Files
Nim/lib/system.nim
Andreas Rumpf 5f515410af newruntime for async (#11650)
* fixes overloading resolution for passing owned(Future[string]) to Future[T]
* WIP: make --newruntime work with .async
* memtracker: make it compile again
* make Nimble compile again
2019-07-05 01:42:17 +02:00

4526 lines
162 KiB
Nim
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#
#
# Nim's Runtime Library
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## The compiler depends on the System module to work properly and the System
## module depends on the compiler. Most of the routines listed here use
## special compiler magic.
##
## Each module implicitly imports the System module; it must not be listed
## explicitly. Because of this there cannot be a user-defined module named
## ``system``.
##
## System module
## =============
##
## .. include:: ./system_overview.rst
type
int* {.magic: Int.} ## Default integer type; bitwidth depends on
## architecture, but is always the same as a pointer.
int8* {.magic: Int8.} ## Signed 8 bit integer type.
int16* {.magic: Int16.} ## Signed 16 bit integer type.
int32* {.magic: Int32.} ## Signed 32 bit integer type.
int64* {.magic: Int64.} ## Signed 64 bit integer type.
uint* {.magic: UInt.} ## Unsigned default integer type.
uint8* {.magic: UInt8.} ## Unsigned 8 bit integer type.
uint16* {.magic: UInt16.} ## Unsigned 16 bit integer type.
uint32* {.magic: UInt32.} ## Unsigned 32 bit integer type.
uint64* {.magic: UInt64.} ## Unsigned 64 bit integer type.
float* {.magic: Float.} ## Default floating point type.
float32* {.magic: Float32.} ## 32 bit floating point type.
float64* {.magic: Float.} ## 64 bit floating point type.
# 'float64' is now an alias to 'float'; this solves many problems
type # we need to start a new type section here, so that ``0`` can have a type
bool* {.magic: Bool.} = enum ## Built-in boolean type.
false = 0, true = 1
type
char* {.magic: Char.} ## Built-in 8 bit character type (unsigned).
string* {.magic: String.} ## Built-in string type.
cstring* {.magic: Cstring.} ## Built-in cstring (*compatible string*) type.
pointer* {.magic: Pointer.} ## Built-in pointer type, use the ``addr``
## operator to get a pointer to a variable.
typedesc* {.magic: TypeDesc.} ## Meta type to denote a type description.
const
on* = true ## Alias for ``true``.
off* = false ## Alias for ``false``.
{.push warning[GcMem]: off, warning[Uninit]: off.}
{.push hints: off.}
proc `or`*(a, b: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
## Constructs an `or` meta class.
proc `and`*(a, b: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
## Constructs an `and` meta class.
proc `not`*(a: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
## Constructs an `not` meta class.
type
Ordinal* {.magic: Ordinal.}[T] ## Generic ordinal type. Includes integer,
## bool, character, and enumeration types
## as well as their subtypes. Note `uint`
## and `uint64` are not ordinal types for
## implementation reasons.
`ptr`* {.magic: Pointer.}[T] ## Built-in generic untraced pointer type.
`ref`* {.magic: Pointer.}[T] ## Built-in generic traced pointer type.
`nil` {.magic: "Nil".}
void* {.magic: "VoidType".} ## Meta type to denote the absence of any type.
auto* {.magic: Expr.} ## Meta type for automatic type determination.
any* = distinct auto ## Meta type for any supported type.
untyped* {.magic: Expr.} ## Meta type to denote an expression that
## is not resolved (for templates).
typed* {.magic: Stmt.} ## Meta type to denote an expression that
## is resolved (for templates).
SomeSignedInt* = int|int8|int16|int32|int64
## Type class matching all signed integer types.
SomeUnsignedInt* = uint|uint8|uint16|uint32|uint64
## Type class matching all unsigned integer types.
SomeInteger* = SomeSignedInt|SomeUnsignedInt
## Type class matching all integer types.
SomeOrdinal* = int|int8|int16|int32|int64|bool|enum|uint8|uint16|uint32
## Type class matching all ordinal types; however this includes enums with
## holes.
SomeFloat* = float|float32|float64
## Type class matching all floating point number types.
SomeNumber* = SomeInteger|SomeFloat
## Type class matching all number types.
proc defined*(x: untyped): bool {.magic: "Defined", noSideEffect, compileTime.}
## Special compile-time procedure that checks whether `x` is
## defined.
##
## `x` is an external symbol introduced through the compiler's
## `-d:x switch <nimc.html#compile-time-symbols>`_ to enable build time
## conditionals:
##
## .. code-block:: Nim
## when not defined(release):
## # Do here programmer friendly expensive sanity checks.
## # Put here the normal code
when defined(nimHasRunnableExamples):
proc runnableExamples*(body: untyped) {.magic: "RunnableExamples".}
## A section you should use to mark `runnable example`:idx: code with.
##
## - In normal debug and release builds code within
## a ``runnableExamples`` section is ignored.
## - The documentation generator is aware of these examples and considers them
## part of the ``##`` doc comment. As the last step of documentation
## generation the examples are put into an ``$file_example.nim`` file,
## compiled and tested. The collected examples are
## put into their own module to ensure the examples do not refer to
## non-exported symbols.
##
## Usage:
##
## .. code-block:: Nim
## proc double(x: int): int =
## ## This proc doubles a number.
## runnableExamples:
## assert double(5) == 10
## assert double(21) == 42
##
## result = 2 * x
else:
template runnableExamples*(body: untyped) =
discard
proc declared*(x: untyped): bool {.magic: "Defined", noSideEffect, compileTime.}
## Special compile-time procedure that checks whether `x` is
## declared. `x` has to be an identifier or a qualified identifier.
##
## See also:
## * `declaredInScope <#declaredInScope,untyped>`_
##
## This can be used to check whether a library provides a certain
## feature or not:
##
## .. code-block:: Nim
## when not declared(strutils.toUpper):
## # provide our own toUpper proc here, because strutils is
## # missing it.
when defined(useNimRtl):
{.deadCodeElim: on.} # dce option deprecated
proc declaredInScope*(x: untyped): bool {.
magic: "DefinedInScope", noSideEffect, compileTime.}
## Special compile-time procedure that checks whether `x` is
## declared in the current scope. `x` has to be an identifier.
proc `addr`*[T](x: var T): ptr T {.magic: "Addr", noSideEffect.} =
## Builtin `addr` operator for taking the address of a memory location.
## Cannot be overloaded.
##
## See also:
## * `unsafeAddr <#unsafeAddr,T>`_
##
## .. code-block:: Nim
## var
## buf: seq[char] = @['a','b','c']
## p = buf[1].addr
## echo p.repr # ref 0x7faa35c40059 --> 'b'
## echo p[] # b
discard
proc unsafeAddr*[T](x: T): ptr T {.magic: "Addr", noSideEffect.} =
## Builtin `addr` operator for taking the address of a memory
## location. This works even for ``let`` variables or parameters
## for better interop with C and so it is considered even more
## unsafe than the ordinary `addr <#addr,T>`_.
##
## **Note**: When you use it to write a wrapper for a C library, you should
## always check that the original library does never write to data behind the
## pointer that is returned from this procedure.
##
## Cannot be overloaded.
discard
when defined(nimNewTypedesc):
type
`static`* {.magic: "Static".}[T]
## Meta type representing all values that can be evaluated at compile-time.
##
## The type coercion ``static(x)`` can be used to force the compile-time
## evaluation of the given expression ``x``.
`type`* {.magic: "Type".}[T]
## Meta type representing the type of all type values.
##
## The coercion ``type(x)`` can be used to obtain the type of the given
## expression ``x``.
else:
proc `type`*(x: untyped): typeDesc {.magic: "TypeOf", noSideEffect, compileTime.} =
## Builtin `type` operator for accessing the type of an expression.
## Cannot be overloaded.
discard
when defined(nimHasTypeof):
type
TypeOfMode* = enum ## Possible modes of `typeof`.
typeOfProc, ## Prefer the interpretation that means `x` is a proc call.
typeOfIter ## Prefer the interpretation that means `x` is an iterator call.
proc typeof*(x: untyped; mode = typeOfIter): typeDesc {.
magic: "TypeOf", noSideEffect, compileTime.} =
## Builtin `typeof` operation for accessing the type of an expression.
## Since version 0.20.0.
discard
proc `not`*(x: bool): bool {.magic: "Not", noSideEffect.}
## Boolean not; returns true if ``x == false``.
proc `and`*(x, y: bool): bool {.magic: "And", noSideEffect.}
## Boolean ``and``; returns true if ``x == y == true`` (if both arguments
## are true).
##
## Evaluation is lazy: if ``x`` is false, ``y`` will not even be evaluated.
proc `or`*(x, y: bool): bool {.magic: "Or", noSideEffect.}
## Boolean ``or``; returns true if ``not (not x and not y)`` (if any of
## the arguments is true).
##
## Evaluation is lazy: if ``x`` is true, ``y`` will not even be evaluated.
proc `xor`*(x, y: bool): bool {.magic: "Xor", noSideEffect.}
## Boolean `exclusive or`; returns true if ``x != y`` (if either argument
## is true while the other is false).
const ThisIsSystem = true
proc internalNew*[T](a: var ref T) {.magic: "New", noSideEffect.}
## Leaked implementation detail. Do not use.
proc new*[T](a: var ref T, finalizer: proc (x: ref T) {.nimcall.}) {.
magic: "NewFinalize", noSideEffect.}
## Creates a new object of type ``T`` and returns a safe (traced)
## reference to it in ``a``.
##
## When the garbage collector frees the object, `finalizer` is called.
## The `finalizer` may not keep a reference to the
## object pointed to by `x`. The `finalizer` cannot prevent the GC from
## freeing the object.
##
## **Note**: The `finalizer` refers to the type `T`, not to the object!
## This means that for each object of type `T` the finalizer will be called!
proc reset*[T](obj: var T) {.magic: "Reset", noSideEffect.}
## Resets an object `obj` to its initial (binary zero) value.
proc wasMoved*[T](obj: var T) {.magic: "WasMoved", noSideEffect.} =
## Resets an object `obj` to its initial (binary zero) value to signify
## it was "moved" and to signify its destructor should do nothing and
## ideally be optimized away.
discard
proc move*[T](x: var T): T {.magic: "Move", noSideEffect.} =
result = x
wasMoved(x)
type
range*{.magic: "Range".}[T] ## Generic type to construct range types.
array*{.magic: "Array".}[I, T] ## Generic type to construct
## fixed-length arrays.
openArray*{.magic: "OpenArray".}[T] ## Generic type to construct open arrays.
## Open arrays are implemented as a
## pointer to the array data and a
## length field.
varargs*{.magic: "Varargs".}[T] ## Generic type to construct a varargs type.
seq*{.magic: "Seq".}[T] ## Generic type to construct sequences.
set*{.magic: "Set".}[T] ## Generic type to construct bit sets.
when defined(nimUncheckedArrayTyp):
type
UncheckedArray*{.magic: "UncheckedArray".}[T]
## Array with no bounds checking.
else:
type
UncheckedArray*{.unchecked.}[T] = array[0,T]
## Array with no bounds checking.
type sink*{.magic: "BuiltinType".}[T]
type lent*{.magic: "BuiltinType".}[T]
proc high*[T: Ordinal|enum|range](x: T): T {.magic: "High", noSideEffect.}
## Returns the highest possible value of an ordinal value `x`.
##
## As a special semantic rule, `x` may also be a type identifier.
##
## See also:
## * `low(T) <#low,T>`_
##
## .. code-block:: Nim
## high(2) # => 9223372036854775807
proc high*[T: Ordinal|enum|range](x: typeDesc[T]): T {.magic: "High", noSideEffect.}
## Returns the highest possible value of an ordinal or enum type.
##
## ``high(int)`` is Nim's way of writing `INT_MAX`:idx: or `MAX_INT`:idx:.
##
## See also:
## * `low(typedesc) <#low,typedesc[T]>`_
##
## .. code-block:: Nim
## high(int) # => 9223372036854775807
proc high*[T](x: openArray[T]): int {.magic: "High", noSideEffect.}
## Returns the highest possible index of a sequence `x`.
##
## See also:
## * `low(openArray) <#low,openArray[T]>`_
##
## .. code-block:: Nim
## var s = @[1, 2, 3, 4, 5, 6, 7]
## high(s) # => 6
## for i in low(s)..high(s):
## echo s[i]
proc high*[I, T](x: array[I, T]): I {.magic: "High", noSideEffect.}
## Returns the highest possible index of an array `x`.
##
## See also:
## * `low(array) <#low,array[I,T]>`_
##
## .. code-block:: Nim
## var arr = [1, 2, 3, 4, 5, 6, 7]
## high(arr) # => 6
## for i in low(arr)..high(arr):
## echo arr[i]
proc high*[I, T](x: typeDesc[array[I, T]]): I {.magic: "High", noSideEffect.}
## Returns the highest possible index of an array type.
##
## See also:
## * `low(typedesc[array]) <#low,typedesc[array[I,T]]>`_
##
## .. code-block:: Nim
## high(array[7, int]) # => 6
proc high*(x: cstring): int {.magic: "High", noSideEffect.}
## Returns the highest possible index of a compatible string `x`.
## This is sometimes an O(n) operation.
##
## See also:
## * `low(cstring) <#low,cstring>`_
proc high*(x: string): int {.magic: "High", noSideEffect.}
## Returns the highest possible index of a string `x`.
##
## See also:
## * `low(string) <#low,string>`_
##
## .. code-block:: Nim
## var str = "Hello world!"
## high(str) # => 11
proc low*[T: Ordinal|enum|range](x: T): T {.magic: "Low", noSideEffect.}
## Returns the lowest possible value of an ordinal value `x`. As a special
## semantic rule, `x` may also be a type identifier.
##
## See also:
## * `high(T) <#high,T>`_
##
## .. code-block:: Nim
## low(2) # => -9223372036854775808
proc low*[T: Ordinal|enum|range](x: typeDesc[T]): T {.magic: "Low", noSideEffect.}
## Returns the lowest possible value of an ordinal or enum type.
##
## ``low(int)`` is Nim's way of writing `INT_MIN`:idx: or `MIN_INT`:idx:.
##
## See also:
## * `high(typedesc) <#high,typedesc[T]>`_
##
## .. code-block:: Nim
## low(int) # => -9223372036854775808
proc low*[T](x: openArray[T]): int {.magic: "Low", noSideEffect.}
## Returns the lowest possible index of a sequence `x`.
##
## See also:
## * `high(openArray) <#high,openArray[T]>`_
##
## .. code-block:: Nim
## var s = @[1, 2, 3, 4, 5, 6, 7]
## low(s) # => 0
## for i in low(s)..high(s):
## echo s[i]
proc low*[I, T](x: array[I, T]): I {.magic: "Low", noSideEffect.}
## Returns the lowest possible index of an array `x`.
##
## See also:
## * `high(array) <#high,array[I,T]>`_
##
## .. code-block:: Nim
## var arr = [1, 2, 3, 4, 5, 6, 7]
## low(arr) # => 0
## for i in low(arr)..high(arr):
## echo arr[i]
proc low*[I, T](x: typeDesc[array[I, T]]): I {.magic: "Low", noSideEffect.}
## Returns the lowest possible index of an array type.
##
## See also:
## * `high(typedesc[array]) <#high,typedesc[array[I,T]]>`_
##
## .. code-block:: Nim
## low(array[7, int]) # => 0
proc low*(x: cstring): int {.magic: "Low", noSideEffect.}
## Returns the lowest possible index of a compatible string `x`.
##
## See also:
## * `high(cstring) <#high,cstring>`_
proc low*(x: string): int {.magic: "Low", noSideEffect.}
## Returns the lowest possible index of a string `x`.
##
## See also:
## * `high(string) <#high,string>`_
##
## .. code-block:: Nim
## var str = "Hello world!"
## low(str) # => 0
proc shallowCopy*[T](x: var T, y: T) {.noSideEffect, magic: "ShallowCopy".}
## Use this instead of `=` for a `shallow copy`:idx:.
##
## The shallow copy only changes the semantics for sequences and strings
## (and types which contain those).
##
## Be careful with the changed semantics though!
## There is a reason why the default assignment does a deep copy of sequences
## and strings.
when defined(nimArrIdx):
# :array|openarray|string|seq|cstring|tuple
proc `[]`*[I: Ordinal;T](a: T; i: I): T {.
noSideEffect, magic: "ArrGet".}
proc `[]=`*[I: Ordinal;T,S](a: T; i: I;
x: S) {.noSideEffect, magic: "ArrPut".}
proc `=`*[T](dest: var T; src: T) {.noSideEffect, magic: "Asgn".}
proc arrGet[I: Ordinal;T](a: T; i: I): T {.
noSideEffect, magic: "ArrGet".}
proc arrPut[I: Ordinal;T,S](a: T; i: I;
x: S) {.noSideEffect, magic: "ArrPut".}
proc `=destroy`*[T](x: var T) {.inline, magic: "Destroy".} =
## Generic `destructor`:idx: implementation that can be overriden.
discard
proc `=sink`*[T](x: var T; y: T) {.inline, magic: "Asgn".} =
## Generic `sink`:idx: implementation that can be overriden.
shallowCopy(x, y)
type
HSlice*[T, U] = object ## "Heterogenous" slice type.
a*: T ## The lower bound (inclusive).
b*: U ## The upper bound (inclusive).
Slice*[T] = HSlice[T, T] ## An alias for ``HSlice[T, T]``.
proc `..`*[T, U](a: T, b: U): HSlice[T, U] {.noSideEffect, inline, magic: "DotDot".} =
## Binary `slice`:idx: operator that constructs an interval ``[a, b]``, both `a`
## and `b` are inclusive.
##
## Slices can also be used in the set constructor and in ordinal case
## statements, but then they are special-cased by the compiler.
##
## .. code-block:: Nim
## let a = [10, 20, 30, 40, 50]
## echo a[2 .. 3] # @[30, 40]
result = HSlice[T, U](a: a, b: b)
proc `..`*[T](b: T): HSlice[int, T] {.noSideEffect, inline, magic: "DotDot".} =
## Unary `slice`:idx: operator that constructs an interval ``[default(int), b]``.
##
## .. code-block:: Nim
## let a = [10, 20, 30, 40, 50]
## echo a[.. 2] # @[10, 20, 30]
result = HSlice[int, T](a: 0, b: b)
when not defined(niminheritable):
{.pragma: inheritable.}
when not defined(nimunion):
{.pragma: unchecked.}
when not defined(nimHasHotCodeReloading):
{.pragma: nonReloadable.}
when defined(hotCodeReloading):
{.pragma: hcrInline, inline.}
else:
