Files
Nim/compiler/dfa.nim
Clyybber 2b0e336c97 injectdestructors fixes and refactor (#14964)
* injectdestructors fixes and refactor

* Tiny cleanup

* Refactor and expand testcase

* Closes #14902 by adding testcase

* Better naming

* Fix test failures

* Misc cleanup

* Add testcase for #14968

* Better approach; expand testcases

* Optimizations and fixes

* Add testcase

* typo

* Tiny cleanup
2020-07-14 14:15:39 +02:00

771 lines
20 KiB
Nim
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#
#
# The Nim Compiler
# (c) Copyright 2017 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Data flow analysis for Nim.
## We transform the AST into a linear list of instructions first to
## make this easier to handle: There are only 2 different branching
## instructions: 'goto X' is an unconditional goto, 'fork X'
## is a conditional goto (either the next instruction or 'X' can be
## taken). Exhaustive case statements are translated
## so that the last branch is transformed into an 'else' branch.
## ``return`` and ``break`` are all covered by 'goto'.
##
## Control flow through exception handling:
## Contrary to popular belief, exception handling doesn't cause
## many problems for this DFA representation, ``raise`` is a statement
## that ``goes to`` the outer ``finally`` or ``except`` if there is one,
## otherwise it is the same as ``return``. Every call is treated as
## a call that can potentially ``raise``. However, without a surrounding
## ``try`` we don't emit these ``fork ReturnLabel`` instructions in order
## to speed up the dataflow analysis passes.
##
## The data structures and algorithms used here are inspired by
## "A GraphFree Approach to DataFlow Analysis" by Markus Mohnen.
## https://link.springer.com/content/pdf/10.1007/3-540-45937-5_6.pdf
import ast, types, intsets, lineinfos, renderer, asciitables
from patterns import sameTrees
type
InstrKind* = enum
goto, fork, def, use
Instr* = object
n*: PNode # contains the def/use location.
case kind*: InstrKind
of goto, fork: dest*: int
else: discard
ControlFlowGraph* = seq[Instr]
TPosition = distinct int
TBlock = object
case isTryBlock: bool
of false:
label: PSym
breakFixups: seq[(TPosition, seq[PNode])] #Contains the gotos for the breaks along with their pending finales
of true:
finale: PNode
raiseFixups: seq[TPosition] #Contains the gotos for the raises
Con = object
code: ControlFlowGraph
inTryStmt: int
blocks: seq[TBlock]
owner: PSym
proc codeListing(c: ControlFlowGraph, start = 0; last = -1): string =
# for debugging purposes
# first iteration: compute all necessary labels:
var jumpTargets = initIntSet()
let last = if last < 0: c.len-1 else: min(last, c.len-1)
for i in start..last:
if c[i].kind in {goto, fork}:
jumpTargets.incl(i+c[i].dest)
var i = start
while i <= last:
if i in jumpTargets: result.add("L" & $i & ":\n")
result.add "\t"
result.add ($i & " " & $c[i].kind)
result.add "\t"
case c[i].kind
of def, use:
result.add renderTree(c[i].n)
of goto, fork:
result.add "L"
result.addInt c[i].dest+i
result.add("\t#")
result.add($c[i].n.info.line)
result.add("\n")
inc i
if i in jumpTargets: result.add("L" & $i & ": End\n")
proc echoCfg*(c: ControlFlowGraph; start = 0; last = -1) {.deprecated.} =
## echos the ControlFlowGraph for debugging purposes.
echo codeListing(c, start, last).alignTable
proc forkI(c: var Con; n: PNode): TPosition =
result = TPosition(c.code.len)
c.code.add Instr(n: n, kind: fork, dest: 0)
proc gotoI(c: var Con; n: PNode): TPosition =
result = TPosition(c.code.len)
c.code.add Instr(n: n, kind: goto, dest: 0)
#[
Join is no more
===============
Instead of generating join instructions we adapt our traversal of the CFG.
When encountering a fork we split into two paths, we follow the path
starting at "pc + 1" until it encounters the joinpoint: "pc + forkInstr.dest".
