buf[i], unsafeAddr data[j], 64 - i)
|
|
len -= 64 - i
|
|
j += 64 - i
|
|
transform(ctx)
|
|
# Update the index since it's used in the while loop below _and_ we want to
|
|
# keep its value if this code path isn't executed
|
|
i = 0
|
|
# Process the bulk of the payload
|
|
while len >= 64:
|
|
copyMem(addr ctx.buf[0], unsafeAddr data[j], 64)
|
|
len -= 64
|
|
j += 64
|
|
transform(ctx)
|
|
# Process the tail of the payload (len is < 64)
|
|
while len > 0:
|
|
dec len
|
|
ctx.buf[i] = byte(data[j])
|
|
inc i
|
|
inc j
|
|
if i == 64:
|
|
transform(ctx)
|
|
i = 0
|
|
ctx.count += data.len
|
|
|
|
proc finalize*(ctx: var Sha1State): Sha1Digest =
|
|
var cnt = uint64(ctx.count * 8)
|
|
# A 1 bit
|
|
update(ctx, "\x80")
|
|
# Add padding until we reach a complexive size of 64 - 8 bytes
|
|
while (ctx.count mod 64) != (64 - 8):
|
|
update(ctx, "\x00")
|
|
# The message length as a 64bit BE number completes the block
|
|
var tmp: array[8, char]
|
|
bigEndian64(addr tmp[0], addr cnt)
|
|
update(ctx, tmp)
|
|
# Turn the result into a single 160-bit number
|
|
for i in 0 ..< 5:
|
|
bigEndian32(addr ctx.state[i], addr ctx.state[i])
|
|
copyMem(addr result[0], addr ctx.state[0], Sha1DigestSize)
|
|
|
|
# Public API
|
|
|
|
proc secureHash*(str: openArray[char]): SecureHash =
|
|
## Generates a ``SecureHash`` from a ``str``.
|
|
##
|
|
## **See also:**
|
|
## * `secureHashFile proc <#secureHashFile,string>`_ for generating a ``SecureHash`` from a file
|
|
## * `parseSecureHash proc <#parseSecureHash,string>`_ for converting a string ``hash`` to ``SecureHash``
|
|
runnableExamples:
|
|
let hash = secureHash("Hello World")
|
|
assert hash == parseSecureHash("0A4D55A8D778E5022FAB701977C5D840BBC486D0")
|
|
var state = newSha1State()
|
|
state.update(str)
|
|
SecureHash(state.finalize())
|
|
|
|
proc secureHashFile*(filename: string): SecureHash =
|
|
## Generates a ``SecureHash`` from a file.
|
|
##
|
|
## **See also:**
|
|
## * `secureHash proc <#secureHash,string>`_ for generating a ``SecureHash`` from a string
|
|
## * `parseSecureHash proc <#parseSecureHash,string>`_ for converting a string ``hash`` to ``SecureHash``
|
|
secureHash(readFile(filename))
|
|
|
|
proc `$`*(self: SecureHash): string =
|
|
## Returns the string representation of a ``SecureHash``.
|
|
##
|
|
## **See also:**
|
|
## * `secureHash proc <#secureHash,string>`_ for generating a ``SecureHash`` from a string
|
|
runnableExamples:
|
|
let hash = secureHash("Hello World")
|
|
assert $hash == "0A4D55A8D778E5022FAB701977C5D840BBC486D0"
|
|
result = ""
|
|
for v in Sha1Digest(self):
|
|
result.add(toHex(int(v), 2))
|
|
|
|
proc parseSecureHash*(hash: string): SecureHash =
|
|
## Converts a string ``hash`` to ``SecureHash``.
|
|
##
|
|
## **See also:**
|
|
## * `secureHash proc <#secureHash,string>`_ for generating a ``SecureHash`` from a string
|
|
## * `secureHashFile proc <#secureHashFile,string>`_ for generating a ``SecureHash`` from a file
|
|
runnableExamples:
|
|
let
|
|
hashStr = "0A4D55A8D778E5022FAB701977C5D840BBC486D0"
|
|
secureHash = secureHash("Hello World")
|
|
assert secureHash == parseSecureHash(hashStr)
|
|
for i in 0 ..< Sha1DigestSize:
|
|
Sha1Digest(result)[i] = uint8(parseHexInt(hash[i*2] & hash[i*2 + 1]))
|
|
|
|
proc `==`*(a, b: SecureHash): bool =
|
|
## Checks if two ``SecureHash`` values are identical.
|
|
runnableExamples:
|
|
let
|
|
a = secureHash("Hello World")
|
|
b = secureHash("Goodbye World")
|
|
c = parseSecureHash("0A4D55A8D778E5022FAB701977C5D840BBC486D0")
|
|
assert a != b
|
|
assert a == c
|
|
# Not a constant-time comparison, but that's acceptable in this context
|
|
Sha1Digest(a) == Sha1Digest(b)
|
|
|
|
when isMainModule:
|
|
let hash1 = secureHash("a93tgj0p34jagp9[agjp98ajrhp9aej]")
|
|
doAssert hash1 == hash1
|
|
doAssert parseSecureHash($hash1) == hash1
|
|
|
|
template checkVector(s, exp: string) =
|
|
doAssert secureHash(s) == parseSecureHash(exp)
|
|
|
|
checkVector("", "da39a3ee5e6b4b0d3255bfef95601890afd80709")
|
|
checkVector("abc", "a9993e364706816aba3e25717850c26c9cd0d89d")
|
|
checkVector("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
|
|
"84983e441c3bd26ebaae4aa1f95129e5e54670f1")
|