{.pragma: hcrInline.}
# comparison operators:
proc `==`*[Enum: enum](x, y: Enum): bool {.magic: "EqEnum", noSideEffect.}
## Checks whether values within the *same enum* have the same underlying value.
##
## .. code-block:: Nim
## type
## Enum1 = enum
## Field1 = 3, Field2
## Enum2 = enum
## Place1, Place2 = 3
## var
## e1 = Field1
## e2 = Enum1(Place2)
## echo (e1 == e2) # true
## echo (e1 == Place2) # raises error
proc `==`*(x, y: pointer): bool {.magic: "EqRef", noSideEffect.}
## .. code-block:: Nim
## var # this is a wildly dangerous example
## a = cast[pointer](0)
## b = cast[pointer](nil)
## echo (a == b) # true due to the special meaning of `nil`/0 as a pointer
proc `==`*(x, y: string): bool {.magic: "EqStr", noSideEffect.}
## Checks for equality between two `string` variables.
proc `==`*(x, y: char): bool {.magic: "EqCh", noSideEffect.}
## Checks for equality between two `char` variables.
proc `==`*(x, y: bool): bool {.magic: "EqB", noSideEffect.}
## Checks for equality between two `bool` variables.
proc `==`*[T](x, y: set[T]): bool {.magic: "EqSet", noSideEffect.}
## Checks for equality between two variables of type `set`.
##
## .. code-block:: Nim
## var a = {1, 2, 2, 3} # duplication in sets is ignored
## var b = {1, 2, 3}
## echo (a == b) # true
proc `==`*[T](x, y: ref T): bool {.magic: "EqRef", noSideEffect.}
## Checks that two `ref` variables refer to the same item.
proc `==`*[T](x, y: ptr T): bool {.magic: "EqRef", noSideEffect.}
## Checks that two `ptr` variables refer to the same item.
proc `==`*[T: proc](x, y: T): bool {.magic: "EqProc", noSideEffect.}
## Checks that two `proc` variables refer to the same procedure.
proc `<=`*[Enum: enum](x, y: Enum): bool {.magic: "LeEnum", noSideEffect.}
proc `<=`*(x, y: string): bool {.magic: "LeStr", noSideEffect.}
## Compares two strings and returns true if `x` is lexicographically
## before `y` (uppercase letters come before lowercase letters).
##
## .. code-block:: Nim
## let
## a = "abc"
## b = "abd"
## c = "ZZZ"
## assert a <= b
## assert a <= a
## assert (a <= c) == false
proc `<=`*(x, y: char): bool {.magic: "LeCh", noSideEffect.}
## Compares two chars and returns true if `x` is lexicographically
## before `y` (uppercase letters come before lowercase letters).
##
## .. code-block:: Nim
## let
## a = 'a'
## b = 'b'
## c = 'Z'
## assert a <= b
## assert a <= a
## assert (a <= c) == false
proc `<=`*[T](x, y: set[T]): bool {.magic: "LeSet", noSideEffect.}
## Returns true if `x` is a subset of `y`.
##
## A subset `x` has all of its members in `y` and `y` doesn't necessarily
## have more members than `x`. That is, `x` can be equal to `y`.
##
## .. code-block:: Nim
## let
## a = {3, 5}
## b = {1, 3, 5, 7}
## c = {2}
## assert a <= b
## assert a <= a
## assert (a <= c) == false
proc `<=`*(x, y: bool): bool {.magic: "LeB", noSideEffect.}
proc `<=`*[T](x, y: ref T): bool {.magic: "LePtr", noSideEffect.}
proc `<=`*(x, y: pointer): bool {.magic: "LePtr", noSideEffect.}
proc `<`*[Enum: enum](x, y: Enum): bool {.magic: "LtEnum", noSideEffect.}
proc `<`*(x, y: string): bool {.magic: "LtStr", noSideEffect.}
## Compares two strings and returns true if `x` is lexicographically
## before `y` (uppercase letters come before lowercase letters).
##
## .. code-block:: Nim
## let
## a = "abc"
## b = "abd"
## c = "ZZZ"
## assert a < b
## assert (a < a) == false
## assert (a < c) == false
proc `<`*(x, y: char): bool {.magic: "LtCh", noSideEffect.}
## Compares two chars and returns true if `x` is lexicographically
## before `y` (uppercase letters come before lowercase letters).
##
## .. code-block:: Nim
## let
## a = 'a'
## b = 'b'
## c = 'Z'
## assert a < b
## assert (a < a) == false
## assert (a < c) == false
proc `<`*[T](x, y: set[T]): bool {.magic: "LtSet", noSideEffect.}
## Returns true if `x` is a strict or proper subset of `y`.
##
## A strict or proper subset `x` has all of its members in `y` but `y` has
## more elements than `y`.
##
## .. code-block:: Nim
## let
## a = {3, 5}
## b = {1, 3, 5, 7}
## c = {2}
## assert a < b
## assert (a < a) == false
## assert (a < c) == false
proc `<`*(x, y: bool): bool {.magic: "LtB", noSideEffect.}
proc `<`*[T](x, y: ref T): bool {.magic: "LtPtr", noSideEffect.}
proc `<`*[T](x, y: ptr T): bool {.magic: "LtPtr", noSideEffect.}
proc `<`*(x, y: pointer): bool {.magic: "LtPtr", noSideEffect.}
template `!=`*(x, y: untyped): untyped =
## Unequals operator. This is a shorthand for ``not (x == y)``.
not (x == y)
template `>=`*(x, y: untyped): untyped =
## "is greater or equals" operator. This is the same as ``y <= x``.
y <= x
template `>`*(x, y: untyped): untyped =
## "is greater" operator. This is the same as ``y < x``.
y < x
const
appType* {.magic: "AppType"}: string = ""
## A string that describes the application type. Possible values:
## `"console"`, `"gui"`, `"lib"`.
include "system/inclrtl"
const NoFakeVars* = defined(nimscript) ## `true` if the backend doesn't support \
## "fake variables" like `var EBADF {.importc.}: cint`.
when not defined(JS) and not defined(gcDestructors):
type
TGenericSeq {.compilerproc, pure, inheritable.} = object
len, reserved: int
when defined(gogc):
elemSize: int
PGenericSeq {.exportc.} = ptr TGenericSeq
# len and space without counting the terminating zero:
NimStringDesc {.compilerproc, final.} = object of TGenericSeq
data: UncheckedArray[char]
NimString = ptr NimStringDesc
when not defined(JS) and not defined(nimscript):
when not defined(gcDestructors):
template space(s: PGenericSeq): int {.dirty.} =
s.reserved and not (seqShallowFlag or strlitFlag)
when not defined(nimV2):
include "system/hti"
type
byte* = uint8 ## This is an alias for ``uint8``, that is an unsigned
## integer, 8 bits wide.
Natural* = range[0..high(int)]
## is an `int` type ranging from zero to the maximum value
## of an `int`. This type is often useful for documentation and debugging.
Positive* = range[1..high(int)]
## is an `int` type ranging from one to the maximum value
## of an `int`. This type is often useful for documentation and debugging.
RootObj* {.compilerProc, inheritable.} =
object ## The root of Nim's object hierarchy.
##
## Objects should inherit from `RootObj` or one of its descendants.
## However, objects that have no ancestor are also allowed.
RootRef* = ref RootObj ## Reference to `RootObj`.
RootEffect* {.compilerproc.} = object of RootObj ## \
## Base effect class.
##
## Each effect should inherit from `RootEffect` unless you know what
## you're doing.
TimeEffect* = object of RootEffect ## Time effect.
IOEffect* = object of RootEffect ## IO effect.
ReadIOEffect* = object of IOEffect ## Effect describing a read IO operation.
WriteIOEffect* = object of IOEffect ## Effect describing a write IO operation.
ExecIOEffect* = object of IOEffect ## Effect describing an executing IO operation.
StackTraceEntry* = object ## In debug mode exceptions store the stack trace that led
## to them. A `StackTraceEntry` is a single entry of the
## stack trace.
procname*: cstring ## Name of the proc that is currently executing.
line*: int ## Line number of the proc that is currently executing.
filename*: cstring ## Filename of the proc that is currently executing.
Exception* {.compilerproc, magic: "Exception".} = object of RootObj ## \
## Base exception class.
##
## Each exception has to inherit from `Exception`. See the full `exception
## hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
parent*: ref Exception ## Parent exception (can be used as a stack).
name*: cstring ## The exception's name is its Nim identifier.
## This field is filled automatically in the
## ``raise`` statement.
msg* {.exportc: "message".}: string ## The exception's message. Not
## providing an exception message
## is bad style.
when defined(js):
trace: string
else:
trace: seq[StackTraceEntry]
when defined(nimBoostrapCsources0_19_0):
# see #10315, bootstrap with `nim cpp` from csources gave error:
# error: no member named 'raise_id' in 'Exception'
raise_id: uint # set when exception is raised
else:
raiseId: uint # set when exception is raised
up: ref Exception # used for stacking exceptions. Not exported!
Defect* = object of Exception ## \
## Abstract base class for all exceptions that Nim's runtime raises
## but that are strictly uncatchable as they can also be mapped to
## a ``quit`` / ``trap`` / ``exit`` operation.
CatchableError* = object of Exception ## \
## Abstract class for all exceptions that are catchable.
IOError* = object of CatchableError ## \
## Raised if an IO error occurred.
EOFError* = object of IOError ## \
## Raised if an IO "end of file" error occurred.
OSError* = object of CatchableError ## \
## Raised if an operating system service failed.
errorCode*: int32 ## OS-defined error code describing this error.
LibraryError* = object of OSError ## \
## Raised if a dynamic library could not be loaded.
ResourceExhaustedError* = object of CatchableError ## \
## Raised if a resource request could not be fulfilled.
ArithmeticError* = object of Defect ## \
## Raised if any kind of arithmetic error occurred.
DivByZeroError* = object of ArithmeticError ## \
## Raised for runtime integer divide-by-zero errors.
OverflowError* = object of ArithmeticError ## \
## Raised for runtime integer overflows.
##
## This happens for calculations whose results are too large to fit in the
## provided bits.
AccessViolationError* = object of Defect ## \
## Raised for invalid memory access errors
AssertionError* = object of Defect ## \
## Raised when assertion is proved wrong.
##
## Usually the result of using the `assert() template <#assert>`_.
ValueError* = object of CatchableError ## \
## Raised for string and object conversion errors.
KeyError* = object of ValueError ## \
## Raised if a key cannot be found in a table.
##
## Mostly used by the `tables <tables.html>`_ module, it can also be raised
## by other collection modules like `sets <sets.html>`_ or `strtabs
## <strtabs.html>`_.
OutOfMemError* = object of Defect ## \
## Raised for unsuccessful attempts to allocate memory.
IndexError* = object of Defect ## \
## Raised if an array index is out of bounds.
FieldError* = object of Defect ## \
## Raised if a record field is not accessible because its dicriminant's
## value does not fit.
RangeError* = object of Defect ## \
## Raised if a range check error occurred.
StackOverflowError* = object of Defect ## \
## Raised if the hardware stack used for subroutine calls overflowed.
ReraiseError* = object of Defect ## \
## Raised if there is no exception to reraise.
ObjectAssignmentError* = object of Defect ## \
## Raised if an object gets assigned to its parent's object.
ObjectConversionError* = object of Defect ## \
## Raised if an object is converted to an incompatible object type.
## You can use ``of`` operator to check if conversion will succeed.
FloatingPointError* = object of Defect ## \
## Base class for floating point exceptions.
FloatInvalidOpError* = object of FloatingPointError ## \
## Raised by invalid operations according to IEEE.
##
## Raised by ``0.0/0.0``, for example.
FloatDivByZeroError* = object of FloatingPointError ## \
## Raised by division by zero.
##
## Divisor is zero and dividend is a finite nonzero number.
FloatOverflowError* = object of FloatingPointError ## \
## Raised for overflows.
##
## The operation produced a result that exceeds the range of the exponent.
FloatUnderflowError* = object of FloatingPointError ## \
## Raised for underflows.
##
## The operation produced a result that is too small to be represented as a
## normal number.
FloatInexactError* = object of FloatingPointError ## \
## Raised for inexact results.
##
## The operation produced a result that cannot be represented with infinite
## precision -- for example: ``2.0 / 3.0, log(1.1)``
##
## **Note**: Nim currently does not detect these!
DeadThreadError* = object of Defect ## \
## Raised if it is attempted to send a message to a dead thread.
NilAccessError* = object of Defect ## \
## Raised on dereferences of ``nil`` pointers.
##
## This is only raised if the `segfaults module <segfaults.html>`_ was imported!
when defined(js) or defined(nimdoc):
type
JsRoot* = ref object of RootObj
## Root type of the JavaScript object hierarchy
proc unsafeNew*[T](a: var ref T, size: Natural) {.magic: "New", noSideEffect.}
## Creates a new object of type ``T`` and returns a safe (traced)
## reference to it in ``a``.
##
## This is **unsafe** as it allocates an object of the passed ``size``.
## This should only be used for optimization purposes when you know
## what you're doing!
##
## See also:
## * `new <#new,ref.T,proc(ref.T)>`_
proc sizeof*[T](x: T): int {.magic: "SizeOf", noSideEffect.}
## Returns the size of ``x`` in bytes.
##
## Since this is a low-level proc,
## its usage is discouraged - using `new <#new,ref.T,proc(ref.T)>`_ for
## the most cases suffices that one never needs to know ``x``'s size.
##
## As a special semantic rule, ``x`` may also be a type identifier
## (``sizeof(int)`` is valid).
##
## Limitations: If used for types that are imported from C or C++,
## sizeof should fallback to the ``sizeof`` in the C compiler. The
## result isn't available for the Nim compiler and therefore can't
## be used inside of macros.
##
## .. code-block:: Nim
## sizeof('A') # => 1
## sizeof(2) # => 8
when defined(nimHasalignOf):
proc alignof*[T](x: T): int {.magic: "AlignOf", noSideEffect.}
proc alignof*(x: typedesc): int {.magic: "AlignOf", noSideEffect.}
proc offsetOfDotExpr(typeAccess: typed): int {.magic: "OffsetOf", noSideEffect, compileTime.}
template offsetOf*[T](t: typedesc[T]; member: untyped): int =
var tmp {.noinit.}: ptr T
offsetOfDotExpr(tmp[].member)
template offsetOf*[T](value: T; member: untyped): int =
offsetOfDotExpr(value.member)
#proc offsetOf*(memberaccess: typed): int {.magic: "OffsetOf", noSideEffect.}
when defined(nimtypedescfixed):
proc sizeof*(x: typedesc): int {.magic: "SizeOf", noSideEffect.}
proc `<`*[T](x: Ordinal[T]): T {.magic: "UnaryLt", noSideEffect, deprecated.}
## **Deprecated since version 0.18.0**. For the common excluding range
## write ``0 ..< 10`` instead of ``0 .. < 10`` (look at the spacing).
## For ``<x`` write ``pred(x)``.
##
## Unary ``<`` that can be used for excluding ranges.
## Semantically this is the same as `pred <#pred,T,int>`_.
##
## .. code-block:: Nim
## for i in 0 .. <10: echo i # => 0 1 2 3 4 5 6 7 8 9
##
proc succ*[T: Ordinal](x: T, y = 1): T {.magic: "Succ", noSideEffect.}
## Returns the ``y``-th successor (default: 1) of the value ``x``.
## ``T`` has to be an `ordinal type <#Ordinal>`_.
##
## If such a value does not exist, ``OverflowError`` is raised
## or a compile time error occurs.
##
## .. code-block:: Nim
## let x = 5
## echo succ(5) # => 6
## echo succ(5, 3) # => 8
proc pred*[T: Ordinal](x: T, y = 1): T {.magic: "Pred", noSideEffect.}
## Returns the ``y``-th predecessor (default: 1) of the value ``x``.
## ``T`` has to be an `ordinal type <#Ordinal>`_.
##
## If such a value does not exist, ``OverflowError`` is raised
## or a compile time error occurs.
##
## .. code-block:: Nim
## let x = 5
## echo pred(5) # => 4
## echo pred(5, 3) # => 2
proc inc*[T: Ordinal|uint|uint64](x: var T, y = 1) {.magic: "Inc", noSideEffect.}
## Increments the ordinal ``x`` by ``y``.
##
## If such a value does not exist, ``OverflowError`` is raised or a compile
## time error occurs. This is a short notation for: ``x = succ(x, y)``.
##
## .. code-block:: Nim
## var i = 2
## inc(i) # i <- 3
## inc(i, 3) # i <- 6
proc dec*[T: Ordinal|uint|uint64](x: var T, y = 1) {.magic: "Dec", noSideEffect.}
## Decrements the ordinal ``x`` by ``y``.
##
## If such a value does not exist, ``OverflowError`` is raised or a compile
## time error occurs. This is a short notation for: ``x = pred(x, y)``.
##
## .. code-block:: Nim
## var i = 2
## dec(i) # i <- 1
## dec(i, 3) # i <- -2
proc newSeq*[T](s: var seq[T], len: Natural) {.magic: "NewSeq", noSideEffect.}
## Creates a new sequence of type ``seq[T]`` with length ``len``.
##
## This is equivalent to ``s = @[]; setlen(s, len)``, but more
## efficient since no reallocation is needed.
##
## Note that the sequence will be filled with zeroed entries.
## After the creation of the sequence you should assign entries to
## the sequence instead of adding them. Example:
##
## .. code-block:: Nim
## var inputStrings : seq[string]
## newSeq(inputStrings, 3)
## assert len(inputStrings) == 3
## inputStrings[0] = "The fourth"
## inputStrings[1] = "assignment"
## inputStrings[2] = "would crash"
## #inputStrings[3] = "out of bounds"
proc newSeq*[T](len = 0.Natural): seq[T] =
## Creates a new sequence of type ``seq[T]`` with length ``len``.
##
## Note that the sequence will be filled with zeroed entries.
## After the creation of the sequence you should assign entries to
## the sequence instead of adding them.
##
## See also:
## * `newSeqOfCap <#newSeqOfCap,Natural>`_
## * `newSeqUninitialized <#newSeqUninitialized,Natural>`_
##
## .. code-block:: Nim
## var inputStrings = newSeq[string](3)
## assert len(inputStrings) == 3
## inputStrings[0] = "The fourth"
## inputStrings[1] = "assignment"
## inputStrings[2] = "would crash"
## #inputStrings[3] = "out of bounds"
newSeq(result, len)
proc newSeqOfCap*[T](cap: Natural): seq[T] {.
magic: "NewSeqOfCap", noSideEffect.} =
## Creates a new sequence of type ``seq[T]`` with length zero and capacity
## ``cap``.
##
## .. code-block:: Nim
## var x = newSeqOfCap[int](5)
## assert len(x) == 0
## x.add(10)
## assert len(x) == 1
discard
when not defined(JS):
proc newSeqUninitialized*[T: SomeNumber](len: Natural): seq[T] =
## Creates a new sequence of type ``seq[T]`` with length ``len``.
##
## Only available for numbers types. Note that the sequence will be
## uninitialized. After the creation of the sequence you should assign
## entries to the sequence instead of adding them.
##
## .. code-block:: Nim
## var x = newSeqUninitialized[int](3)
## assert len(x) == 3
## x[0] = 10
result = newSeqOfCap[T](len)
when defined(gcDestructors):
cast[ptr int](addr result)[] = len
else:
var s = cast[PGenericSeq](result)
s.len = len
proc len*[TOpenArray: openArray|varargs](x: TOpenArray): int {.
magic: "LengthOpenArray", noSideEffect.}
## Returns the length of an openarray.
##
## .. code-block:: Nim
## var s = [1, 1, 1, 1, 1]
## echo len(s) # => 5
proc len*(x: string): int {.magic: "LengthStr", noSideEffect.}
## Returns the length of a string.
##
## .. code-block:: Nim
## var str = "Hello world!"
## echo len(str) # => 12
proc len*(x: cstring): int {.magic: "LengthStr", noSideEffect.}
## Returns the length of a compatible string. This is sometimes
## an O(n) operation.
##
## .. code-block:: Nim
## var str: cstring = "Hello world!"
## len(str) # => 12
proc len*(x: (type array)|array): int {.magic: "LengthArray", noSideEffect.}
## Returns the length of an array or an array type.
## This is roughly the same as ``high(T)-low(T)+1``.
##
## .. code-block:: Nim
## var arr = [1, 1, 1, 1, 1]
## echo len(arr) # => 5
## echo len(array[3..8, int]) # => 6
proc len*[T](x: seq[T]): int {.magic: "LengthSeq", noSideEffect.}
## Returns the length of a sequence.
##
## .. code-block:: Nim
## var s = @[1, 1, 1, 1, 1]
## echo len(s) # => 5
# set routines:
proc incl*[T](x: var set[T], y: T) {.magic: "Incl", noSideEffect.}
## Includes element ``y`` in the set ``x``.
##
## This is the same as ``x = x + {y}``, but it might be more efficient.
##
## .. code-block:: Nim
## var a = {1, 3, 5}
## a.incl(2) # a <- {1, 2, 3, 5}
## a.incl(4) # a <- {1, 2, 3, 4, 5}
template incl*[T](x: var set[T], y: set[T]) =
## Includes the set ``y`` in the set ``x``.
##
## .. code-block:: Nim
## var a = {1, 3, 5, 7}
## var b = {4, 5, 6}
## a.incl(b) # a <- {1, 3, 4, 5, 6, 7}
x = x + y
proc excl*[T](x: var set[T], y: T) {.magic: "Excl", noSideEffect.}
## Excludes element ``y`` from the set ``x``.
##
## This is the same as ``x = x - {y}``, but it might be more efficient.
##
## .. code-block:: Nim
## var b = {2, 3, 5, 6, 12, 545}
## b.excl(5) # b <- {2, 3, 6, 12, 545}
template excl*[T](x: var set[T], y: set[T]) =
## Excludes the set ``y`` from the set ``x``.
##
## .. code-block:: Nim
## var a = {1, 3, 5, 7}
## var b = {3, 4, 5}
## a.excl(b) # a <- {1, 7}
x = x - y
proc card*[T](x: set[T]): int {.magic: "Card", noSideEffect.}
## Returns the cardinality of the set ``x``, i.e. the number of elements
## in the set.
##
## .. code-block:: Nim
## var a = {1, 3, 5, 7}
## echo card(a) # => 4
proc ord*[T: Ordinal|enum](x: T): int {.magic: "Ord", noSideEffect.}
## Returns the internal `int` value of an ordinal value ``x``.
##
## .. code-block:: Nim
## echo ord('A') # => 65
## echo ord('a') # => 97
proc chr*(u: range[0..255]): char {.magic: "Chr", noSideEffect.}
## Converts an `int` in the range `0..255` to a character.
##
## .. code-block:: Nim
## echo chr(65) # => A
## echo chr(97) # => a
# --------------------------------------------------------------------------
# built-in operators
when defined(nimNoZeroExtendMagic):
proc ze*(x: int8): int =
## zero extends a smaller integer type to ``int``. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int](uint(cast[uint8](x)))
proc ze*(x: int16): int =
## zero extends a smaller integer type to ``int``. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int](uint(cast[uint16](x)))
proc ze64*(x: int8): int64 =
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int64](uint64(cast[uint8](x)))
proc ze64*(x: int16): int64 =
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int64](uint64(cast[uint16](x)))
proc ze64*(x: int32): int64 =
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int64](uint64(cast[uint32](x)))
proc ze64*(x: int): int64 =
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned. Does nothing if the size of an ``int`` is the same as ``int64``.