If we encounter gotos that would jump further than the current joinpoint,
as can happen with gotos generated by unstructured controlflow such as break, raise or return,
we simply suspend following the current path, and follow the other path until the new joinpoint
which is simply the instruction pointer returned to us by the now suspended path.
If the path we are following now, also encounters a goto that exceeds the joinpoint
we repeat the process; suspending the current path and evaluating the other one with a new joinpoint.
If we eventually reach a common joinpoint we join the two paths.
This new "ping-pong" approach has the obvious advantage of not requiring join instructions, as such
cutting down on the CFG size but is also mandatory for correctly handling complicated cases
of unstructured controlflow.
Design of join
==============
block:
if cond: break
def(x)
use(x)
Generates:
L0: fork lab1
join L0 # patched.
goto Louter
lab1:
def x
join L0
Louter:
use x
block outer:
while a:
while b:
if foo:
if bar:
break outer # --> we need to 'join' every pushed 'fork' here
This works and then our abstract interpretation needs to deal with 'fork'
differently. It really causes a split in execution. Two threads are
"spawned" and both need to reach the 'join L' instruction. Afterwards
the abstract interpretations are joined and execution resumes single
threaded.
Abstract Interpretation
-----------------------
proc interpret(pc, state, comesFrom): state =
result = state
# we need an explicit 'create' instruction (an explicit heap), in order
# to deal with 'var x = create(); var y = x; var z = y; destroy(z)'
while true:
case pc
of fork:
let a = interpret(pc+1, result, pc)
let b = interpret(forkTarget, result, pc)
result = a ++ b # ++ is a union operation
inc pc
of join:
if joinTarget == comesFrom: return result
else: inc pc
of use X:
if not result.contains(x):
error "variable not initialized " & x
inc pc
of def X:
if not result.contains(x):
result.incl X
else:
error "overwrite of variable causes memory leak " & x
inc pc
of destroy X:
result.excl X
This is correct but still can lead to false positives:
proc p(cond: bool) =
if cond:
new(x)
otherThings()
if cond:
destroy x
Is not a leak. We should find a way to model *data* flow, not just
control flow. One solution is to rewrite the 'if' without a fork
instruction. The unstructured aspect can now be easily dealt with
the 'goto' and 'join' instructions.
proc p(cond: bool) =
L0: fork Lend
new(x)
# do not 'join' here!
Lend:
otherThings()
join L0 # SKIP THIS FOR new(x) SOMEHOW
destroy x
join L0 # but here.
But if we follow 'goto Louter' we will never come to the join point.
We restore the bindings after popping pc from the stack then there
"no" problem?!
while cond:
prelude()
if not condB: break
postlude()
--->
var setFlag = true
while cond and not setFlag:
prelude()
if not condB:
setFlag = true # BUT: Dependency
if not setFlag: # HERE
postlude()
--->
var setFlag = true
while cond and not setFlag:
prelude()
if not condB:
postlude()
setFlag = true
-------------------------------------------------
while cond:
prelude()
if more:
if not condB: break
stuffHere()
postlude()
-->
var setFlag = true
while cond and not setFlag:
prelude()
if more:
if not condB:
setFlag = false
else:
stuffHere()
postlude()
else:
postlude()
This is getting complicated. Instead we keep the whole 'join' idea but
duplicate the 'join' instructions on breaks and return exits!
]#
proc genLabel(c: Con): TPosition = TPosition(c.code.len)
template checkedDistance(dist): int =
doAssert low(int) div 2 + 1 < dist and dist < high(int) div 2
dist
proc jmpBack(c: var Con, n: PNode, p = TPosition(0)) =
c.code.add Instr(n: n, kind: goto, dest: checkedDistance(p.int - c.code.len))
proc patch(c: var Con, p: TPosition) =
# patch with current index
c.code[p.int].dest = checkedDistance(c.code.len - p.int)
func gen(c: var Con; n: PNode)
proc popBlock(c: var Con; oldLen: int) =
var exits: seq[TPosition]
exits.add c.gotoI(newNode(nkEmpty))
for f in c.blocks[oldLen].breakFixups:
c.patch(f[0])
for finale in f[1]:
c.gen(finale)
exits.add c.gotoI(newNode(nkEmpty))
for e in exits:
c.patch e
c.blocks.setLen(oldLen)
template withBlock(labl: PSym; body: untyped) =
let oldLen = c.blocks.len
c.blocks.add TBlock(isTryBlock: false, label: labl)
body
popBlock(c, oldLen)
proc isTrue(n: PNode): bool =
n.kind == nkSym and n.sym.kind == skEnumField and n.sym.position != 0 or
n.kind == nkIntLit and n.intVal != 0
when true:
proc genWhile(c: var Con; n: PNode) =
# We unroll every loop 3 times. We emulate 0, 1, 2 iterations
# through the loop. We need to prove this is correct for our
# purposes. But Herb Sutter claims it is. (Proof by authority.)
#[
while cond:
body
Becomes:
block:
if cond:
body
if cond:
body
if cond:
body
We still need to ensure 'break' resolves properly, so an AST to AST
translation is impossible.
So the code to generate is:
cond
fork L4 # F1
body
cond
fork L5 # F2
body
cond
fork L6 # F3
body
L6:
join F3
L5:
join F2
L4:
join F1
]#
if isTrue(n[0]):
# 'while true' is an idiom in Nim and so we produce
# better code for it:
withBlock(nil):
for i in 0..2:
c.gen(n[1])
else:
withBlock(nil):
var endings: array[3, TPosition]
for i in 0..2:
c.gen(n[0])
endings[i] = c.forkI(n)
c.gen(n[1])
for i in countdown(endings.high, 0):
c.patch(endings[i])
else:
proc genWhile(c: var Con; n: PNode) =
# lab1:
# cond, tmp
# fork tmp, lab2
# body
# jmp lab1
# lab2:
let lab1 = c.genLabel
withBlock(nil):
if isTrue(n[0]):
c.gen(n[1])
c.jmpBack(n, lab1)
else:
c.gen(n[0])
forkT(n):
c.gen(n[1])
c.jmpBack(n, lab1)
template forkT(n, body) =
let lab1 = c.forkI(n)
body
c.patch(lab1)
proc genIf(c: var Con, n: PNode) =
#[
if cond:
A
elif condB:
B
elif condC:
C
else:
D
cond
fork lab1
A
goto Lend
lab1:
condB
fork lab2
B
goto Lend2
lab2:
condC
fork L3
C
goto Lend3
L3:
D
goto Lend3 # not eliminated to simplify the join generation
Lend3:
join F3
Lend2:
join F2
Lend:
join F1
]#
var endings: seq[TPosition] = @[]
for i in 0..<n.len:
let it = n[i]
c.gen(it[0])
if it.len == 2:
forkT(it[1]):
c.gen(it[1])
endings.add c.gotoI(it[1])
for i in countdown(endings.high, 0):
c.patch(endings[i])
proc genAndOr(c: var Con; n: PNode) =
# asgn dest, a
# fork lab1
# asgn dest, b
# lab1:
# join F1
c.gen(n[1])
forkT(n):
c.gen(n[2])
proc genCase(c: var Con; n: PNode) =
# if (!expr1) goto lab1;
# thenPart
# goto LEnd
# lab1:
# if (!expr2) goto lab2;
# thenPart2
# goto LEnd
# lab2:
# elsePart
# Lend:
let isExhaustive = skipTypes(n[0].typ,
abstractVarRange-{tyTypeDesc}).kind notin {tyFloat..tyFloat128, tyString}
var endings: seq[TPosition] = @[]
c.gen(n[0])
for i in 1..<n.len:
let it = n[i]
if it.len == 1 or (i == n.len-1 and isExhaustive):
# treat the last branch as 'else' if this is an exhaustive case statement.
c.gen(it.lastSon)
else:
forkT(it.lastSon):
c.gen(it.lastSon)
endings.add c.gotoI(it.lastSon)
for i in countdown(endings.high, 0):
let endPos = endings[i]
c.patch(endPos)
proc genBlock(c: var Con; n: PNode) =
withBlock(n[0].sym):
c.gen(n[1])
proc genBreakOrRaiseAux(c: var Con, i: int, n: PNode) =
let lab1 = c.gotoI(n)
if c.blocks[i].isTryBlock:
c.blocks[i].raiseFixups.add lab1
else:
var trailingFinales: seq[PNode]
if c.inTryStmt > 0: #Ok, we are in a try, lets see which (if any) try's we break out from:
for b in countdown(c.blocks.high, i):
if c.blocks[b].isTryBlock:
trailingFinales.add c.blocks[b].finale
c.blocks[i].breakFixups.add (lab1, trailingFinales)
proc genBreak(c: var Con; n: PNode) =
if n[0].kind == nkSym:
for i in countdown(c.blocks.high, 0):