## (This is the case on 64 bit processors.)
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int64](uint64(cast[uint](x)))
proc toU8*(x: int): int8 =
## treats `x` as unsigned and converts it to a byte by taking the last 8 bits
## from `x`.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int8](x)
proc toU16*(x: int): int16 =
## treats `x` as unsigned and converts it to an ``int16`` by taking the last
## 16 bits from `x`.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int16](x)
proc toU32*(x: int64): int32 =
## treats `x` as unsigned and converts it to an ``int32`` by taking the
## last 32 bits from `x`.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int32](x)
elif not defined(JS):
proc ze*(x: int8): int {.magic: "Ze8ToI", noSideEffect, deprecated.}
## zero extends a smaller integer type to ``int``. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
proc ze*(x: int16): int {.magic: "Ze16ToI", noSideEffect, deprecated.}
## zero extends a smaller integer type to ``int``. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
proc ze64*(x: int8): int64 {.magic: "Ze8ToI64", noSideEffect, deprecated.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
proc ze64*(x: int16): int64 {.magic: "Ze16ToI64", noSideEffect, deprecated.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
proc ze64*(x: int32): int64 {.magic: "Ze32ToI64", noSideEffect, deprecated.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
proc ze64*(x: int): int64 {.magic: "ZeIToI64", noSideEffect, deprecated.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned. Does nothing if the size of an ``int`` is the same as ``int64``.
## (This is the case on 64 bit processors.)
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
proc toU8*(x: int): int8 {.magic: "ToU8", noSideEffect, deprecated.}
## treats `x` as unsigned and converts it to a byte by taking the last 8 bits
## from `x`.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
proc toU16*(x: int): int16 {.magic: "ToU16", noSideEffect, deprecated.}
## treats `x` as unsigned and converts it to an ``int16`` by taking the last
## 16 bits from `x`.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
proc toU32*(x: int64): int32 {.magic: "ToU32", noSideEffect, deprecated.}
## treats `x` as unsigned and converts it to an ``int32`` by taking the
## last 32 bits from `x`.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
# integer calculations:
proc `+`*(x: int): int {.magic: "UnaryPlusI", noSideEffect.}
## Unary `+` operator for an integer. Has no effect.
proc `+`*(x: int8): int8 {.magic: "UnaryPlusI", noSideEffect.}
proc `+`*(x: int16): int16 {.magic: "UnaryPlusI", noSideEffect.}
proc `+`*(x: int32): int32 {.magic: "UnaryPlusI", noSideEffect.}
proc `+`*(x: int64): int64 {.magic: "UnaryPlusI", noSideEffect.}
proc `-`*(x: int): int {.magic: "UnaryMinusI", noSideEffect.}
## Unary `-` operator for an integer. Negates `x`.
proc `-`*(x: int8): int8 {.magic: "UnaryMinusI", noSideEffect.}
proc `-`*(x: int16): int16 {.magic: "UnaryMinusI", noSideEffect.}
proc `-`*(x: int32): int32 {.magic: "UnaryMinusI", noSideEffect.}
proc `-`*(x: int64): int64 {.magic: "UnaryMinusI64", noSideEffect.}
proc `not`*(x: int): int {.magic: "BitnotI", noSideEffect.}
## Computes the `bitwise complement` of the integer `x`.
##
## .. code-block:: Nim
## var
## a = 0'u8
## b = 0'i8
## c = 1000'u16
## d = 1000'i16
##
## echo not a # => 255
## echo not b # => -1
## echo not c # => 64535
## echo not d # => -1001
proc `not`*(x: int8): int8 {.magic: "BitnotI", noSideEffect.}
proc `not`*(x: int16): int16 {.magic: "BitnotI", noSideEffect.}
proc `not`*(x: int32): int32 {.magic: "BitnotI", noSideEffect.}
when defined(nimnomagic64):
proc `not`*(x: int64): int64 {.magic: "BitnotI", noSideEffect.}
else:
proc `not`*(x: int64): int64 {.magic: "BitnotI64", noSideEffect.}
proc `+`*(x, y: int): int {.magic: "AddI", noSideEffect.}
## Binary `+` operator for an integer.
proc `+`*(x, y: int8): int8 {.magic: "AddI", noSideEffect.}
proc `+`*(x, y: int16): int16 {.magic: "AddI", noSideEffect.}
proc `+`*(x, y: int32): int32 {.magic: "AddI", noSideEffect.}
when defined(nimnomagic64):
proc `+`*(x, y: int64): int64 {.magic: "AddI", noSideEffect.}
else:
proc `+`*(x, y: int64): int64 {.magic: "AddI64", noSideEffect.}
proc `-`*(x, y: int): int {.magic: "SubI", noSideEffect.}
## Binary `-` operator for an integer.
proc `-`*(x, y: int8): int8 {.magic: "SubI", noSideEffect.}
proc `-`*(x, y: int16): int16 {.magic: "SubI", noSideEffect.}
proc `-`*(x, y: int32): int32 {.magic: "SubI", noSideEffect.}
when defined(nimnomagic64):
proc `-`*(x, y: int64): int64 {.magic: "SubI", noSideEffect.}
else:
proc `-`*(x, y: int64): int64 {.magic: "SubI64", noSideEffect.}
proc `*`*(x, y: int): int {.magic: "MulI", noSideEffect.}
## Binary `*` operator for an integer.
proc `*`*(x, y: int8): int8 {.magic: "MulI", noSideEffect.}
proc `*`*(x, y: int16): int16 {.magic: "MulI", noSideEffect.}
proc `*`*(x, y: int32): int32 {.magic: "MulI", noSideEffect.}
when defined(nimnomagic64):
proc `*`*(x, y: int64): int64 {.magic: "MulI", noSideEffect.}
else:
proc `*`*(x, y: int64): int64 {.magic: "MulI64", noSideEffect.}
proc `div`*(x, y: int): int {.magic: "DivI", noSideEffect.}
## Computes the integer division.
##
## This is roughly the same as ``trunc(x/y)``.
##
## .. code-block:: Nim
## ( 1 div 2) == 0
## ( 2 div 2) == 1
## ( 3 div 2) == 1
## ( 7 div 3) == 2
## (-7 div 3) == -2
## ( 7 div -3) == -2
## (-7 div -3) == 2
proc `div`*(x, y: int8): int8 {.magic: "DivI", noSideEffect.}
proc `div`*(x, y: int16): int16 {.magic: "DivI", noSideEffect.}
proc `div`*(x, y: int32): int32 {.magic: "DivI", noSideEffect.}
when defined(nimnomagic64):
proc `div`*(x, y: int64): int64 {.magic: "DivI", noSideEffect.}
else:
proc `div`*(x, y: int64): int64 {.magic: "DivI64", noSideEffect.}
proc `mod`*(x, y: int): int {.magic: "ModI", noSideEffect.}
## Computes the integer modulo operation (remainder).
##
## This is the same as ``x - (x div y) * y``.
##
## .. code-block:: Nim
## ( 7 mod 5) == 2
## (-7 mod 5) == -2
## ( 7 mod -5) == 2
## (-7 mod -5) == -2
proc `mod`*(x, y: int8): int8 {.magic: "ModI", noSideEffect.}
proc `mod`*(x, y: int16): int16 {.magic: "ModI", noSideEffect.}
proc `mod`*(x, y: int32): int32 {.magic: "ModI", noSideEffect.}
when defined(nimnomagic64):
proc `mod`*(x, y: int64): int64 {.magic: "ModI", noSideEffect.}
else:
proc `mod`*(x, y: int64): int64 {.magic: "ModI64", noSideEffect.}
when defined(nimNewShiftOps):
when defined(nimOldShiftRight) or not defined(nimAshr):
const shrDepMessage = "`shr` will become sign preserving."
proc `shr`*(x: int, y: SomeInteger): int {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
proc `shr`*(x: int8, y: SomeInteger): int8 {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
proc `shr`*(x: int16, y: SomeInteger): int16 {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
proc `shr`*(x: int32, y: SomeInteger): int32 {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
proc `shr`*(x: int64, y: SomeInteger): int64 {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
else:
proc `shr`*(x: int, y: SomeInteger): int {.magic: "AshrI", noSideEffect.}
## Computes the `shift right` operation of `x` and `y`, filling
## vacant bit positions with the sign bit.
##
## **Note**: `Operator precedence <manual.html#syntax-precedence>`_
## is different than in *C*.
##
## See also:
## * `ashr proc <#ashr,int,SomeInteger>`_ for arithmetic shift right
##
## .. code-block:: Nim
## 0b0001_0000'i8 shr 2 == 0b0000_0100'i8
## 0b0000_0001'i8 shr 1 == 0b0000_0000'i8
## 0b1000_0000'i8 shr 4 == 0b1111_1000'i8
## -1 shr 5 == -1
## 1 shr 5 == 0
## 16 shr 2 == 4
## -16 shr 2 == -4
proc `shr`*(x: int8, y: SomeInteger): int8 {.magic: "AshrI", noSideEffect.}
proc `shr`*(x: int16, y: SomeInteger): int16 {.magic: "AshrI", noSideEffect.}
proc `shr`*(x: int32, y: SomeInteger): int32 {.magic: "AshrI", noSideEffect.}
proc `shr`*(x: int64, y: SomeInteger): int64 {.magic: "AshrI", noSideEffect.}
proc `shl`*(x: int, y: SomeInteger): int {.magic: "ShlI", noSideEffect.}
## Computes the `shift left` operation of `x` and `y`.
##
## **Note**: `Operator precedence <manual.html#syntax-precedence>`_
## is different than in *C*.
##
## .. code-block:: Nim
## 1'i32 shl 4 == 0x0000_0010
## 1'i64 shl 4 == 0x0000_0000_0000_0010
proc `shl`*(x: int8, y: SomeInteger): int8 {.magic: "ShlI", noSideEffect.}
proc `shl`*(x: int16, y: SomeInteger): int16 {.magic: "ShlI", noSideEffect.}
proc `shl`*(x: int32, y: SomeInteger): int32 {.magic: "ShlI", noSideEffect.}
proc `shl`*(x: int64, y: SomeInteger): int64 {.magic: "ShlI", noSideEffect.}
else:
proc `shr`*(x, y: int): int {.magic: "ShrI", noSideEffect.}
proc `shr`*(x, y: int8): int8 {.magic: "ShrI", noSideEffect.}
proc `shr`*(x, y: int16): int16 {.magic: "ShrI", noSideEffect.}
proc `shr`*(x, y: int32): int32 {.magic: "ShrI", noSideEffect.}
proc `shr`*(x, y: int64): int64 {.magic: "ShrI", noSideEffect.}
proc `shl`*(x, y: int): int {.magic: "ShlI", noSideEffect.}
proc `shl`*(x, y: int8): int8 {.magic: "ShlI", noSideEffect.}
proc `shl`*(x, y: int16): int16 {.magic: "ShlI", noSideEffect.}
proc `shl`*(x, y: int32): int32 {.magic: "ShlI", noSideEffect.}
proc `shl`*(x, y: int64): int64 {.magic: "ShlI", noSideEffect.}
when defined(nimAshr):
proc ashr*(x: int, y: SomeInteger): int {.magic: "AshrI", noSideEffect.}
## Shifts right by pushing copies of the leftmost bit in from the left,
## and let the rightmost bits fall off.
##
## Note that `ashr` is not an operator so use the normal function
## call syntax for it.
##
## See also:
## * `shr proc <#shr,int,SomeInteger>`_
##
## .. code-block:: Nim
## ashr(0b0001_0000'i8, 2) == 0b0000_0100'i8
## ashr(0b1000_0000'i8, 8) == 0b1111_1111'i8
## ashr(0b1000_0000'i8, 1) == 0b1100_0000'i8
proc ashr*(x: int8, y: SomeInteger): int8 {.magic: "AshrI", noSideEffect.}
proc ashr*(x: int16, y: SomeInteger): int16 {.magic: "AshrI", noSideEffect.}
proc ashr*(x: int32, y: SomeInteger): int32 {.magic: "AshrI", noSideEffect.}
proc ashr*(x: int64, y: SomeInteger): int64 {.magic: "AshrI", noSideEffect.}
else:
# used for bootstrapping the compiler
proc ashr*[T](x: T, y: SomeInteger): T = discard
proc `and`*(x, y: int): int {.magic: "BitandI", noSideEffect.}
## Computes the `bitwise and` of numbers `x` and `y`.
##
## .. code-block:: Nim
## (0b0011 and 0b0101) == 0b0001
## (0b0111 and 0b1100) == 0b0100
proc `and`*(x, y: int8): int8 {.magic: "BitandI", noSideEffect.}
proc `and`*(x, y: int16): int16 {.magic: "BitandI", noSideEffect.}
proc `and`*(x, y: int32): int32 {.magic: "BitandI", noSideEffect.}
proc `and`*(x, y: int64): int64 {.magic: "BitandI", noSideEffect.}
proc `or`*(x, y: int): int {.magic: "BitorI", noSideEffect.}
## Computes the `bitwise or` of numbers `x` and `y`.
##
## .. code-block:: Nim
## (0b0011 or 0b0101) == 0b0111
## (0b0111 or 0b1100) == 0b1111
proc `or`*(x, y: int8): int8 {.magic: "BitorI", noSideEffect.}
proc `or`*(x, y: int16): int16 {.magic: "BitorI", noSideEffect.}
proc `or`*(x, y: int32): int32 {.magic: "BitorI", noSideEffect.}
proc `or`*(x, y: int64): int64 {.magic: "BitorI", noSideEffect.}
proc `xor`*(x, y: int): int {.magic: "BitxorI", noSideEffect.}
## Computes the `bitwise xor` of numbers `x` and `y`.
##
## .. code-block:: Nim
## (0b0011 xor 0b0101) == 0b0110
## (0b0111 xor 0b1100) == 0b1011
proc `xor`*(x, y: int8): int8 {.magic: "BitxorI", noSideEffect.}
proc `xor`*(x, y: int16): int16 {.magic: "BitxorI", noSideEffect.}
proc `xor`*(x, y: int32): int32 {.magic: "BitxorI", noSideEffect.}
proc `xor`*(x, y: int64): int64 {.magic: "BitxorI", noSideEffect.}
proc `==`*(x, y: int): bool {.magic: "EqI", noSideEffect.}
## Compares two integers for equality.
proc `==`*(x, y: int8): bool {.magic: "EqI", noSideEffect.}
proc `==`*(x, y: int16): bool {.magic: "EqI", noSideEffect.}
proc `==`*(x, y: int32): bool {.magic: "EqI", noSideEffect.}
proc `==`*(x, y: int64): bool {.magic: "EqI", noSideEffect.}
proc `<=`*(x, y: int): bool {.magic: "LeI", noSideEffect.}
## Returns true if `x` is less than or equal to `y`.
proc `<=`*(x, y: int8): bool {.magic: "LeI", noSideEffect.}
proc `<=`*(x, y: int16): bool {.magic: "LeI", noSideEffect.}
proc `<=`*(x, y: int32): bool {.magic: "LeI", noSideEffect.}
proc `<=`*(x, y: int64): bool {.magic: "LeI", noSideEffect.}
proc `<`*(x, y: int): bool {.magic: "LtI", noSideEffect.}
## Returns true if `x` is less than `y`.
proc `<`*(x, y: int8): bool {.magic: "LtI", noSideEffect.}
proc `<`*(x, y: int16): bool {.magic: "LtI", noSideEffect.}
proc `<`*(x, y: int32): bool {.magic: "LtI", noSideEffect.}
proc `<`*(x, y: int64): bool {.magic: "LtI", noSideEffect.}
type
IntMax32 = int|int8|int16|int32
proc `+%`*(x, y: IntMax32): IntMax32 {.magic: "AddU", noSideEffect.}
proc `+%`*(x, y: int64): int64 {.magic: "AddU", noSideEffect.}
## Treats `x` and `y` as unsigned and adds them.
##
## The result is truncated to fit into the result.
## This implements modulo arithmetic. No overflow errors are possible.
proc `-%`*(x, y: IntMax32): IntMax32 {.magic: "SubU", noSideEffect.}
proc `-%`*(x, y: int64): int64 {.magic: "SubU", noSideEffect.}
## Treats `x` and `y` as unsigned and subtracts them.
##
## The result is truncated to fit into the result.
## This implements modulo arithmetic. No overflow errors are possible.
proc `*%`*(x, y: IntMax32): IntMax32 {.magic: "MulU", noSideEffect.}
proc `*%`*(x, y: int64): int64 {.magic: "MulU", noSideEffect.}
## Treats `x` and `y` as unsigned and multiplies them.
##
## The result is truncated to fit into the result.
## This implements modulo arithmetic. No overflow errors are possible.
proc `/%`*(x, y: IntMax32): IntMax32 {.magic: "DivU", noSideEffect.}
proc `/%`*(x, y: int64): int64 {.magic: "DivU", noSideEffect.}
## Treats `x` and `y` as unsigned and divides them.
##
## The result is truncated to fit into the result.
## This implements modulo arithmetic. No overflow errors are possible.
proc `%%`*(x, y: IntMax32): IntMax32 {.magic: "ModU", noSideEffect.}
proc `%%`*(x, y: int64): int64 {.magic: "ModU", noSideEffect.}
## Treats `x` and `y` as unsigned and compute the modulo of `x` and `y`.
##
## The result is truncated to fit into the result.
## This implements modulo arithmetic. No overflow errors are possible.
proc `<=%`*(x, y: IntMax32): bool {.magic: "LeU", noSideEffect.}
proc `<=%`*(x, y: int64): bool {.magic: "LeU64", noSideEffect.}
## Treats `x` and `y` as unsigned and compares them.
## Returns true if ``unsigned(x) <= unsigned(y)``.
proc `<%`*(x, y: IntMax32): bool {.magic: "LtU", noSideEffect.}
proc `<%`*(x, y: int64): bool {.magic: "LtU64", noSideEffect.}
## Treats `x` and `y` as unsigned and compares them.
## Returns true if ``unsigned(x) < unsigned(y)``.
template `>=%`*(x, y: untyped): untyped = y <=% x
## Treats `x` and `y` as unsigned and compares them.
## Returns true if ``unsigned(x) >= unsigned(y)``.
template `>%`*(x, y: untyped): untyped = y <% x
## Treats `x` and `y` as unsigned and compares them.
## Returns true if ``unsigned(x) > unsigned(y)``.
# unsigned integer operations:
proc `not`*[T: SomeUnsignedInt](x: T): T {.magic: "BitnotI", noSideEffect.}
## Computes the `bitwise complement` of the integer `x`.
when defined(nimNewShiftOps):
proc `shr`*[T: SomeUnsignedInt](x: T, y: SomeInteger): T {.magic: "ShrI", noSideEffect.}
## Computes the `shift right` operation of `x` and `y`.
proc `shl`*[T: SomeUnsignedInt](x: T, y: SomeInteger): T {.magic: "ShlI", noSideEffect.}
## Computes the `shift left` operation of `x` and `y`.
else:
proc `shr`*[T: SomeUnsignedInt](x, y: T): T {.magic: "ShrI", noSideEffect.}
## Computes the `shift right` operation of `x` and `y`.
proc `shl`*[T: SomeUnsignedInt](x, y: T): T {.magic: "ShlI", noSideEffect.}
## Computes the `shift left` operation of `x` and `y`.
proc `and`*[T: SomeUnsignedInt](x, y: T): T {.magic: "BitandI", noSideEffect.}
## Computes the `bitwise and` of numbers `x` and `y`.
proc `or`*[T: SomeUnsignedInt](x, y: T): T {.magic: "BitorI", noSideEffect.}
## Computes the `bitwise or` of numbers `x` and `y`.
proc `xor`*[T: SomeUnsignedInt](x, y: T): T {.magic: "BitxorI", noSideEffect.}
## Computes the `bitwise xor` of numbers `x` and `y`.
proc `==`*[T: SomeUnsignedInt](x, y: T): bool {.magic: "EqI", noSideEffect.}
## Compares two unsigned integers for equality.
proc `+`*[T: SomeUnsignedInt](x, y: T): T {.magic: "AddU", noSideEffect.}
## Binary `+` operator for unsigned integers.
proc `-`*[T: SomeUnsignedInt](x, y: T): T {.magic: "SubU", noSideEffect.}
## Binary `-` operator for unsigned integers.
proc `*`*[T: SomeUnsignedInt](x, y: T): T {.magic: "MulU", noSideEffect.}
## Binary `*` operator for unsigned integers.
proc `div`*[T: SomeUnsignedInt](x, y: T): T {.magic: "DivU", noSideEffect.}
## Computes the integer division for unsigned integers.
## This is roughly the same as ``trunc(x/y)``.
proc `mod`*[T: SomeUnsignedInt](x, y: T): T {.magic: "ModU", noSideEffect.}
## Computes the integer modulo operation (remainder) for unsigned integers.
## This is the same as ``x - (x div y) * y``.
proc `<=`*[T: SomeUnsignedInt](x, y: T): bool {.magic: "LeU", noSideEffect.}
## Returns true if ``x <= y``.
proc `<`*[T: SomeUnsignedInt](x, y: T): bool {.magic: "LtU", noSideEffect.}
## Returns true if ``unsigned(x) < unsigned(y)``.
# floating point operations:
proc `+`*(x: float32): float32 {.magic: "UnaryPlusF64", noSideEffect.}
proc `-`*(x: float32): float32 {.magic: "UnaryMinusF64", noSideEffect.}
proc `+`*(x, y: float32): float32 {.magic: "AddF64", noSideEffect.}
proc `-`*(x, y: float32): float32 {.magic: "SubF64", noSideEffect.}
proc `*`*(x, y: float32): float32 {.magic: "MulF64", noSideEffect.}
proc `/`*(x, y: float32): float32 {.magic: "DivF64", noSideEffect.}
proc `+`*(x: float): float {.magic: "UnaryPlusF64", noSideEffect.}
proc `-`*(x: float): float {.magic: "UnaryMinusF64", noSideEffect.}
proc `+`*(x, y: float): float {.magic: "AddF64", noSideEffect.}
proc `-`*(x, y: float): float {.magic: "SubF64", noSideEffect.}
proc `*`*(x, y: float): float {.magic: "MulF64", noSideEffect.}
proc `/`*(x, y: float): float {.magic: "DivF64", noSideEffect.}
proc `==`*(x, y: float32): bool {.magic: "EqF64", noSideEffect.}
proc `<=`*(x, y: float32): bool {.magic: "LeF64", noSideEffect.}
proc `<` *(x, y: float32): bool {.magic: "LtF64", noSideEffect.}
proc `==`*(x, y: float): bool {.magic: "EqF64", noSideEffect.}
proc `<=`*(x, y: float): bool {.magic: "LeF64", noSideEffect.}
proc `<`*(x, y: float): bool {.magic: "LtF64", noSideEffect.}
# set operators
proc `*`*[T](x, y: set[T]): set[T] {.magic: "MulSet", noSideEffect.}
## This operator computes the intersection of two sets.
##
## .. code-block:: Nim
## let
## a = {1, 2, 3}
## b = {2, 3, 4}
## echo a * b # => {2, 3}
proc `+`*[T](x, y: set[T]): set[T] {.magic: "PlusSet", noSideEffect.}
## This operator computes the union of two sets.
##
## .. code-block:: Nim
## let
## a = {1, 2, 3}
## b = {2, 3, 4}
## echo a + b # => {1, 2, 3, 4}
proc `-`*[T](x, y: set[T]): set[T] {.magic: "MinusSet", noSideEffect.}
## This operator computes the diference of two sets.
##
## .. code-block:: Nim
## let
## a = {1, 2, 3}
## b = {2, 3, 4}
## echo a - b # => {1}
proc contains*[T](x: set[T], y: T): bool {.magic: "InSet", noSideEffect.}
## One should overload this proc if one wants to overload the ``in`` operator.
##
## The parameters are in reverse order! ``a in b`` is a template for
## ``contains(b, a)``.
## This is because the unification algorithm that Nim uses for overload
## resolution works from left to right.
## But for the ``in`` operator that would be the wrong direction for this
## piece of code:
##
## .. code-block:: Nim
## var s: set[range['a'..'z']] = {'a'..'c'}
## assert s.contains('c')
## assert 'b' in s
##
## If ``in`` had been declared as ``[T](elem: T, s: set[T])`` then ``T`` would
## have been bound to ``char``. But ``s`` is not compatible to type
## ``set[char]``! The solution is to bind ``T`` to ``range['a'..'z']``. This
## is achieved by reversing the parameters for ``contains``; ``in`` then
## passes its arguments in reverse order.
proc contains*[U, V, W](s: HSlice[U, V], value: W): bool {.noSideEffect, inline.} =
## Checks if `value` is within the range of `s`; returns true if
## `value >= s.a and value <= s.b`
##
## .. code-block:: Nim
## assert((1..3).contains(1) == true)
## assert((1..3).contains(2) == true)
## assert((1..3).contains(4) == false)
result = s.a <= value and value <= s.b
template `in`*(x, y: untyped): untyped {.dirty.} = contains(y, x)
## Sugar for `contains`.
##
## .. code-block:: Nim
## assert(1 in (1..3) == true)
## assert(5 in (1..3) == false)
template `notin`*(x, y: untyped): untyped {.dirty.} = not contains(y, x)
## Sugar for `not contains`.
##
## .. code-block:: Nim
## assert(1 notin (1..3) == false)
## assert(5 notin (1..3) == true)
proc `is`*[T, S](x: T, y: S): bool {.magic: "Is", noSideEffect.}
## Checks if `T` is of the same type as `S`.
##
## For a negated version, use `isnot <#isnot.t,untyped,untyped>`_.
##
## .. code-block:: Nim
## assert 42 is int
## assert @[1, 2] is seq
##
## proc test[T](a: T): int =
## when (T is int):
## return a
## else:
## return 0
##
## assert(test[int](3) == 3)
## assert(test[string]("xyz") == 0)
template `isnot`*(x, y: untyped): untyped = not (x is y)
## Negated version of `is <#is,T,S>`_. Equivalent to ``not(x is y)``.
##
## .. code-block:: Nim
## assert 42 isnot float
## assert @[1, 2] isnot enum
when (defined(nimV2) and not defined(nimscript)) or defined(nimFixedOwned):
type owned*{.magic: "BuiltinType".}[T] ## type constructor to mark a ref/ptr or a closure as `owned`.
else:
template owned*(t: typeDesc): typedesc = t
when defined(nimV2) and not defined(nimscript):
proc new*[T](a: var owned(ref T)) {.magic: "New", noSideEffect.}
## Creates a new object of type ``T`` and returns a safe (traced)
## reference to it in ``a``.
proc new*(t: typedesc): auto =
## Creates a new object of type ``T`` and returns a safe (traced)
## reference to it as result value.
##
## When ``T`` is a ref type then the resulting type will be ``T``,
## otherwise it will be ``ref T``.
when (t is ref):
var r: owned t
else:
var r: owned(ref t)
new(r)
return r
proc unown*[T](x: T): T {.magic: "Unown", noSideEffect.}
## Use the expression ``x`` ignoring its ownership attribute.
# This is only required to make 0.20 compile with the 0.19 line.
template `<//>`*(t: untyped): untyped = owned(t)
else:
template unown*(x: typed): untyped = x
proc new*[T](a: var ref T) {.magic: "New", noSideEffect.}
## Creates a new object of type ``T`` and returns a safe (traced)
## reference to it in ``a``.
proc new*(t: typedesc): auto =
## Creates a new object of type ``T`` and returns a safe (traced)
## reference to it as result value.
##
## When ``T`` is a ref type then the resulting type will be ``T``,
## otherwise it will be ``ref T``.
when (t is ref):
var r: t
else:
var r: ref t
new(r)
return r
# This is only required to make 0.20 compile with the 0.19 line.
template `<//>`*(t: untyped): untyped = t
template disarm*(x: typed) =
## Useful for ``disarming`` dangling pointers explicitly for the
## --newruntime. Regardless of whether --newruntime is used or not
## this sets the pointer or callback ``x`` to ``nil``. This is an
## experimental API!
x = nil
proc `of`*[T, S](x: typeDesc[T], y: typeDesc[S]): bool {.magic: "Of", noSideEffect.}
proc `of`*[T, S](x: T, y: typeDesc[S]): bool {.magic: "Of", noSideEffect.}
proc `of`*[T, S](x: T, y: S): bool {.magic: "Of", noSideEffect.}
## Checks if `x` has a type of `y`.
##
## .. code-block:: Nim
## assert(FloatingPointError of Exception)
## assert(DivByZeroError of Exception)
proc cmp*[T](x, y: T): int {.procvar.} =
## Generic compare proc.
##
## Returns:
## * a value less than zero, if `x < y`
## * a value greater than zero, if `x > y`
## * zero, if `x == y`
##
## This is useful for writing generic algorithms without performance loss.
## This generic implementation uses the `==` and `<` operators.
##
## .. code-block:: Nim
## import algorithm
## echo sorted(@[4, 2, 6, 5, 8, 7], cmp[int])
if x == y: return 0
if x < y: return -1
return 1
proc cmp*(x, y: string): int {.noSideEffect, procvar.}
## Compare proc for strings. More efficient than the generic version.
##
## **Note**: The precise result values depend on the used C runtime library and
## can differ between operating systems!
proc `@`* [IDX, T](a: array[IDX, T]): seq[T] {.
magic: "ArrToSeq", nosideeffect.}
## Turns an array into a sequence.
##
## This most often useful for constructing
## sequences with the array constructor: ``@[1, 2, 3]`` has the type
## ``seq[int]``, while ``[1, 2, 3]`` has the type ``array[0..2, int]``.
##
## .. code-block:: Nim
## let
## a = [1, 3, 5]
## b = "foo"
##
## echo @a # => @[1, 3, 5]
## echo @b # => @['f', 'o', 'o']
when defined(nimHasDefault):
proc default*(T: typedesc): T {.magic: "Default", noSideEffect.}
## returns the default value of the type ``T``.
proc setLen*[T](s: var seq[T], newlen: Natural) {.
magic: "SetLengthSeq", noSideEffect.}
## Sets the length of seq `s` to `newlen`. ``T`` may be any sequence type.
##
## If the current length is greater than the new length,
## ``s`` will be truncated.
##
## .. code-block:: Nim
## var x = @[10, 20]
## x.setLen(5)
## x[4] = 50
## assert x == @[10, 20, 0, 0, 50]
## x.setLen(1)
## assert x == @[10]
proc setLen*(s: var string, newlen: Natural) {.
magic: "SetLengthStr", noSideEffect.}
## Sets the length of string `s` to `newlen`.
##
## If the current length is greater than the new length,
## ``s`` will be truncated.
##
## .. code-block:: Nim
## var myS = "Nim is great!!"
## myS.setLen(3) # myS <- "Nim"
## echo myS, " is fantastic!!"
proc newString*(len: Natural): string {.
magic: "NewString", importc: "mnewString", noSideEffect.}
## Returns a new string of length ``len`` but with uninitialized
## content. One needs to fill the string character after character
## with the index operator ``s[i]``.
##
## This procedure exists only for optimization purposes;
## the same effect can be achieved with the ``&`` operator or with ``add``.
proc newStringOfCap*(cap: Natural): string {.
magic: "NewStringOfCap", importc: "rawNewString", noSideEffect.}
## Returns a new string of length ``0`` but with capacity `cap`.
##
## This procedure exists only for optimization purposes; the same effect can
## be achieved with the ``&`` operator or with ``add``.
proc `&`*(x: string, y: char): string {.
magic: "ConStrStr", noSideEffect, merge.}
## Concatenates `x` with `y`.
##
## .. code-block:: Nim
## assert("ab" & 'c' == "abc")
proc `&`*(x, y: char): string {.
magic: "ConStrStr", noSideEffect, merge.}
## Concatenates characters `x` and `y` into a string.
##
## .. code-block:: Nim
## assert('a' & 'b' == "ab")
proc `&`*(x, y: string): string {.
magic: "ConStrStr", noSideEffect, merge.}
## Concatenates strings `x` and `y`.
##
## .. code-block:: Nim
## assert("ab" & "cd" == "abcd")
proc `&`*(x: char, y: string): string {.
magic: "ConStrStr", noSideEffect, merge.}
## Concatenates `x` with `y`.
##
## .. code-block:: Nim
## assert('a' & "bc" == "abc")
# implementation note: These must all have the same magic value "ConStrStr" so
# that the merge optimization works properly.
proc add*(x: var string, y: char) {.magic: "AppendStrCh", noSideEffect.}
## Appends `y` to `x` in place.
##
## .. code-block:: Nim
## var tmp = ""
## tmp.add('a')
## tmp.add('b')
## assert(tmp == "ab")
proc add*(x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.}
## Concatenates `x` and `y` in place.
##
## .. code-block:: Nim
## var tmp = ""
## tmp.add("ab")
## tmp.add("cd")
## assert(tmp == "abcd")
type
Endianness* = enum ## Type describing the endianness of a processor.
littleEndian, bigEndian
const
isMainModule* {.magic: "IsMainModule".}: bool = false
## True only when accessed in the main module. This works thanks to
## compiler magic. It is useful to embed testing code in a module.
CompileDate* {.magic: "CompileDate"}: string = "0000-00-00"
## The date (in UTC) of compilation as a string of the form
## ``YYYY-MM-DD``. This works thanks to compiler magic.
CompileTime* {.magic: "CompileTime"}: string = "00:00:00"
## The time (in UTC) of compilation as a string of the form
## ``HH:MM:SS``. This works thanks to compiler magic.
cpuEndian* {.magic: "CpuEndian"}: Endianness = littleEndian
## The endianness of the target CPU. This is a valuable piece of
## information for low-level code only. This works thanks to compiler
## magic.
hostOS* {.magic: "HostOS".}: string = ""
## A string that describes the host operating system.
##
## Possible values:
## `"windows"`, `"macosx"`, `"linux"`, `"netbsd"`, `"freebsd"`,
## `"openbsd"`, `"solaris"`, `"aix"`, `"haiku"`, `"standalone"`.
hostCPU* {.magic: "HostCPU".}: string = ""
## A string that describes the host CPU.
##
## Possible values:
## `"i386"`, `"alpha"`, `"powerpc"`, `"powerpc64"`, `"powerpc64el"`,
## `"sparc"`, `"amd64"`, `"mips"`, `"mipsel"`, `"arm"`, `"arm64"`,
## `"mips64"`, `"mips64el"`, `"riscv64"`.
seqShallowFlag = low(int)
strlitFlag = 1 shl (sizeof(int)*8 - 2) # later versions of the codegen \
# emit this flag
# for string literals, it allows for some optimizations.
{.push profiler: off.}
let nimvm* {.magic: "Nimvm", compileTime.}: bool = false
## May be used only in `when` expression.
## It is true in Nim VM context and false otherwise.
{.pop.}
proc compileOption*(option: string): bool {.
magic: "CompileOption", noSideEffect.}
## Can be used to determine an `on|off` compile-time option. Example:
##
## .. code-block:: Nim
## when compileOption("floatchecks"):
## echo "compiled with floating point NaN and Inf checks"
proc compileOption*(option, arg: string): bool {.
magic: "CompileOptionArg", noSideEffect.}
## Can be used to determine an enum compile-time option. Example:
##
## .. code-block:: Nim
## when compileOption("opt", "size") and compileOption("gc", "boehm"):
## echo "compiled with optimization for size and uses Boehm's GC"
const
hasThreadSupport = compileOption("threads") and not defined(nimscript)
hasSharedHeap = defined(boehmgc) or defined(gogc) # don't share heaps; every thread has its own
taintMode = compileOption("taintmode")
nimEnableCovariance* = defined(nimEnableCovariance) # or true
when hasThreadSupport and defined(tcc) and not compileOption("tlsEmulation"):
# tcc doesn't support TLS
{.error: "``--tlsEmulation:on`` must be used when using threads with tcc backend".}
when defined(boehmgc):
when defined(windows):
when sizeof(int) == 8:
const boehmLib = "boehmgc64.dll"
else:
const boehmLib = "boehmgc.dll"
elif defined(macosx):
const boehmLib = "libgc.dylib"
else:
const boehmLib = "libgc.so.1"
{.pragma: boehmGC, noconv, dynlib: boehmLib.}
when taintMode:
type TaintedString* = distinct string ## A distinct string type that
## is `tainted`:idx:, see `taint mode
## <manual.html#taint-mode>`_ for
## details. It is an alias for
## ``string`` if the taint mode is not
## turned on.
proc len*(s: TaintedString): int {.borrow.}
else:
type TaintedString* = string ## A distinct string type that
## is `tainted`:idx:, see `taint mode
## <manual.html#taint-mode>`_ for
## details. It is an alias for
## ``string`` if the taint mode is not
## turned on.
when defined(profiler) and not defined(nimscript):
proc nimProfile() {.compilerProc, noinline.}
when hasThreadSupport:
{.pragma: rtlThreadVar, threadvar.}
else:
{.pragma: rtlThreadVar.}
const
QuitSuccess* = 0
## is the value that should be passed to `quit <#quit>`_ to indicate
## success.
QuitFailure* = 1
## is the value that should be passed to `quit <#quit>`_ to indicate
## failure.
when defined(nodejs) and not defined(nimscript):
var programResult* {.importc: "process.exitCode".}: int
programResult = 0
elif hostOS != "standalone":
var programResult* {.compilerproc, exportc: "nim_program_result".}: int
## deprecated, prefer ``quit``
when defined(nimdoc):
proc quit*(errorcode: int = QuitSuccess) {.magic: "Exit", noreturn.}
## Stops the program immediately with an exit code.
##
## Before stopping the program the "quit procedures" are called in the
## opposite order they were added with `addQuitProc <#addQuitProc,proc>`_.
## ``quit`` never returns and ignores any exception that may have been raised
## by the quit procedures. It does *not* call the garbage collector to free
## all the memory, unless a quit procedure calls `GC_fullCollect
## <#GC_fullCollect>`_.
##
## The proc ``quit(QuitSuccess)`` is called implicitly when your nim
## program finishes without incident for platforms where this is the
## expected behavior. A raised unhandled exception is
## equivalent to calling ``quit(QuitFailure)``.
##
## Note that this is a *runtime* call and using ``quit`` inside a macro won't
## have any compile time effect. If you need to stop the compiler inside a
## macro, use the `error <manual.html#pragmas-error-pragma>`_ or `fatal
## <manual.html#pragmas-fatal-pragma>`_ pragmas.
elif defined(genode):
include genode/env
var systemEnv {.exportc: runtimeEnvSym.}: GenodeEnvPtr
type GenodeEnv* = GenodeEnvPtr
## Opaque type representing Genode environment.
proc quit*(env: GenodeEnv; errorcode: int) {.magic: "Exit", noreturn,
importcpp: "#->parent().exit(@); Genode::sleep_forever()", header: "<base/sleep.h>".}
proc quit*(errorcode: int = QuitSuccess) =
systemEnv.quit(errorCode)
elif defined(nodejs) and not defined(nimscript):
proc quit*(errorcode: int = QuitSuccess) {.magic: "Exit",
importc: "process.exit", noreturn.}
else:
proc quit*(errorcode: int = QuitSuccess) {.
magic: "Exit", importc: "exit", header: "<stdlib.h>", noreturn.}
template sysAssert(cond: bool, msg: string) =
when defined(useSysAssert):
if not cond:
cstderr.rawWrite "[SYSASSERT] "
cstderr.rawWrite msg
cstderr.rawWrite "\n"
quit 1
const hasAlloc = (hostOS != "standalone" or not defined(nogc)) and not defined(nimscript)
when not defined(JS) and not defined(nimscript) and hostOS != "standalone":
include "system/cgprocs"
when not defined(JS) and not defined(nimscript) and hasAlloc and not defined(gcDestructors):
proc addChar(s: NimString, c: char): NimString {.compilerProc, benign.}
when not defined(gcDestructors):
proc add*[T](x: var seq[T], y: T) {.magic: "AppendSeqElem", noSideEffect.}
## Generic proc for adding a data item `y` to a container `x`.
##
## For containers that have an order, `add` means *append*. New generic
## containers should also call their adding proc `add` for consistency.
## Generic code becomes much easier to write if the Nim naming scheme is
## respected.
proc add*[T](x: var seq[T], y: openArray[T]) {.noSideEffect.} =
## Generic proc for adding a container `y` to a container `x`.
##
## For containers that have an order, `add` means *append*. New generic
## containers should also call their adding proc `add` for consistency.
## Generic code becomes much easier to write if the Nim naming scheme is
## respected.
##
## See also:
## * `& proc <#&,seq[T][T],seq[T][T]>`_
##
## .. code-block:: Nim
## var s: seq[string] = @["test2","test2"]
## s.add("test") # s <- @[test2, test2, test]
let xl = x.len
setLen(x, xl + y.len)
for i in 0..high(y): x[xl+i] = y[i]
proc del*[T](x: var seq[T], i: Natural) {.noSideEffect.} =
## Deletes the item at index `i` by putting ``x[high(x)]`` into position `i`.
##
## This is an `O(1)` operation.
##
## See also:
## * `delete <#delete,seq[T][T],Natural>`_ for preserving the order
##
## .. code-block:: Nim
## var i = @[1, 2, 3, 4, 5]
## i.del(2) # => @[1, 2, 5, 4]
let xl = x.len - 1
shallowCopy(x[i], x[xl])
setLen(x, xl)
proc delete*[T](x: var seq[T], i: Natural) {.noSideEffect.} =
## Deletes the item at index `i` by moving all ``x[i+1..]`` items by one position.
##
## This is an `O(n)` operation.
##
## See also:
## * `del <#delete,seq[T][T],Natural>`_ for O(1) operation
##
## .. code-block:: Nim
## var i = @[1, 2, 3, 4, 5]
## i.delete(2) # => @[1, 2, 4, 5]
template defaultImpl =
let xl = x.len
for j in i.int..xl-2: shallowCopy(x[j], x[j+1])
setLen(x, xl-1)
when nimvm:
defaultImpl()
else:
when defined(js):
{.emit: "`x`.splice(`i`, 1);".}
else:
defaultImpl()
proc insert*[T](x: var seq[T], item: T, i = 0.Natural) {.noSideEffect.} =
## Inserts `item` into `x` at position `i`.
##
## .. code-block:: Nim
## var i = @[1, 3, 5]
## i.insert(99, 0) # i <- @[99, 1, 3, 5]
template defaultImpl =
let xl = x.len
setLen(x, xl+1)
var j = xl-1
while j >= i:
shallowCopy(x[j+1], x[j])
dec(j)
when nimvm:
defaultImpl()
else:
when defined(js):
var it : T
{.emit: "`x` = `x` || []; `x`.splice(`i`, 0, `it`);".}
else:
defaultImpl()
x[i] = item
proc repr*[T](x: T): string {.magic: "Repr", noSideEffect.}
## Takes any Nim variable and returns its string representation.
##
## It works even for complex data graphs with cycles. This is a great
## debugging tool.
##
## .. code-block:: Nim
## var s: seq[string] = @["test2", "test2"]
## var i = @[1, 2, 3, 4, 5]
## echo repr(s) # => 0x1055eb050[0x1055ec050"test2", 0x1055ec078"test2"]
## echo repr(i) # => 0x1055ed050[1, 2, 3, 4, 5]
type
ByteAddress* = int
## is the signed integer type that should be used for converting
## pointers to integer addresses for readability.
BiggestInt* = int64
## is an alias for the biggest signed integer type the Nim compiler
## supports. Currently this is ``int64``, but it is platform-dependant
## in general.
BiggestFloat* = float64
## is an alias for the biggest floating point type the Nim
## compiler supports. Currently this is ``float64``, but it is
## platform-dependant in general.
when defined(JS):
type BiggestUInt* = uint32
## is an alias for the biggest unsigned integer type the Nim compiler
## supports. Currently this is ``uint32`` for JS and ``uint64`` for other
## targets.
else:
type BiggestUInt* = uint64
## is an alias for the biggest unsigned integer type the Nim compiler
## supports. Currently this is ``uint32`` for JS and ``uint64`` for other
## targets.
when defined(windows):
type
clong* {.importc: "long", nodecl.} = int32
## This is the same as the type ``long`` in *C*.
culong* {.importc: "unsigned long", nodecl.} = uint32
## This is the same as the type ``unsigned long`` in *C*.
else:
type
clong* {.importc: "long", nodecl.} = int
## This is the same as the type ``long`` in *C*.
culong* {.importc: "unsigned long", nodecl.} = uint
## This is the same as the type ``unsigned long`` in *C*.
type # these work for most platforms:
cchar* {.importc: "char", nodecl.} = char
## This is the same as the type ``char`` in *C*.
cschar* {.importc: "signed char", nodecl.} = int8
## This is the same as the type ``signed char`` in *C*.
cshort* {.importc: "short", nodecl.} = int16
## This is the same as the type ``short`` in *C*.
cint* {.importc: "int", nodecl.} = int32
## This is the same as the type ``int`` in *C*.
csize* {.importc: "size_t", nodecl.} = int
## This is the same as the type ``size_t`` in *C*.
clonglong* {.importc: "long long", nodecl.} = int64
## This is the same as the type ``long long`` in *C*.
cfloat* {.importc: "float", nodecl.} = float32
## This is the same as the type ``float`` in *C*.
cdouble* {.importc: "double", nodecl.} = float64
## This is the same as the type ``double`` in *C*.
clongdouble* {.importc: "long double", nodecl.} = BiggestFloat
## This is the same as the type ``long double`` in *C*.
## This C type is not supported by Nim's code generator.
cuchar* {.importc: "unsigned char", nodecl.} = char
## This is the same as the type ``unsigned char`` in *C*.
cushort* {.importc: "unsigned short", nodecl.} = uint16
## This is the same as the type ``unsigned short`` in *C*.
cuint* {.importc: "unsigned int", nodecl.} = uint32
## This is the same as the type ``unsigned int`` in *C*.
culonglong* {.importc: "unsigned long long", nodecl.} = uint64
## This is the same as the type ``unsigned long long`` in *C*.
cstringArray* {.importc: "char**", nodecl.} = ptr UncheckedArray[cstring]
## This is binary compatible to the type ``char**`` in *C*. The array's
## high value is large enough to disable bounds checking in practice.
## Use `cstringArrayToSeq proc <#cstringArrayToSeq,cstringArray,Natural>`_
## to convert it into a ``seq[string]``.
PFloat32* = ptr float32 ## An alias for ``ptr float32``.
PFloat64* = ptr float64 ## An alias for ``ptr float64``.
PInt64* = ptr int64 ## An alias for ``ptr int64``.
PInt32* = ptr int32 ## An alias for ``ptr int32``.
proc toFloat*(i: int): float {.
magic: "ToFloat", noSideEffect, importc: "toFloat".}
## Converts an integer `i` into a ``float``.
##
## If the conversion fails, `ValueError` is raised.
## However, on most platforms the conversion cannot fail.
##
## .. code-block:: Nim
## let
## a = 2
## b = 3.7
##
## echo a.toFloat + b # => 5.7
proc toBiggestFloat*(i: BiggestInt): BiggestFloat {.
magic: "ToBiggestFloat", noSideEffect, importc: "toBiggestFloat".}
## Same as `toFloat <#toFloat,int>`_ but for ``BiggestInt`` to ``BiggestFloat``.
proc toInt*(f: float): int {.
magic: "ToInt", noSideEffect, importc: "toInt".}
## Converts a floating point number `f` into an ``int``.
##
## Conversion rounds `f` half away from 0, see
## `Round half away from zero
## <https://en.wikipedia.org/wiki/Rounding#Round_half_away_from_zero>`_.
##
## Note that some floating point numbers (e.g. infinity or even 1e19)
## cannot be accurately converted.
##
## .. code-block:: Nim
## doAssert toInt(0.49) == 0
## doAssert toInt(0.5) == 1
## doAssert toInt(-0.5) == -1 # rounding is symmetrical
proc toBiggestInt*(f: BiggestFloat): BiggestInt {.
magic: "ToBiggestInt", noSideEffect, importc: "toBiggestInt".}
## Same as `toInt <#toInt,float>`_ but for ``BiggestFloat`` to ``BiggestInt``.
proc addQuitProc*(quitProc: proc() {.noconv.}) {.
importc: "atexit", header: "<stdlib.h>".}
## Adds/registers a quit procedure.
##
## Each call to ``addQuitProc`` registers another quit procedure. Up to 30
## procedures can be registered. They are executed on a last-in, first-out
## basis (that is, the last function registered is the first to be executed).
## ``addQuitProc`` raises an EOutOfIndex exception if ``quitProc`` cannot be
## registered.
# Support for addQuitProc() is done by Ansi C's facilities here.
# In case of an unhandled exeption the exit handlers should
# not be called explicitly! The user may decide to do this manually though.
when not defined(nimscript) and not defined(JS):
proc zeroMem*(p: pointer, size: Natural) {.inline, noSideEffect,
tags: [], locks: 0, raises: [].}
## Overwrites the contents of the memory at ``p`` with the value 0.
##
## Exactly ``size`` bytes will be overwritten. Like any procedure
## dealing with raw memory this is **unsafe**.
proc copyMem*(dest, source: pointer, size: Natural) {.inline, benign,
tags: [], locks: 0, raises: [].}
## Copies the contents from the memory at ``source`` to the memory
## at ``dest``.
## Exactly ``size`` bytes will be copied. The memory
## regions may not overlap. Like any procedure dealing with raw
## memory this is **unsafe**.
proc moveMem*(dest, source: pointer, size: Natural) {.inline, benign,
tags: [], locks: 0, raises: [].}
## Copies the contents from the memory at ``source`` to the memory
## at ``dest``.
##
## Exactly ``size`` bytes will be copied. The memory
## regions may overlap, ``moveMem`` handles this case appropriately
## and is thus somewhat more safe than ``copyMem``. Like any procedure
## dealing with raw memory this is still **unsafe**, though.
proc equalMem*(a, b: pointer, size: Natural): bool {.inline, noSideEffect,
tags: [], locks: 0, raises: [].}
## Compares the memory blocks ``a`` and ``b``. ``size`` bytes will
## be compared.
##
## If the blocks are equal, `true` is returned, `false`
## otherwise. Like any procedure dealing with raw memory this is
## **unsafe**.
when not defined(nimscript):
when hasAlloc:
proc alloc*(size: Natural): pointer {.noconv, rtl, tags: [], benign, raises: [].}
## Allocates a new memory block with at least ``size`` bytes.
##
## The block has to be freed with `realloc(block, 0) <#realloc,pointer,Natural>`_
## or `dealloc(block) <#dealloc,pointer>`_.
## The block is not initialized, so reading
## from it before writing to it is undefined behaviour!
##
## The allocated memory belongs to its allocating thread!
## Use `allocShared <#allocShared,Natural>`_ to allocate from a shared heap.
##
## See also:
## * `alloc0 <#alloc0,Natural>`_
proc createU*(T: typedesc, size = 1.Positive): ptr T {.inline, benign, raises: [].} =
## Allocates a new memory block with at least ``T.sizeof * size`` bytes.
##
## The block has to be freed with `resize(block, 0) <#resize,ptr.T,Natural>`_
## or `dealloc(block) <#dealloc,pointer>`_.
## The block is not initialized, so reading
## from it before writing to it is undefined behaviour!
##
## The allocated memory belongs to its allocating thread!
## Use `createSharedU <#createSharedU,typedesc>`_ to allocate from a shared heap.
##
## See also:
## * `create <#create,typedesc>`_
cast[ptr T](alloc(T.sizeof * size))
proc alloc0*(size: Natural): pointer {.noconv, rtl, tags: [], benign, raises: [].}
## Allocates a new memory block with at least ``size`` bytes.
##
## The block has to be freed with `realloc(block, 0) <#realloc,pointer,Natural>`_
## or `dealloc(block) <#dealloc,pointer>`_.
## The block is initialized with all bytes containing zero, so it is
## somewhat safer than `alloc <#alloc,Natural>`_.
##
## The allocated memory belongs to its allocating thread!
## Use `allocShared0 <#allocShared0,Natural>`_ to allocate from a shared heap.
proc create*(T: typedesc, size = 1.Positive): ptr T {.inline, benign, raises: [].} =
## Allocates a new memory block with at least ``T.sizeof * size`` bytes.
##
## The block has to be freed with `resize(block, 0) <#resize,ptr.T,Natural>`_
## or `dealloc(block) <#dealloc,pointer>`_.
## The block is initialized with all bytes containing zero, so it is
## somewhat safer than `createU <#createU,typedesc>`_.
##
## The allocated memory belongs to its allocating thread!
## Use `createShared <#createShared,typedesc>`_ to allocate from a shared heap.
cast[ptr T](alloc0(sizeof(T) * size))
proc realloc*(p: pointer, newSize: Natural): pointer {.noconv, rtl, tags: [],
benign, raises: [].}
## Grows or shrinks a given memory block.
##
## If `p` is **nil** then a new memory block is returned.
## In either way the block has at least ``newSize`` bytes.
## If ``newSize == 0`` and `p` is not **nil** ``realloc`` calls ``dealloc(p)``.
## In other cases the block has to be freed with
## `dealloc(block) <#dealloc,pointer>`_.
##
## The allocated memory belongs to its allocating thread!
## Use `reallocShared <#reallocShared,pointer,Natural>`_ to reallocate
## from a shared heap.
proc resize*[T](p: ptr T, newSize: Natural): ptr T {.inline, benign, raises: [].} =
## Grows or shrinks a given memory block.
##
## If `p` is **nil** then a new memory block is returned.
## In either way the block has at least ``T.sizeof * newSize`` bytes.
## If ``newSize == 0`` and `p` is not **nil** ``resize`` calls ``dealloc(p)``.
## In other cases the block has to be freed with ``free``.
##
## The allocated memory belongs to its allocating thread!
## Use `resizeShared <#resizeShared,ptr.T,Natural>`_ to reallocate
## from a shared heap.
cast[ptr T](realloc(p, T.sizeof * newSize))
proc dealloc*(p: pointer) {.noconv, rtl, tags: [], benign, raises: [].}
## Frees the memory allocated with ``alloc``, ``alloc0`` or
## ``realloc``.
##
## **This procedure is dangerous!**
## If one forgets to free the memory a leak occurs; if one tries to
## access freed memory (or just freeing it twice!) a core dump may happen
## or other memory may be corrupted.
##
## The freed memory must belong to its allocating thread!
## Use `deallocShared <#deallocShared,pointer>`_ to deallocate from a shared heap.
proc allocShared*(size: Natural): pointer {.noconv, rtl, benign, raises: [].}
## Allocates a new memory block on the shared heap with at
## least ``size`` bytes.
##
## The block has to be freed with
## `reallocShared(block, 0) <#reallocShared,pointer,Natural>`_
## or `deallocShared(block) <#deallocShared,pointer>`_.
##
## The block is not initialized, so reading from it before writing
## to it is undefined behaviour!
##
## See also:
## `allocShared0 <#allocShared0,Natural>`_.
proc createSharedU*(T: typedesc, size = 1.Positive): ptr T {.inline,
benign, raises: [].} =
## Allocates a new memory block on the shared heap with at
## least ``T.sizeof * size`` bytes.
##
## The block has to be freed with
## `resizeShared(block, 0) <#resizeShared,ptr.T,Natural>`_ or
## `freeShared(block) <#freeShared,ptr.T>`_.
##
## The block is not initialized, so reading from it before writing
## to it is undefined behaviour!
##
## See also:
## * `createShared <#createShared,typedesc>`_
cast[ptr T](allocShared(T.sizeof * size))
proc allocShared0*(size: Natural): pointer {.noconv, rtl, benign, raises: [].}
## Allocates a new memory block on the shared heap with at
## least ``size`` bytes.
##
## The block has to be freed with
## `reallocShared(block, 0) <#reallocShared,pointer,Natural>`_
## or `deallocShared(block) <#deallocShared,pointer>`_.
##
## The block is initialized with all bytes
## containing zero, so it is somewhat safer than
## `allocShared <#allocShared,Natural>`_.
proc createShared*(T: typedesc, size = 1.Positive): ptr T {.inline.} =
## Allocates a new memory block on the shared heap with at
## least ``T.sizeof * size`` bytes.
##
## The block has to be freed with
## `resizeShared(block, 0) <#resizeShared,ptr.T,Natural>`_ or
## `freeShared(block) <#freeShared,ptr.T>`_.
##
## The block is initialized with all bytes
## containing zero, so it is somewhat safer than
## `createSharedU <#createSharedU,typedesc>`_.
cast[ptr T](allocShared0(T.sizeof * size))
proc reallocShared*(p: pointer, newSize: Natural): pointer {.noconv, rtl,
benign, raises: [].}
## Grows or shrinks a given memory block on the heap.
##
## If `p` is **nil** then a new memory block is returned.
## In either way the block has at least ``newSize`` bytes.
## If ``newSize == 0`` and `p` is not **nil** ``reallocShared`` calls
## ``deallocShared(p)``.
## In other cases the block has to be freed with
## `deallocShared <#deallocShared,pointer>`_.
proc resizeShared*[T](p: ptr T, newSize: Natural): ptr T {.inline, raises: [].} =
## Grows or shrinks a given memory block on the heap.
##
## If `p` is **nil** then a new memory block is returned.
## In either way the block has at least ``T.sizeof * newSize`` bytes.
## If ``newSize == 0`` and `p` is not **nil** ``resizeShared`` calls
## ``freeShared(p)``.
## In other cases the block has to be freed with
## `freeShared <#freeShared,ptr.T>`_.
cast[ptr T](reallocShared(p, T.sizeof * newSize))
proc deallocShared*(p: pointer) {.noconv, rtl, benign, raises: [].}
## Frees the memory allocated with ``allocShared``, ``allocShared0`` or
## ``reallocShared``.
##
## **This procedure is dangerous!**
## If one forgets to free the memory a leak occurs; if one tries to
## access freed memory (or just freeing it twice!) a core dump may happen
## or other memory may be corrupted.
proc freeShared*[T](p: ptr T) {.inline, benign, raises: [].} =
## Frees the memory allocated with ``createShared``, ``createSharedU`` or
## ``resizeShared``.
##
## **This procedure is dangerous!**
## If one forgets to free the memory a leak occurs; if one tries to
## access freed memory (or just freeing it twice!) a core dump may happen
## or other memory may be corrupted.
deallocShared(p)
proc swap*[T](a, b: var T) {.magic: "Swap", noSideEffect.}
## Swaps the values `a` and `b`.
##
## This is often more efficient than ``tmp = a; a = b; b = tmp``.
## Particularly useful for sorting algorithms.
##
## .. code-block:: Nim
## var
## a = 5
## b = 9
##
## swap(a, b)
##
## assert a == 9
## assert b == 5
when not defined(js) and not defined(booting) and defined(nimTrMacros):
template swapRefsInArray*{swap(arr[a], arr[b])}(arr: openarray[ref], a, b: int) =
# Optimize swapping of array elements if they are refs. Default swap
# implementation will cause unsureAsgnRef to be emitted which causes
# unnecessary slow down in this case.
swap(cast[ptr pointer](addr arr[a])[], cast[ptr pointer](addr arr[b])[])
# undocumented:
proc getRefcount*[T](x: ref T): int {.importc: "getRefcount", noSideEffect,
deprecated: "the refcount was never reliable, the GC does not use traditional refcounting".}
proc getRefcount*(x: string): int {.importc: "getRefcount", noSideEffect,
deprecated: "the refcount was never reliable, the GC does not use traditional refcounting".}
proc getRefcount*[T](x: seq[T]): int {.importc: "getRefcount", noSideEffect,
deprecated: "the refcount was never reliable, the GC does not use traditional refcounting".}
##
## Retrieves the reference count of an heap-allocated object. The
## value is implementation-dependent.
const
Inf* = 0x7FF0000000000000'f64
## Contains the IEEE floating point value of positive infinity.
NegInf* = 0xFFF0000000000000'f64
## Contains the IEEE floating point value of negative infinity.
NaN* = 0x7FF7FFFFFFFFFFFF'f64
## Contains an IEEE floating point value of *Not A Number*.
##
## Note that you cannot compare a floating point value to this value
## and expect a reasonable result - use the `classify` procedure
## in the `math module <math.html>`_ for checking for NaN.
# GC interface:
when not defined(nimscript) and hasAlloc:
proc getOccupiedMem*(): int {.rtl.}
## Returns the number of bytes that are owned by the process and hold data.
proc getFreeMem*(): int {.rtl.}
## Returns the number of bytes that are owned by the process, but do not
## hold any meaningful data.
proc getTotalMem*(): int {.rtl.}
## Returns the number of bytes that are owned by the process.
when hasThreadSupport:
proc getOccupiedSharedMem*(): int {.rtl.}
## Returns the number of bytes that are owned by the process
## on the shared heap and hold data. This is only available when
## threads are enabled.
proc getFreeSharedMem*(): int {.rtl.}
## Returns the number of bytes that are owned by the
## process on the shared heap, but do not hold any meaningful data.
## This is only available when threads are enabled.
proc getTotalSharedMem*(): int {.rtl.}
## Returns the number of bytes on the shared heap that are owned by the
## process. This is only available when threads are enabled.
proc `|`*(a, b: typedesc): typedesc = discard
when sizeof(int) <= 2:
type IntLikeForCount = int|int8|int16|char|bool|uint8|enum
else:
type IntLikeForCount = int|int8|int16|int32|char|bool|uint8|uint16|enum
iterator countdown*[T](a, b: T, step: Positive = 1): T {.inline.} =
## Counts from ordinal value `a` down to `b` (inclusive) with the given
## step count.
##
## `T` may be any ordinal type, `step` may only be positive.
##
## **Note**: This fails to count to ``low(int)`` if T = int for
## efficiency reasons.
##
## .. code-block:: Nim
## for i in countdown(7, 3):
## echo i # => 7; 6; 5; 4; 3
##
## for i in countdown(9, 2, 3):
## echo i # => 9; 6; 3
when T is (uint|uint64):
var res = a
while res >= b:
yield res
if res == b: break
dec(res, step)
elif T is IntLikeForCount:
var res = int(a)
while res >= int(b):
yield T(res)
dec(res, step)
else:
var res = a
while res >= b:
yield res
dec(res, step)
when defined(nimNewRoof):
iterator countup*[T](a, b: T, step: Positive = 1): T {.inline.} =
## Counts from ordinal value `a` to `b` (inclusive) with the given
## step count.
##
## `T` may be any ordinal type, `step` may only be positive.
##
## **Note**: This fails to count to ``high(int)`` if T = int for
## efficiency reasons.
##
## .. code-block:: Nim
## for i in countup(3, 7):
## echo i # => 3; 4; 5; 6; 7
##
## for i in countup(2, 9, 3):
## echo i # => 2; 5; 8
when T is IntLikeForCount:
var res = int(a)
while res <= int(b):
yield T(res)
inc(res, step)
else:
var res: T = T(a)
while res <= b:
yield res
inc(res, step)
iterator `..`*[T](a, b: T): T {.inline.} =
## An alias for `countup(a, b, 1)`.
##
## See also:
## * [..<](#..<.i,T,T)
##
## .. code-block:: Nim
## for i in 3 .. 7:
## echo i # => 3; 4; 5; 6; 7
when T is IntLikeForCount:
var res = int(a)
while res <= int(b):
yield T(res)
inc(res)
else:
var res: T = T(a)
while res <= b:
yield res
inc(res)
template dotdotImpl(t) {.dirty.} =
iterator `..`*(a, b: t): t {.inline.} =
## A type specialized version of ``..`` for convenience so that
## mixing integer types works better.
##
## See also:
## * [..<](#..<.i,T,T)
var res = a
while res <= b:
yield res
inc(res)
dotdotImpl(int64)
dotdotImpl(int32)
dotdotImpl(uint64)
dotdotImpl(uint32)
iterator `..<`*[T](a, b: T): T {.inline.} =
var i = T(a)
while i < b:
yield i
inc i
template dotdotLessImpl(t) {.dirty.} =
iterator `..<`*(a, b: t): t {.inline.} =
## A type specialized version of ``..<`` for convenience so that
## mixing integer types works better.
var res = a
while res < b:
yield res
inc(res)
dotdotLessImpl(int64)
dotdotLessImpl(int32)
dotdotLessImpl(uint64)
dotdotLessImpl(uint32)
else:
iterator countup*[S, T](a: S, b: T, step = 1): T {.inline.} =
## Counts from ordinal value `a` up to `b` (inclusive) with the given
## step count.
##
## `S`, `T` may be any ordinal type, `step` may only be positive.
##
## **Note**: This fails to count to ``high(int)`` if T = int for
## efficiency reasons.
##
## .. code-block:: Nim
## for i in countup(3, 7):
## echo i # => 3; 4; 5; 6; 7
##
## for i in countup(2, 9, 3):
## echo i # => 2; 5; 8
when T is IntLikeForCount:
var res = int(a)
while res <= int(b):
yield T(res)
inc(res, step)
else:
var res: T = T(a)
while res <= b:
yield res
inc(res, step)
iterator `..`*[S, T](a: S, b: T): T {.inline.} =
## An alias for `countup(a, b, 1)`.
##
## See also:
## * [..<](#..<.i,T,T)
##
## .. code-block:: Nim
## for i in 3 .. 7:
## echo i # => 3; 4; 5; 6; 7
when T is IntLikeForCount:
var res = int(a)
while res <= int(b):
yield T(res)
inc(res)
else:
var res: T = T(a)
while res <= b:
yield res
inc(res)
iterator `..<`*[S, T](a: S, b: T): T {.inline.} =
var i = T(a)
while i < b:
yield i
inc i
iterator `||`*[S, T](a: S, b: T, annotation: static string = "parallel for"): T {.
inline, magic: "OmpParFor", sideEffect.} =
## OpenMP parallel loop iterator. Same as `..` but the loop may run in parallel.
##
## `annotation` is an additional annotation for the code generator to use.
## The default annotation is `parallel for`.
## Please refer to the `OpenMP Syntax Reference
## <https://www.openmp.org/wp-content/uploads/OpenMP-4.5-1115-CPP-web.pdf>`_
## for further information.
##
## Note that the compiler maps that to
## the ``#pragma omp parallel for`` construct of `OpenMP`:idx: and as
## such isn't aware of the parallelism in your code! Be careful! Later
## versions of ``||`` will get proper support by Nim's code generator
## and GC.
discard
iterator `||`*[S, T](a: S, b: T, step: Positive, annotation: static string = "parallel for"): T {.
inline, magic: "OmpParFor", sideEffect.} =
## OpenMP parallel loop iterator with stepping.
## Same as `countup` but the loop may run in parallel.
##
## `annotation` is an additional annotation for the code generator to use.
## The default annotation is `parallel for`.
## Please refer to the `OpenMP Syntax Reference
## <https://www.openmp.org/wp-content/uploads/OpenMP-4.5-1115-CPP-web.pdf>`_
## for further information.
##
## Note that the compiler maps that to
## the ``#pragma omp parallel for`` construct of `OpenMP`:idx: and as
## such isn't aware of the parallelism in your code! Be careful! Later
## versions of ``||`` will get proper support by Nim's code generator
## and GC.
discard
{.push stackTrace:off.}
proc min*(x, y: int): int {.magic: "MinI", noSideEffect.} =
if x <= y: x else: y
proc min*(x, y: int8): int8 {.magic: "MinI", noSideEffect.} =
if x <= y: x else: y
proc min*(x, y: int16): int16 {.magic: "MinI", noSideEffect.} =
if x <= y: x else: y
proc min*(x, y: int32): int32 {.magic: "MinI", noSideEffect.} =
if x <= y: x else: y
proc min*(x, y: int64): int64 {.magic: "MinI", noSideEffect.} =
## The minimum value of two integers.
if x <= y: x else: y
proc min*[T](x: openArray[T]): T =
## The minimum value of `x`. ``T`` needs to have a ``<`` operator.
result = x[0]
for i in 1..high(x):
if x[i] < result: result = x[i]
proc max*(x, y: int): int {.magic: "MaxI", noSideEffect.} =
if y <= x: x else: y
proc max*(x, y: int8): int8 {.magic: "MaxI", noSideEffect.} =
if y <= x: x else: y
proc max*(x, y: int16): int16 {.magic: "MaxI", noSideEffect.} =
if y <= x: x else: y
proc max*(x, y: int32): int32 {.magic: "MaxI", noSideEffect.} =
if y <= x: x else: y
proc max*(x, y: int64): int64 {.magic: "MaxI", noSideEffect.} =
## The maximum value of two integers.
if y <= x: x else: y
proc max*[T](x: openArray[T]): T =
## The maximum value of `x`. ``T`` needs to have a ``<`` operator.
result = x[0]
for i in 1..high(x):
if result < x[i]: result = x[i]
proc abs*(x: float): float {.magic: "AbsF64", noSideEffect.} =
if x < 0.0: -x else: x
proc min*(x, y: float): float {.magic: "MinF64", noSideEffect.} =
if x <= y: x else: y
proc max*(x, y: float): float {.magic: "MaxF64", noSideEffect.} =
if y <= x: x else: y
proc min*[T](x, y: T): T {.inline.}=
if x <= y: x else: y
proc max*[T](x, y: T): T {.inline.}=
if y <= x: x else: y
{.pop.}
proc high*(T: typedesc[SomeFloat]): T = Inf
proc low*(T: typedesc[SomeFloat]): T = NegInf
proc clamp*[T](x, a, b: T): T =
## Limits the value ``x`` within the interval [a, b].
##
## .. code-block:: Nim
## assert((1.4).clamp(0.0, 1.0) == 1.0)
## assert((0.5).clamp(0.0, 1.0) == 0.5)
if x < a: return a
if x > b: return b
return x
proc len*[U: Ordinal; V: Ordinal](x: HSlice[U, V]): int {.noSideEffect, inline.} =
## Length of ordinal slice. When x.b < x.a returns zero length.
##
## .. code-block:: Nim
## assert((0..5).len == 6)
## assert((5..2).len == 0)
result = max(0, ord(x.b) - ord(x.a) + 1)
when defined(nimNoNilSeqs2):
when not compileOption("nilseqs"):
{.pragma: nilError, error.}
else:
{.pragma: nilError.}
else:
{.pragma: nilError.}
proc isNil*[T](x: seq[T]): bool {.noSideEffect, magic: "IsNil", nilError.}
proc isNil*[T](x: ref T): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: string): bool {.noSideEffect, magic: "IsNil", nilError.}
proc isNil*[T](x: ptr T): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: pointer): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: cstring): bool {.noSideEffect, magic: "IsNil".}
proc isNil*[T: proc](x: T): bool {.noSideEffect, magic: "IsNil".}
## Fast check whether `x` is nil. This is sometimes more efficient than
## ``== nil``.
proc `==`*[I, T](x, y: array[I, T]): bool =
for f in low(x)..high(x):
if x[f] != y[f]:
return
result = true
proc `==`*[T](x, y: openarray[T]): bool =
if x.len != y.len:
return false
for f in low(x)..high(x):
if x[f] != y[f]:
return false
result = true
proc `@`*[T](a: openArray[T]): seq[T] =
## Turns an *openarray* into a sequence.
##
## This is not as efficient as turning a fixed length array into a sequence
## as it always copies every element of `a`.
newSeq(result, a.len)
for i in 0..a.len-1: result[i] = a[i]
proc `&`*[T](x, y: seq[T]): seq[T] {.noSideEffect.} =
## Concatenates two sequences.
##
## Requires copying of the sequences.
##
## See also:
## * `add(var seq[T], openArray[T]) <#add,seq[T][T],openArray[T]>`_
##
## .. code-block:: Nim
## assert(@[1, 2, 3, 4] & @[5, 6] == @[1, 2, 3, 4, 5, 6])
newSeq(result, x.len + y.len)
for i in 0..x.len-1:
result[i] = x[i]
for i in 0..y.len-1:
result[i+x.len] = y[i]
proc `&`*[T](x: seq[T], y: T): seq[T] {.noSideEffect.} =
## Appends element y to the end of the sequence.
##
## Requires copying of the sequence.
##
## See also:
## * `add(var seq[T], T) <#add,seq[T][T],T>`_
##
## .. code-block:: Nim
## assert(@[1, 2, 3] & 4 == @[1, 2, 3, 4])
newSeq(result, x.len + 1)
for i in 0..x.len-1:
result[i] = x[i]
result[x.len] = y
proc `&`*[T](x: T, y: seq[T]): seq[T] {.noSideEffect.} =
## Prepends the element x to the beginning of the sequence.
##
## Requires copying of the sequence.
##
## .. code-block:: Nim
## assert(1 & @[2, 3, 4] == @[1, 2, 3, 4])
newSeq(result, y.len + 1)
result[0] = x
for i in 0..y.len-1:
result[i+1] = y[i]
proc `==`*[T](x, y: seq[T]): bool {.noSideEffect.} =
## Generic equals operator for sequences: relies on a equals operator for
## the element type `T`.
when nimvm:
when not defined(nimNoNil):
if x.isNil and y.isNil:
return true
else:
if x.len == 0 and y.len == 0:
return true
else:
when not defined(JS):
proc seqToPtr[T](x: seq[T]): pointer {.inline, nosideeffect.} =
when defined(gcDestructors):
result = cast[NimSeqV2[T]](x).p
else:
result = cast[pointer](x)
if seqToPtr(x) == seqToPtr(y):
return true
else:
var sameObject = false
asm """`sameObject` = `x` === `y`"""
if sameObject: return true
when not defined(nimNoNil):
if x.isNil or y.isNil:
return false
if x.len != y.len:
return false
for i in 0..x.len-1:
if x[i] != y[i]:
return false
return true
proc astToStr*[T](x: T): string {.magic: "AstToStr", noSideEffect.}
## Converts the AST of `x` into a string representation. This is very useful
## for debugging.
proc instantiationInfo*(index = -1, fullPaths = false): tuple[
filename: string, line: int, column: int] {.magic: "InstantiationInfo", noSideEffect.}
## Provides access to the compiler's instantiation stack line information
## of a template.
##
## While similar to the `caller info`:idx: of other languages, it is determined
## at compile time.
##
## This proc is mostly useful for meta programming (eg. ``assert`` template)
## to retrieve information about the current filename and line number.
## Example:
##
## .. code-block:: nim
## import strutils
##
## template testException(exception, code: untyped): typed =
## try:
## let pos = instantiationInfo()
## discard(code)
## echo "Test failure at $1:$2 with '$3'" % [pos.filename,
## $pos.line, astToStr(code)]
## assert false, "A test expecting failure succeeded?"
## except exception:
## discard
##
## proc tester(pos: int): int =
## let
## a = @[1, 2, 3]
## result = a[pos]
##
## when isMainModule:
## testException(IndexError, tester(30))
## testException(IndexError, tester(1))
## # --> Test failure at example.nim:20 with 'tester(1)'
proc compiles*(x: untyped): bool {.magic: "Compiles", noSideEffect, compileTime.} =
## Special compile-time procedure that checks whether `x` can be compiled
## without any semantic error.
## This can be used to check whether a type supports some operation:
##
## .. code-block:: Nim
## when compiles(3 + 4):
## echo "'+' for integers is available"
discard
when not defined(js) and not defined(nimscript):
import "system/ansi_c"
import "system/memory"
when not defined(js):
{.push stackTrace:off.}
when hasThreadSupport and hostOS != "standalone":
const insideRLocksModule = false
include "system/syslocks"
include "system/threadlocalstorage"
when defined(nimV2):
type
TNimNode {.compilerProc.} = object # to keep the code generator simple
DestructorProc = proc (p: pointer) {.nimcall, benign.}
TNimType {.compilerProc.} = object
destructor: pointer
size: int
name: cstring
PNimType = ptr TNimType
when defined(gcDestructors) and not defined(nimscript):
include "core/strs"
include "core/seqs"
{.pop.}
when not declared(sysFatal):
include "system/fatal"
when defined(nimV2):
include core/runtime_v2
import system/assertions
export assertions
import system/iterators
export iterators
proc find*[T, S](a: T, item: S): int {.inline.}=
## Returns the first index of `item` in `a` or -1 if not found. This requires
## appropriate `items` and `==` operations to work.
for i in items(a):
if i == item: return
inc(result)
result = -1
proc contains*[T](a: openArray[T], item: T): bool {.inline.}=
## Returns true if `item` is in `a` or false if not found. This is a shortcut
## for ``find(a, item) >= 0``.
##
## This allows the `in` operator: `a.contains(item)` is the same as
## `item in a`.
##
## .. code-block:: Nim
## var a = @[1, 3, 5]
## assert a.contains(5)
## assert 3 in a
## assert 99 notin a
return find(a, item) >= 0
proc pop*[T](s: var seq[T]): T {.inline, noSideEffect.} =
## Returns the last item of `s` and decreases ``s.len`` by one. This treats
## `s` as a stack and implements the common *pop* operation.
runnableExamples:
var a = @[1, 3, 5, 7]
let b = pop(a)
assert b == 7
assert a == @[1, 3, 5]
var L = s.len-1
when defined(nimV2):
result = move s[L]
shrink(s, L)
else:
result = s[L]
setLen(s, L)
proc `==`*[T: tuple|object](x, y: T): bool =
## Generic ``==`` operator for tuples that is lifted from the components.
## of `x` and `y`.
for a, b in fields(x, y):
if a != b: return false
return true
proc `<=`*[T: tuple](x, y: T): bool =
## Generic lexicographic ``<=`` operator for tuples that is lifted from the
## components of `x` and `y`. This implementation uses `cmp`.
for a, b in fields(x, y):
var c = cmp(a, b)
if c < 0: return true
if c > 0: return false
return true
proc `<`*[T: tuple](x, y: T): bool =
## Generic lexicographic ``<`` operator for tuples that is lifted from the
## components of `x` and `y`. This implementation uses `cmp`.
for a, b in fields(x, y):
var c = cmp(a, b)
if c < 0: return true
if c > 0: return false
return false
# ----------------- GC interface ---------------------------------------------
when not defined(nimscript) and hasAlloc:
type
GC_Strategy* = enum ## The strategy the GC should use for the application.
gcThroughput, ## optimize for throughput
gcResponsiveness, ## optimize for responsiveness (default)
gcOptimizeTime, ## optimize for speed
gcOptimizeSpace ## optimize for memory footprint
when not defined(JS) and not defined(nimV2):
proc GC_disable*() {.rtl, inl, benign.}
## Disables the GC. If called `n` times, `n` calls to `GC_enable`
## are needed to reactivate the GC.
##
## Note that in most circumstances one should only disable
## the mark and sweep phase with
## `GC_disableMarkAndSweep <#GC_disableMarkAndSweep>`_.
proc GC_enable*() {.rtl, inl, benign.}
## Enables the GC again.
proc GC_fullCollect*() {.rtl, benign.}
## Forces a full garbage collection pass.
## Ordinary code does not need to call this (and should not).
proc GC_enableMarkAndSweep*() {.rtl, benign.}
proc GC_disableMarkAndSweep*() {.rtl, benign.}
## The current implementation uses a reference counting garbage collector
## with a seldomly run mark and sweep phase to free cycles. The mark and
## sweep phase may take a long time and is not needed if the application
## does not create cycles. Thus the mark and sweep phase can be deactivated
## and activated separately from the rest of the GC.
proc GC_getStatistics*(): string {.rtl, benign.}
## Returns an informative string about the GC's activity. This may be useful
## for tweaking.
proc GC_ref*[T](x: ref T) {.magic: "GCref", benign.}
proc GC_ref*[T](x: seq[T]) {.magic: "GCref", benign.}
proc GC_ref*(x: string) {.magic: "GCref", benign.}
## Marks the object `x` as referenced, so that it will not be freed until
## it is unmarked via `GC_unref`.
## If called n-times for the same object `x`,
## n calls to `GC_unref` are needed to unmark `x`.
proc GC_unref*[T](x: ref T) {.magic: "GCunref", benign.}
proc GC_unref*[T](x: seq[T]) {.magic: "GCunref", benign.}
proc GC_unref*(x: string) {.magic: "GCunref", benign.}
## See the documentation of `GC_ref <#GC_ref,string>`_.
when not defined(JS) and not defined(nimscript) and hasAlloc:
proc nimGC_setStackBottom*(theStackBottom: pointer) {.compilerRtl, noinline, benign.}
## Expands operating GC stack range to `theStackBottom`. Does nothing
## if current stack bottom is already lower than `theStackBottom`.
else:
template GC_disable* =
{.warning: "GC_disable is a no-op in JavaScript".}
template GC_enable* =
{.warning: "GC_enable is a no-op in JavaScript".}
template GC_fullCollect* =
{.warning: "GC_fullCollect is a no-op in JavaScript".}
template GC_setStrategy* =
{.warning: "GC_setStrategy is a no-op in JavaScript".}
template GC_enableMarkAndSweep* =
{.warning: "GC_enableMarkAndSweep is a no-op in JavaScript".}
template GC_disableMarkAndSweep* =
{.warning: "GC_disableMarkAndSweep is a no-op in JavaScript".}
template GC_ref*[T](x: ref T) =
{.warning: "GC_ref is a no-op in JavaScript".}
template GC_ref*[T](x: seq[T]) =
{.warning: "GC_ref is a no-op in JavaScript".}
template GC_ref*(x: string) =
{.warning: "GC_ref is a no-op in JavaScript".}
template GC_unref*[T](x: ref T) =
{.warning: "GC_unref is a no-op in JavaScript".}
template GC_unref*[T](x: seq[T]) =
{.warning: "GC_unref is a no-op in JavaScript".}
template GC_unref*(x: string) =
{.warning: "GC_unref is a no-op in JavaScript".}
template GC_getStatistics*(): string =
{.warning: "GC_getStatistics is a no-op in JavaScript".}
""
template accumulateResult*(iter: untyped) {.deprecated: "use `sequtils.toSeq` instead (more hygienic, sometimes more efficient)".} =
## **Deprecated since v0.19.2:** use `sequtils.toSeq
## <sequtils.html#toSeq.t,untyped>`_ instead.
##
## Helps to convert an iterator to a proc.
## `sequtils.toSeq <sequtils.html#toSeq.t,untyped>`_ is more hygienic and efficient.
##
result = @[]
for x in iter: add(result, x)
# we have to compute this here before turning it off in except.nim anyway ...
const NimStackTrace = compileOption("stacktrace")
template coroutinesSupportedPlatform(): bool =
when defined(sparc) or defined(ELATE) or compileOption("gc", "v2") or
defined(boehmgc) or defined(gogc) or defined(nogc) or defined(gcRegions) or
defined(gcMarkAndSweep):
false
else:
true
when defined(nimCoroutines):
# Explicit opt-in.
when not coroutinesSupportedPlatform():
{.error: "Coroutines are not supported on this architecture and/or garbage collector.".}
const nimCoroutines* = true
elif defined(noNimCoroutines):
# Explicit opt-out.
const nimCoroutines* = false
else:
# Autodetect coroutine support.
const nimCoroutines* = false
{.push checks: off.}
# obviously we cannot generate checking operations here :-)
# because it would yield into an endless recursion
# however, stack-traces are available for most parts
# of the code
var
globalRaiseHook*: proc (e: ref Exception): bool {.nimcall, benign.}
## With this hook you can influence exception handling on a global level.
## If not nil, every 'raise' statement ends up calling this hook.
##
## **Warning**: Ordinary application code should never set this hook!
## You better know what you do when setting this.
##
## If ``globalRaiseHook`` returns false, the exception is caught and does
## not propagate further through the call stack.
localRaiseHook* {.threadvar.}: proc (e: ref Exception): bool {.nimcall, benign.}
## With this hook you can influence exception handling on a
## thread local level.
## If not nil, every 'raise' statement ends up calling this hook.
##
## **Warning**: Ordinary application code should never set this hook!
## You better know what you do when setting this.
##
## If ``localRaiseHook`` returns false, the exception
## is caught and does not propagate further through the call stack.
outOfMemHook*: proc () {.nimcall, tags: [], benign, raises: [].}
## Set this variable to provide a procedure that should be called
## in case of an `out of memory`:idx: event. The standard handler
## writes an error message and terminates the program.
##
## `outOfMemHook` can be used to raise an exception in case of OOM like so:
##
## .. code-block:: Nim
##
## var gOutOfMem: ref EOutOfMemory
## new(gOutOfMem) # need to be allocated *before* OOM really happened!
## gOutOfMem.msg = "out of memory"
##
## proc handleOOM() =
## raise gOutOfMem
##
## system.outOfMemHook = handleOOM
##
## If the handler does not raise an exception, ordinary control flow
## continues and the program is terminated.
type
PFrame* = ptr TFrame ## Represents a runtime frame of the call stack;
## part of the debugger API.
TFrame* {.importc, nodecl, final.} = object ## The frame itself.
prev*: PFrame ## Previous frame; used for chaining the call stack.
procname*: cstring ## Name of the proc that is currently executing.
line*: int ## Line number of the proc that is currently executing.
filename*: cstring ## Filename of the proc that is currently executing.
len*: int16 ## Length of the inspectable slots.
calldepth*: int16 ## Used for max call depth checking.
when defined(JS):
proc add*(x: var string, y: cstring) {.asmNoStackFrame.} =
asm """
if (`x` === null) { `x` = []; }
var off = `x`.length;
`x`.length += `y`.length;
for (var i = 0; i < `y`.length; ++i) {
`x`[off+i] = `y`.charCodeAt(i);
}
"""
proc add*(x: var cstring, y: cstring) {.magic: "AppendStrStr".}
elif hasAlloc:
{.push stack_trace:off, profiler:off.}
proc add*(x: var string, y: cstring) =
var i = 0
while y[i] != '\0':
add(x, y[i])
inc(i)
{.pop.}
when defined(nimvarargstyped):
proc echo*(x: varargs[typed, `$`]) {.magic: "Echo", tags: [WriteIOEffect],
benign, sideEffect.}
## Writes and flushes the parameters to the standard output.
##
## Special built-in that takes a variable number of arguments. Each argument
## is converted to a string via ``$``, so it works for user-defined
## types that have an overloaded ``$`` operator.
## It is roughly equivalent to ``writeLine(stdout, x); flushFile(stdout)``, but
## available for the JavaScript target too.
##
## Unlike other IO operations this is guaranteed to be thread-safe as
## ``echo`` is very often used for debugging convenience. If you want to use
## ``echo`` inside a `proc without side effects
## <manual.html#pragmas-nosideeffect-pragma>`_ you can use `debugEcho <#debugEcho>`_
## instead.
proc debugEcho*(x: varargs[typed, `$`]) {.magic: "Echo", noSideEffect,
tags: [], raises: [].}
## Same as `echo <#echo>`_, but as a special semantic rule, ``debugEcho``
## pretends to be free of side effects, so that it can be used for debugging
## routines marked as `noSideEffect <manual.html#pragmas-nosideeffect-pragma>`_.
else:
proc echo*(x: varargs[untyped, `$`]) {.magic: "Echo", tags: [WriteIOEffect],
benign, sideEffect.}
proc debugEcho*(x: varargs[untyped, `$`]) {.magic: "Echo", noSideEffect,
tags: [], raises: [].}
template newException*(exceptn: typedesc, message: string;
parentException: ref Exception = nil): untyped =
## Creates an exception object of type ``exceptn`` and sets its ``msg`` field
## to `message`. Returns the new exception object.
when declared(owned):
var e: owned(ref exceptn)
else:
var e: ref exceptn
new(e)
e.msg = message
e.parent = parentException
e
when hostOS == "standalone" and defined(nogc):
proc nimToCStringConv(s: NimString): cstring {.compilerProc, inline.} =
if s == nil or s.len == 0: result = cstring""
else: result = cstring(addr s.data)
proc getTypeInfo*[T](x: T): pointer {.magic: "GetTypeInfo", benign.}
## Get type information for `x`.
##
## Ordinary code should not use this, but the `typeinfo module
## <typeinfo.html>`_ instead.
{.push stackTrace: off.}
proc abs*(x: int): int {.magic: "AbsI", noSideEffect.} =
if x < 0: -x else: x
proc abs*(x: int8): int8 {.magic: "AbsI", noSideEffect.} =
if x < 0: -x else: x
proc abs*(x: int16): int16 {.magic: "AbsI", noSideEffect.} =
if x < 0: -x else: x
proc abs*(x: int32): int32 {.magic: "AbsI", noSideEffect.} =
if x < 0: -x else: x
when defined(nimnomagic64):
proc abs*(x: int64): int64 {.magic: "AbsI", noSideEffect.} =
## Returns the absolute value of `x`.
##
## If `x` is ``low(x)`` (that is -MININT for its type),
## an overflow exception is thrown (if overflow checking is turned on).
result = if x < 0: -x else: x
else:
proc abs*(x: int64): int64 {.magic: "AbsI64", noSideEffect.} =
## Returns the absolute value of `x`.
##
## If `x` is ``low(x)`` (that is -MININT for its type),
## an overflow exception is thrown (if overflow checking is turned on).
if x < 0: -x else: x
{.pop.}
when not defined(JS):
proc likelyProc(val: bool): bool {.importc: "NIM_LIKELY", nodecl, nosideeffect.}
proc unlikelyProc(val: bool): bool {.importc: "NIM_UNLIKELY", nodecl, nosideeffect.}
template likely*(val: bool): bool =
## Hints the optimizer that `val` is likely going to be true.
##
## You can use this template to decorate a branch condition. On certain
## platforms this can help the processor predict better which branch is
## going to be run. Example:
##
## .. code-block:: Nim
## for value in inputValues:
## if likely(value <= 100):
## process(value)
## else:
## echo "Value too big!"
##
## On backends without branch prediction (JS and the nimscript VM), this
## template will not affect code execution.
when nimvm:
val
else:
when defined(JS):
val
else:
likelyProc(val)
template unlikely*(val: bool): bool =
## Hints the optimizer that `val` is likely going to be false.
##
## You can use this proc to decorate a branch condition. On certain
## platforms this can help the processor predict better which branch is
## going to be run. Example:
##
## .. code-block:: Nim
## for value in inputValues:
## if unlikely(value > 100):
## echo "Value too big!"
## else:
## process(value)
##
## On backends without branch prediction (JS and the nimscript VM), this
## template will not affect code execution.
when nimvm:
val
else:
when defined(JS):
val
else:
unlikelyProc(val)
import system/dollars
export dollars
const
NimMajor* {.intdefine.}: int = 0
## is the major number of Nim's version.
NimMinor* {.intdefine.}: int = 20
## is the minor number of Nim's version.
NimPatch* {.intdefine.}: int = 99
## is the patch number of Nim's version.
NimVersion*: string = $NimMajor & "." & $NimMinor & "." & $NimPatch
## is the version of Nim as a string.
type
FileSeekPos* = enum ## Position relative to which seek should happen.
# The values are ordered so that they match with stdio
# SEEK_SET, SEEK_CUR and SEEK_END respectively.
fspSet ## Seek to absolute value
fspCur ## Seek relative to current position
fspEnd ## Seek relative to end
when not defined(JS): #and not defined(nimscript):
{.push stack_trace: off, profiler:off.}
when hasAlloc:
when not defined(gcRegions) and not defined(nimV2):
proc initGC() {.gcsafe.}
proc initStackBottom() {.inline, compilerproc.} =
# WARNING: This is very fragile! An array size of 8 does not work on my
# Linux 64bit system. -- That's because the stack direction is the other
# way around.
when declared(nimGC_setStackBottom):
var locals {.volatile.}: pointer
locals = addr(locals)
nimGC_setStackBottom(locals)
proc initStackBottomWith(locals: pointer) {.inline, compilerproc.} =
# We need to keep initStackBottom around for now to avoid
# bootstrapping problems.
when declared(nimGC_setStackBottom):
nimGC_setStackBottom(locals)
when not defined(gcDestructors):
{.push profiler: off.}
var
strDesc = TNimType(size: sizeof(string), kind: tyString, flags: {ntfAcyclic})
{.pop.}
when not defined(nimscript):
proc zeroMem(p: pointer, size: Natural) =
nimZeroMem(p, size)
when declared(memTrackerOp):
memTrackerOp("zeroMem", p, size)
proc copyMem(dest, source: pointer, size: Natural) =
nimCopyMem(dest, source, size)
when declared(memTrackerOp):
memTrackerOp("copyMem", dest, size)
proc moveMem(dest, source: pointer, size: Natural) =
c_memmove(dest, source, size)
when declared(memTrackerOp):
memTrackerOp("moveMem", dest, size)
proc equalMem(a, b: pointer, size: Natural): bool =
nimCmpMem(a, b, size) == 0
proc cmp(x, y: string): int =
when defined(nimscript):
if x < y: result = -1
elif x > y: result = 1
else: result = 0
else:
when nimvm:
if x < y: result = -1
elif x > y: result = 1
else: result = 0
else:
let minlen = min(x.len, y.len)
result = int(nimCmpMem(x.cstring, y.cstring, minlen.csize))
if result == 0:
result = x.len - y.len
when not defined(nimscript) and hostOS != "standalone":
when defined(endb):
proc endbStep()
when declared(newSeq):
proc cstringArrayToSeq*(a: cstringArray, len: Natural): seq[string] =
## Converts a ``cstringArray`` to a ``seq[string]``. `a` is supposed to be
## of length ``len``.
newSeq(result, len)
for i in 0..len-1: result[i] = $a[i]
proc cstringArrayToSeq*(a: cstringArray): seq[string] =
## Converts a ``cstringArray`` to a ``seq[string]``. `a` is supposed to be
## terminated by ``nil``.
var L = 0
while a[L] != nil: inc(L)
result = cstringArrayToSeq(a, L)
# -------------------------------------------------------------------------
when declared(alloc0) and declared(dealloc):
proc allocCStringArray*(a: openArray[string]): cstringArray =
## Creates a NULL terminated cstringArray from `a`. The result has to
## be freed with `deallocCStringArray` after it's not needed anymore.
result = cast[cstringArray](alloc0((a.len+1) * sizeof(cstring)))
let x = cast[ptr UncheckedArray[string]](a)
for i in 0 .. a.high:
result[i] = cast[cstring](alloc0(x[i].len+1))
copyMem(result[i], addr(x[i][0]), x[i].len)
proc deallocCStringArray*(a: cstringArray) =
## Frees a NULL terminated cstringArray.
var i = 0
while a[i] != nil:
dealloc(a[i])
inc(i)
dealloc(a)
when not defined(nimscript):
proc atomicInc*(memLoc: var int, x: int = 1): int {.inline,
discardable, benign.}
## Atomic increment of `memLoc`. Returns the value after the operation.
proc atomicDec*(memLoc: var int, x: int = 1): int {.inline,
discardable, benign.}
## Atomic decrement of `memLoc`. Returns the value after the operation.
include "system/atomics"
type
PSafePoint = ptr TSafePoint
TSafePoint {.compilerproc, final.} = object
prev: PSafePoint # points to next safe point ON THE STACK
status: int
context: C_JmpBuf
hasRaiseAction: bool
raiseAction: proc (e: ref Exception): bool {.closure.}
SafePoint = TSafePoint
when declared(initAllocator):
initAllocator()
when hasThreadSupport:
when hostOS != "standalone": include "system/threads"
elif not defined(nogc) and not defined(nimscript):
when not defined(useNimRtl) and not defined(createNimRtl): initStackBottom()
when declared(initGC): initGC()
when not defined(nimscript):
proc setControlCHook*(hook: proc () {.noconv.})
## Allows you to override the behaviour of your application when CTRL+C
## is pressed. Only one such hook is supported.
when not defined(noSignalHandler) and not defined(useNimRtl):
proc unsetControlCHook*()
## Reverts a call to setControlCHook.
proc writeStackTrace*() {.tags: [], gcsafe.}
## Writes the current stack trace to ``stderr``. This is only works
## for debug builds. Since it's usually used for debugging, this
## is proclaimed to have no IO effect!
when hostOS != "standalone":
proc getStackTrace*(): string {.gcsafe.}
## Gets the current stack trace. This only works for debug builds.
proc getStackTrace*(e: ref Exception): string {.gcsafe.}
## Gets the stack trace associated with `e`, which is the stack that
## lead to the ``raise`` statement. This only works for debug builds.
{.push stack_trace: off, profiler:off.}
when defined(memtracker):
include "system/memtracker"
when hostOS == "standalone":
include "system/embedded"
else:
include "system/excpt"
include "system/chcks"
# we cannot compile this with stack tracing on
# as it would recurse endlessly!
include "system/arithm"
{.pop.} # stack trace
{.pop.} # stack trace
when hostOS != "standalone" and not defined(nimscript):
include "system/dyncalls"
when not defined(nimscript):
include "system/sets"
when defined(gogc):
const GenericSeqSize = (3 * sizeof(int))
else:
const GenericSeqSize = (2 * sizeof(int))
when not defined(nimV2):
proc getDiscriminant(aa: pointer, n: ptr TNimNode): uint =
sysAssert(n.kind == nkCase, "getDiscriminant: node != nkCase")
var d: uint
var a = cast[uint](aa)
case n.typ.size
of 1: d = uint(cast[ptr uint8](a + uint(n.offset))[])
of 2: d = uint(cast[ptr uint16](a + uint(n.offset))[])
of 4: d = uint(cast[ptr uint32](a + uint(n.offset))[])
of 8: d = uint(cast[ptr uint64](a + uint(n.offset))[])
else: sysAssert(false, "getDiscriminant: invalid n.typ.size")
return d
proc selectBranch(aa: pointer, n: ptr TNimNode): ptr TNimNode =
var discr = getDiscriminant(aa, n)
if discr < cast[uint](n.len):
result = n.sons[discr]
if result == nil: result = n.sons[n.len]
# n.sons[n.len] contains the ``else`` part (but may be nil)
else:
result = n.sons[n.len]
{.push profiler:off.}
when hasAlloc: include "system/mmdisp"
{.pop.}
{.push stack_trace: off, profiler:off.}
when hasAlloc:
when not defined(gcDestructors):
include "system/sysstr"
{.pop.}
when hasAlloc: include "system/strmantle"
when hasThreadSupport:
when hostOS != "standalone" and not defined(gcDestructors): include "system/channels"
when not defined(nimscript) and hasAlloc:
when not defined(gcDestructors):
include "system/assign"
when not defined(nimV2):
include "system/repr"
when hostOS != "standalone" and not defined(nimscript):
proc getCurrentException*(): ref Exception {.compilerRtl, inl, benign.} =
## Retrieves the current exception; if there is none, `nil` is returned.
result = currException
proc getCurrentExceptionMsg*(): string {.inline, benign.} =
## Retrieves the error message that was attached to the current
## exception; if there is none, `""` is returned.
var e = getCurrentException()
return if e == nil: "" else: e.msg
proc onRaise*(action: proc(e: ref Exception): bool{.closure.}) {.deprecated.} =
## **Deprecated since version 0.18.1**: No good usages of this
## feature are known.
##
## Can be used in a ``try`` statement to setup a Lisp-like
## `condition system`:idx:\: This prevents the 'raise' statement to
## raise an exception but instead calls ``action``.
## If ``action`` returns false, the exception has been handled and
## does not propagate further through the call stack.
if not isNil(excHandler):
excHandler.hasRaiseAction = true
excHandler.raiseAction = action
proc setCurrentException*(exc: ref Exception) {.inline, benign.} =
## Sets the current exception.
##
## **Warning**: Only use this if you know what you are doing.
currException = exc
{.push stack_trace: off, profiler:off.}
when defined(endb) and not defined(nimscript):
include "system/debugger"
when (defined(profiler) or defined(memProfiler)) and not defined(nimscript):
include "system/profiler"
{.pop.} # stacktrace
when not defined(nimscript):
proc rawProc*[T: proc](x: T): pointer {.noSideEffect, inline.} =
## Retrieves the raw proc pointer of the closure `x`. This is
## useful for interfacing closures with C.
{.emit: """
`result` = `x`.ClP_0;
""".}
proc rawEnv*[T: proc](x: T): pointer {.noSideEffect, inline.} =
## Retrieves the raw environment pointer of the closure `x`. This is
## useful for interfacing closures with C.
{.emit: """
`result` = `x`.ClE_0;
""".}
proc finished*[T: proc](x: T): bool {.noSideEffect, inline.} =
## can be used to determine if a first class iterator has finished.
{.emit: """
`result` = ((NI*) `x`.ClE_0)[1] < 0;
""".}
elif defined(JS):
# Stubs:
proc getOccupiedMem(): int = return -1
proc getFreeMem(): int = return -1
proc getTotalMem(): int = return -1
proc dealloc(p: pointer) = discard
proc alloc(size: Natural): pointer = discard
proc alloc0(size: Natural): pointer = discard
proc realloc(p: pointer, newsize: Natural): pointer = discard
proc allocShared(size: Natural): pointer = discard
proc allocShared0(size: Natural): pointer = discard
proc deallocShared(p: pointer) = discard
proc reallocShared(p: pointer, newsize: Natural): pointer = discard
when defined(JS) and not defined(nimscript):
include "system/jssys"
include "system/reprjs"
elif defined(nimscript):
proc cmp(x, y: string): int =
if x == y: return 0
if x < y: return -1
return 1
proc quit*(errormsg: string, errorcode = QuitFailure) {.noReturn.} =
## A shorthand for ``echo(errormsg); quit(errorcode)``.
when defined(nimscript) or defined(js) or (hostOS == "standalone"):
echo errormsg
else:
when nimvm:
echo errormsg
else:
cstderr.rawWrite(errormsg)
cstderr.rawWrite("\n")
quit(errorcode)
{.pop.} # checks
{.pop.} # hints
proc `/`*(x, y: int): float {.inline, noSideEffect.} =
## Division of integers that results in a float.
##
## See also:
## * `div <#div,int,int>`_
## * `mod <#mod,int,int>`_
##
## .. code-block:: Nim
## echo 7 / 5 # => 1.4
result = toFloat(x) / toFloat(y)
type
BackwardsIndex* = distinct int ## Type that is constructed by ``^`` for
## reversed array accesses.
## (See `^ template <#^.t,int>`_)
template `^`*(x: int): BackwardsIndex = BackwardsIndex(x)
## Builtin `roof`:idx: operator that can be used for convenient array access.
## ``a[^x]`` is a shortcut for ``a[a.len-x]``.
##
## .. code-block:: Nim
## let
## a = [1, 3, 5, 7, 9]
## b = "abcdefgh"
##
## echo a[^1] # => 9
## echo b[^2] # => g
template `..^`*(a, b: untyped): untyped =
## A shortcut for `.. ^` to avoid the common gotcha that a space between
## '..' and '^' is required.
a .. ^b
template `..<`*(a, b: untyped): untyped =
## A shortcut for `a .. pred(b)`.
##
## .. code-block:: Nim
## for i in 5 ..< 9:
## echo i # => 5; 6; 7; 8
a .. (when b is BackwardsIndex: succ(b) else: pred(b))
template spliceImpl(s, a, L, b: untyped): untyped =
# make room for additional elements or cut:
var shift = b.len - max(0,L) # ignore negative slice size
var newLen = s.len + shift
if shift > 0:
# enlarge:
setLen(s, newLen)
for i in countdown(newLen-1, a+b.len): shallowCopy(s[i], s[i-shift])
else:
for i in countup(a+b.len, newLen-1): shallowCopy(s[i], s[i-shift])
# cut down:
setLen(s, newLen)
# fill the hole:
for i in 0 ..< b.len: s[a+i] = b[i]
template `^^`(s, i: untyped): untyped =
(when i is BackwardsIndex: s.len - int(i) else: int(i))
template `[]`*(s: string; i: int): char = arrGet(s, i)
template `[]=`*(s: string; i: int; val: char) = arrPut(s, i, val)
proc `[]`*[T, U](s: string, x: HSlice[T, U]): string {.inline.} =
## Slice operation for strings.
## Returns the inclusive range `[s[x.a], s[x.b]]`:
##
## .. code-block:: Nim
## var s = "abcdef"
## assert s[1..3] == "bcd"
let a = s ^^ x.a
let L = (s ^^ x.b) - a + 1
result = newString(L)
for i in 0 ..< L: result[i] = s[i + a]
proc `[]=`*[T, U](s: var string, x: HSlice[T, U], b: string) =
## Slice assignment for strings.
##
## If ``b.len`` is not exactly the number of elements that are referred to
## by `x`, a `splice`:idx: is performed:
##
runnableExamples:
var s = "abcdefgh"
s[1 .. ^2] = "xyz"
assert s == "axyzh"
var a = s ^^ x.a
var L = (s ^^ x.b) - a + 1
if L == b.len:
for i in 0..<L: s[i+a] = b[i]
else:
spliceImpl(s, a, L, b)
proc `[]`*[Idx, T, U, V](a: array[Idx, T], x: HSlice[U, V]): seq[T] =
## Slice operation for arrays.
## Returns the inclusive range `[a[x.a], a[x.b]]`:
##
## .. code-block:: Nim
## var a = [1, 2, 3, 4]
## assert a[0..2] == @[1, 2, 3]
let xa = a ^^ x.a
let L = (a ^^ x.b) - xa + 1
result = newSeq[T](L)
for i in 0..<L: result[i] = a[Idx(i + xa)]
proc `[]=`*[Idx, T, U, V](a: var array[Idx, T], x: HSlice[U, V], b: openArray[T]) =
## Slice assignment for arrays.
##
## .. code-block:: Nim
## var a = [10, 20, 30, 40, 50]
## a[1..2] = @[99, 88]
## assert a == [10, 99, 88, 40, 50]
let xa = a ^^ x.a
let L = (a ^^ x.b) - xa + 1
if L == b.len:
for i in 0..<L: a[Idx(i + xa)] = b[i]
else:
sysFatal(RangeError, "diferent lengths for slice assignment")
proc `[]`*[T, U, V](s: openArray[T], x: HSlice[U, V]): seq[T] =
## Slice operation for sequences.
## Returns the inclusive range `[s[x.a], s[x.b]]`:
##
## .. code-block:: Nim
## var s = @[1, 2, 3, 4]
## assert s[0..2] == @[1, 2, 3]
let a = s ^^ x.a
let L = (s ^^ x.b) - a + 1
newSeq(result, L)
for i in 0 ..< L: result[i] = s[i + a]
proc `[]=`*[T, U, V](s: var seq[T], x: HSlice[U, V], b: openArray[T]) =
## Slice assignment for sequences.
##
## If ``b.len`` is not exactly the number of elements that are referred to
## by `x`, a `splice`:idx: is performed.
runnableExamples:
var s = @"abcdefgh"
s[1 .. ^2] = @"xyz"
assert s == @"axyzh"
let a = s ^^ x.a
let L = (s ^^ x.b) - a + 1
if L == b.len:
for i in 0 ..< L: s[i+a] = b[i]
else:
spliceImpl(s, a, L, b)
proc `[]`*[T](s: openArray[T]; i: BackwardsIndex): T {.inline.} =
system.`[]`(s, s.len - int(i))
proc `[]`*[Idx, T](a: array[Idx, T]; i: BackwardsIndex): T {.inline.} =
a[Idx(a.len - int(i) + int low(a))]
proc `[]`*(s: string; i: BackwardsIndex): char {.inline.} = s[s.len - int(i)]
proc `[]`*[T](s: var openArray[T]; i: BackwardsIndex): var T {.inline.} =
system.`[]`(s, s.len - int(i))
proc `[]`*[Idx, T](a: var array[Idx, T]; i: BackwardsIndex): var T {.inline.} =
a[Idx(a.len - int(i) + int low(a))]
proc `[]=`*[T](s: var openArray[T]; i: BackwardsIndex; x: T) {.inline.} =
system.`[]=`(s, s.len - int(i), x)
proc `[]=`*[Idx, T](a: var array[Idx, T]; i: BackwardsIndex; x: T) {.inline.} =
a[Idx(a.len - int(i) + int low(a))] = x
proc `[]=`*(s: var string; i: BackwardsIndex; x: char) {.inline.} =
s[s.len - int(i)] = x
proc slurp*(filename: string): string {.magic: "Slurp".}
## This is an alias for `staticRead <#staticRead,string>`_.
proc staticRead*(filename: string): string {.magic: "Slurp".}
## Compile-time `readFile <io.html#readFile,string>`_ proc for easy
## `resource`:idx: embedding:
##
## .. code-block:: Nim
## const myResource = staticRead"mydatafile.bin"
##
## `slurp <#slurp,string>`_ is an alias for ``staticRead``.
proc gorge*(command: string, input = "", cache = ""): string {.
magic: "StaticExec".} = discard
## This is an alias for `staticExec <#staticExec,string,string,string>`_.
proc staticExec*(command: string, input = "", cache = ""): string {.
magic: "StaticExec".} = discard
## Executes an external process at compile-time.
##
## If `input` is not an empty string, it will be passed as a standard input
## to the executed program.
##
## .. code-block:: Nim
## const buildInfo = "Revision " & staticExec("git rev-parse HEAD") &
## "\nCompiled on " & staticExec("uname -v")
##
## `gorge <#gorge,string,string,string>`_ is an alias for ``staticExec``.
##
## Note that you can use this proc inside a pragma like
## `passC <nimc.html#passc-pragma>`_ or `passL <nimc.html#passl-pragma>`_.
##
## If ``cache`` is not empty, the results of ``staticExec`` are cached within
## the ``nimcache`` directory. Use ``--forceBuild`` to get rid of this caching
## behaviour then. ``command & input & cache`` (the concatenated string) is
## used to determine whether the entry in the cache is still valid. You can
## use versioning information for ``cache``:
##
## .. code-block:: Nim
## const stateMachine = staticExec("dfaoptimizer", "input", "0.8.0")
proc gorgeEx*(command: string, input = "", cache = ""): tuple[output: string,
exitCode: int] =
## Similar to `gorge <#gorge,string,string,string>`_ but also returns the
## precious exit code.
discard
proc `+=`*[T: SomeInteger](x: var T, y: T) {.
magic: "Inc", noSideEffect.}
## Increments an integer.
proc `+=`*[T: enum|bool](x: var T, y: T) {.
magic: "Inc", noSideEffect, deprecated: "use `inc` instead".}
## **Deprecated since v0.20**: use `inc` instead.
proc `-=`*[T: SomeInteger](x: var T, y: T) {.
magic: "Dec", noSideEffect.}
## Decrements an integer.
proc `-=`*[T: enum|bool](x: var T, y: T) {.
magic: "Dec", noSideEffect, deprecated: "0.20.0, use `dec` instead".}
## **Deprecated since v0.20**: use `dec` instead.
proc `*=`*[T: SomeInteger](x: var T, y: T) {.
inline, noSideEffect.} =
## Binary `*=` operator for integers.
x = x * y
proc `+=`*[T: float|float32|float64] (x: var T, y: T) {.
inline, noSideEffect.} =
## Increments in place a floating point number.
x = x + y
proc `-=`*[T: float|float32|float64] (x: var T, y: T) {.
inline, noSideEffect.} =
## Decrements in place a floating point number.
x = x - y
proc `*=`*[T: float|float32|float64] (x: var T, y: T) {.
inline, noSideEffect.} =
## Multiplies in place a floating point number.
x = x * y
proc `/=`*(x: var float64, y: float64) {.inline, noSideEffect.} =
## Divides in place a floating point number.
x = x / y
proc `/=`*[T: float|float32](x: var T, y: T) {.inline, noSideEffect.} =
## Divides in place a floating point number.
x = x / y
proc `&=`*(x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.}
## Appends in place to a string.
##
## .. code-block:: Nim
## var a = "abc"
## a &= "de" # a <- "abcde"
template `&=`*(x, y: typed) =
## Generic 'sink' operator for Nim.
##
## For files an alias for ``write``.
## If not specialized further, an alias for ``add``.
add(x, y)
when declared(File):
template `&=`*(f: File, x: typed) = write(f, x)
template currentSourcePath*: string = instantiationInfo(-1, true).filename
## returns the full file-system path of the current source
when compileOption("rangechecks"):
template rangeCheck*(cond) =
## Helper for performing user-defined range checks.
## Such checks will be performed only when the ``rangechecks``
## compile-time option is enabled.
if not cond: sysFatal(RangeError, "range check failed")
else:
template rangeCheck*(cond) = discard
when not defined(nimhygiene):
{.pragma: inject.}
proc shallow*[T](s: var seq[T]) {.noSideEffect, inline.} =
## Marks a sequence `s` as `shallow`:idx:. Subsequent assignments will not
## perform deep copies of `s`.
##
## This is only useful for optimization purposes.
if s.len == 0: return
when not defined(JS) and not defined(nimscript):
var s = cast[PGenericSeq](s)
s.reserved = s.reserved or seqShallowFlag
proc shallow*(s: var string) {.noSideEffect, inline.} =
## Marks a string `s` as `shallow`:idx:. Subsequent assignments will not
## perform deep copies of `s`.
##
## This is only useful for optimization purposes.
when not defined(JS) and not defined(nimscript) and not defined(gcDestructors):
var s = cast[PGenericSeq](s)
if s == nil:
s = cast[PGenericSeq](newString(0))
# string literals cannot become 'shallow':
if (s.reserved and strlitFlag) == 0:
s.reserved = s.reserved or seqShallowFlag
type
NimNodeObj = object
NimNode* {.magic: "PNimrodNode".} = ref NimNodeObj
## Represents a Nim AST node. Macros operate on this type.
when false:
template eval*(blk: typed): typed =
## Executes a block of code at compile time just as if it was a macro.
##
## Optionally, the block can return an AST tree that will replace the
## eval expression.
macro payload: typed {.gensym.} = blk
payload()
when hasAlloc or defined(nimscript):
proc insert*(x: var string, item: string, i = 0.Natural) {.noSideEffect.} =
## Inserts `item` into `x` at position `i`.
##
## .. code-block:: Nim
## var a = "abc"
## a.insert("zz", 0) # a <- "zzabc"
var xl = x.len
setLen(x, xl+item.len)
var j = xl-1
while j >= i:
shallowCopy(x[j+item.len], x[j])
dec(j)
j = 0
while j < item.len:
x[j+i] = item[j]
inc(j)
when declared(initDebugger):
initDebugger()
proc addEscapedChar*(s: var string, c: char) {.noSideEffect, inline.} =
## Adds a char to string `s` and applies the following escaping:
##
## * replaces any ``\`` by ``\\``
## * replaces any ``'`` by ``\'``
## * replaces any ``"`` by ``\"``
## * replaces any ``\a`` by ``\\a``
## * replaces any ``\b`` by ``\\b``
## * replaces any ``\t`` by ``\\t``
## * replaces any ``\n`` by ``\\n``
## * replaces any ``\v`` by ``\\v``
## * replaces any ``\f`` by ``\\f``
## * replaces any ``\c`` by ``\\c``
## * replaces any ``\e`` by ``\\e``
## * replaces any other character not in the set ``{'\21..'\126'}
## by ``\xHH`` where ``HH`` is its hexadecimal value.
##
## The procedure has been designed so that its output is usable for many
## diferent common syntaxes.
##
## **Note**: This is **not correct** for producing Ansi C code!
case c
of '\a': s.add "\\a" # \x07
of '\b': s.add "\\b" # \x08
of '\t': s.add "\\t" # \x09
of '\L': s.add "\\n" # \x0A
of '\v': s.add "\\v" # \x0B
of '\f': s.add "\\f" # \x0C
of '\c': s.add "\\c" # \x0D
of '\e': s.add "\\e" # \x1B
of '\\': s.add("\\\\")
of '\'': s.add("\\'")
of '\"': s.add("\\\"")
of {'\32'..'\126'} - {'\\', '\'', '\"'}: s.add(c)
else:
s.add("\\x")
const HexChars = "0123456789ABCDEF"
let n = ord(c)
s.add(HexChars[int((n and 0xF0) shr 4)])
s.add(HexChars[int(n and 0xF)])
proc addQuoted*[T](s: var string, x: T) =
## Appends `x` to string `s` in place, applying quoting and escaping
## if `x` is a string or char.
##
## See `addEscapedChar <#addEscapedChar,string,char>`_
## for the escaping scheme. When `x` is a string, characters in the
## range ``{\128..\255}`` are never escaped so that multibyte UTF-8
## characters are untouched (note that this behavior is diferent from
## ``addEscapedChar``).
##
## The Nim standard library uses this function on the elements of
## collections when producing a string representation of a collection.
## It is recommended to use this function as well for user-side collections.
## Users may overload `addQuoted` for custom (string-like) types if
## they want to implement a customized element representation.
##
## .. code-block:: Nim
## var tmp = ""
## tmp.addQuoted(1)
## tmp.add(", ")
## tmp.addQuoted("string")
## tmp.add(", ")
## tmp.addQuoted('c')
## assert(tmp == """1, "string", 'c'""")
when T is string or T is cstring:
s.add("\"")
for c in x:
# Only ASCII chars are escaped to avoid butchering
# multibyte UTF-8 characters.
if c <= 127.char:
s.addEscapedChar(c)
else:
s.add c
s.add("\"")
elif T is char:
s.add("'")
s.addEscapedChar(x)
s.add("'")
# prevent temporary string allocation
elif T is SomeSignedInt and not defined(JS):
s.addInt(x)
elif T is SomeFloat and not defined(JS):
s.addFloat(x)
elif compiles(s.add(x)):
s.add(x)
else:
s.add($x)
when hasAlloc:
# XXX: make these the default (or implement the NilObject optimization)
proc safeAdd*[T](x: var seq[T], y: T) {.noSideEffect, deprecated.} =
## Adds ``y`` to ``x`` unless ``x`` is not yet initialized; in that case,
## ``x`` becomes ``@[y]``.
when defined(nimNoNilSeqs):
x.add(y)
else:
if x == nil: x = @[y]
else: x.add(y)
proc safeAdd*(x: var string, y: char) {.noSideEffect, deprecated.} =
## Adds ``y`` to ``x``. If ``x`` is ``nil`` it is initialized to ``""``.
when defined(nimNoNilSeqs):
x.add(y)
else:
if x == nil: x = ""
x.add(y)
proc safeAdd*(x: var string, y: string) {.noSideEffect, deprecated.} =
## Adds ``y`` to ``x`` unless ``x`` is not yet initalized; in that
## case, ``x`` becomes ``y``.
when defined(nimNoNilSeqs):
x.add(y)
else:
if x == nil: x = y
else: x.add(y)
proc locals*(): RootObj {.magic: "Plugin", noSideEffect.} =
## Generates a tuple constructor expression listing all the local variables
## in the current scope.
##
## This is quite fast as it does not rely
## on any debug or runtime information. Note that in contrast to what
## the official signature says, the return type is *not* ``RootObj`` but a
## tuple of a structure that depends on the current scope. Example:
##
## .. code-block:: Nim
## proc testLocals() =
## var
## a = "something"
## b = 4
## c = locals()
## d = "super!"
##
## b = 1
## for name, value in fieldPairs(c):
## echo "name ", name, " with value ", value
## echo "B is ", b
## # -> name a with value something
## # -> name b with value 4
## # -> B is 1
discard
when hasAlloc and not defined(nimscript) and not defined(JS) and
not defined(gcDestructors):
# XXX how to implement 'deepCopy' is an open problem.
proc deepCopy*[T](x: var T, y: T) {.noSideEffect, magic: "DeepCopy".} =
## Performs a deep copy of `y` and copies it into `x`.
##
## This is also used by the code generator
## for the implementation of ``spawn``.
discard
proc deepCopy*[T](y: T): T =
## Convenience wrapper around `deepCopy` overload.
deepCopy(result, y)
include "system/deepcopy"
proc procCall*(x: untyped) {.magic: "ProcCall", compileTime.} =
## Special magic to prohibit dynamic binding for `method`:idx: calls.
## This is similar to `super`:idx: in ordinary OO languages.
##
## .. code-block:: Nim
## # 'someMethod' will be resolved fully statically:
## procCall someMethod(a, b)
discard
proc xlen*(x: string): int {.magic: "XLenStr", noSideEffect,
deprecated: "use len() instead".} =
## **Deprecated since version 0.18.1**. Use `len()` instead.
discard
proc xlen*[T](x: seq[T]): int {.magic: "XLenSeq", noSideEffect,
deprecated: "use len() instead".} =
## **Deprecated since version 0.18.1**. Use `len()` instead.
##
## Returns the length of a sequence or a string without testing for 'nil'.
## This is an optimization that rarely makes sense.
discard
proc `==`*(x, y: cstring): bool {.magic: "EqCString", noSideEffect,
inline.} =
## Checks for equality between two `cstring` variables.
proc strcmp(a, b: cstring): cint {.noSideEffect,
importc, header: "<string.h>".}
if pointer(x) == pointer(y): result = true
elif x.isNil or y.isNil: result = false
else: result = strcmp(x, y) == 0
when defined(nimNoNilSeqs2):
when not compileOption("nilseqs"):
when defined(nimHasUserErrors):
# bug #9149; ensure that 'type(nil)' does not match *too* well by using 'type(nil) | type(nil)'.
# Eventually (in 0.20?) we will be able to remove this hack completely.
proc `==`*(x: string; y: type(nil) | type(nil)): bool {.
error: "'nil' is now invalid for 'string'; compile with --nilseqs:on for a migration period".} =
discard
proc `==`*(x: type(nil) | type(nil); y: string): bool {.
error: "'nil' is now invalid for 'string'; compile with --nilseqs:on for a migration period".} =
discard
else:
proc `==`*(x: string; y: type(nil) | type(nil)): bool {.error.} = discard
proc `==`*(x: type(nil) | type(nil); y: string): bool {.error.} = discard
template closureScope*(body: untyped): untyped =
## Useful when creating a closure in a loop to capture local loop variables by
## their current iteration values. Example:
##
## .. code-block:: Nim
## var myClosure : proc()
## # without closureScope:
## for i in 0 .. 5:
## let j = i
## if j == 3:
## myClosure = proc() = echo j
## myClosure() # outputs 5. `j` is changed after closure creation
## # with closureScope:
## for i in 0 .. 5:
## closureScope: # Everything in this scope is locked after closure creation
## let j = i
## if j == 3:
## myClosure = proc() = echo j
## myClosure() # outputs 3
(proc() = body)()
template once*(body: untyped): untyped =
## Executes a block of code only once (the first time the block is reached).
##
## .. code-block:: Nim
##
## proc draw(t: Triangle) =
## once:
## graphicsInit()
## line(t.p1, t.p2)
## line(t.p2, t.p3)
## line(t.p3, t.p1)
##
var alreadyExecuted {.global.} = false
if not alreadyExecuted:
alreadyExecuted = true
body
{.pop.} #{.push warning[GcMem]: off, warning[Uninit]: off.}
proc substr*(s: string, first, last: int): string =
## Copies a slice of `s` into a new string and returns this new
## string.
##
## The bounds `first` and `last` denote the indices of
## the first and last characters that shall be copied. If ``last``
## is omitted, it is treated as ``high(s)``. If ``last >= s.len``, ``s.len``
## is used instead: This means ``substr`` can also be used to `cut`:idx:
## or `limit`:idx: a string's length.
runnableExamples:
let a = "abcdefgh"
assert a.substr(2, 5) == "cdef"
assert a.substr(2) == "cdefgh"
assert a.substr(5, 99) == "fgh"
let first = max(first, 0)
let L = max(min(last, high(s)) - first + 1, 0)
result = newString(L)
for i in 0 .. L-1:
result[i] = s[i+first]
proc substr*(s: string, first = 0): string =
result = substr(s, first, high(s))
when defined(nimconfig):
include "system/nimscript"
when defined(windows) and appType == "console" and defined(nimSetUtf8CodePage) and not defined(nimscript):
proc setConsoleOutputCP(codepage: cint): cint {.stdcall, dynlib: "kernel32",
importc: "SetConsoleOutputCP".}
discard setConsoleOutputCP(65001) # 65001 - utf-8 codepage
when not defined(js):
proc toOpenArray*[T](x: seq[T]; first, last: int): openarray[T] {.
magic: "Slice".}
proc toOpenArray*[T](x: openarray[T]; first, last: int): openarray[T] {.
magic: "Slice".}
proc toOpenArray*[T](x: ptr UncheckedArray[T]; first, last: int): openarray[T] {.
magic: "Slice".}
proc toOpenArray*[I, T](x: array[I, T]; first, last: I): openarray[T] {.
magic: "Slice".}
proc toOpenArray*(x: string; first, last: int): openarray[char] {.
magic: "Slice".}
proc toOpenArrayByte*(x: string; first, last: int): openarray[byte] {.
magic: "Slice".}
type
ForLoopStmt* {.compilerProc.} = object ## \
## A special type that marks a macro as a `for-loop macro`:idx:.
## See `"For Loop Macro" <manual.html#macros-for-loop-macro>`_.
when defined(genode):
var componentConstructHook*: proc (env: GenodeEnv) {.nimcall.}
## Hook into the Genode component bootstrap process.
##
## This hook is called after all globals are initialized.
## When this hook is set the component will not automatically exit,
## call ``quit`` explicitly to do so. This is the only available method
## of accessing the initial Genode environment.
proc nim_component_construct(env: GenodeEnv) {.exportc.} =
## Procedure called during ``Component::construct`` by the loader.
if componentConstructHook.isNil:
env.quit(programResult)
# No native Genode application initialization,
# exit as would POSIX.
else:
componentConstructHook(env)
# Perform application initialization
# and return to thread entrypoint.
import system/widestrs
export widestrs
import system/io
export io
when not defined(createNimHcr):
include nimhcr