if not c.blocks[i].isTryBlock and c.blocks[i].label == n[0].sym:
genBreakOrRaiseAux(c, i, n)
return
#globalError(n.info, "VM problem: cannot find 'break' target")
else:
for i in countdown(c.blocks.high, 0):
if not c.blocks[i].isTryBlock:
genBreakOrRaiseAux(c, i, n)
return
proc genTry(c: var Con; n: PNode) =
var endings: seq[TPosition] = @[]
let oldLen = c.blocks.len
c.blocks.add TBlock(isTryBlock: true, finale: if n[^1].kind == nkFinally: n[^1] else: newNode(nkEmpty))
inc c.inTryStmt
c.gen(n[0])
dec c.inTryStmt
for f in c.blocks[oldLen].raiseFixups:
c.patch(f)
c.blocks.setLen oldLen
for i in 1..<n.len:
let it = n[i]
if it.kind != nkFinally:
forkT(it):
c.gen(it.lastSon)
endings.add c.gotoI(it)
for i in countdown(endings.high, 0):
c.patch(endings[i])
let fin = lastSon(n)
if fin.kind == nkFinally:
c.gen(fin[0])
template genNoReturn(c: var Con; n: PNode) =
# leave the graph
c.code.add Instr(n: n, kind: goto, dest: high(int) - c.code.len)
proc genRaise(c: var Con; n: PNode) =
gen(c, n[0])
if c.inTryStmt > 0:
for i in countdown(c.blocks.high, 0):
if c.blocks[i].isTryBlock:
genBreakOrRaiseAux(c, i, n)
return
assert false #Unreachable
else:
genNoReturn(c, n)
proc genImplicitReturn(c: var Con) =
if c.owner.kind in {skProc, skFunc, skMethod, skIterator, skConverter} and resultPos < c.owner.ast.len:
gen(c, c.owner.ast[resultPos])
proc genReturn(c: var Con; n: PNode) =
if n[0].kind != nkEmpty:
gen(c, n[0])
else:
genImplicitReturn(c)
genBreakOrRaiseAux(c, 0, n)
const
InterestingSyms = {skVar, skResult, skLet, skParam, skForVar, skTemp}
PathKinds0 = {nkDotExpr, nkCheckedFieldExpr,
nkBracketExpr, nkDerefExpr, nkHiddenDeref,
nkAddr, nkHiddenAddr,
nkObjDownConv, nkObjUpConv}
PathKinds1 = {nkHiddenStdConv, nkHiddenSubConv}
proc skipConvDfa*(n: PNode): PNode =
result = n
while true:
case result.kind
of nkObjDownConv, nkObjUpConv:
result = result[0]
of PathKinds1:
result = result[1]
else: break
proc aliases*(obj, field: PNode): bool =
var n = field
var obj = obj
while true:
case obj.kind
of {nkObjDownConv, nkObjUpConv, nkAddr, nkHiddenAddr, nkDerefExpr, nkHiddenDeref}:
obj = obj[0]
of PathKinds1:
obj = obj[1]
else: break
while true:
if sameTrees(obj, n): return true
case n.kind
of PathKinds0:
n = n[0]
of PathKinds1:
n = n[1]
else: break
type InstrTargetKind* = enum
None, Full, Partial
proc instrTargets*(insloc, loc: PNode): InstrTargetKind =
if sameTrees(insloc, loc) or insloc.aliases(loc):
Full # x -> x; x -> x.f
elif loc.aliases(insloc):
Partial # x.f -> x
else: None
proc isAnalysableFieldAccess*(orig: PNode; owner: PSym): bool =
var n = orig
while true:
case n.kind
of PathKinds0 - {nkBracketExpr, nkHiddenDeref, nkDerefExpr}:
n = n[0]
of PathKinds1:
n = n[1]
of nkBracketExpr:
# in a[i] the 'i' must be known
if n.len > 1 and n[1].kind in {nkCharLit..nkUInt64Lit}:
n = n[0]
else:
return false
of nkHiddenDeref, nkDerefExpr:
# We "own" sinkparam[].loc but not ourVar[].location as it is a nasty
# pointer indirection.
# bug #14159, we cannot reason about sinkParam[].location as it can
# still be shared for tyRef.
n = n[0]
return n.kind == nkSym and n.sym.owner == owner and
(n.sym.typ.skipTypes(abstractInst-{tyOwned}).kind in {tyOwned})
else: break
# XXX Allow closure deref operations here if we know
# the owner controlled the closure allocation?
result = n.kind == nkSym and n.sym.owner == owner and
sfGlobal notin n.sym.flags and
(n.sym.kind != skParam or isSinkParam(n.sym)) # or n.sym.typ.kind == tyVar)
# Note: There is a different move analyzer possible that checks for
# consume(param.key); param.key = newValue for all paths. Then code like
#
# let splited = split(move self.root, x)
# self.root = merge(splited.lower, splited.greater)
#
# could be written without the ``move self.root``. However, this would be
# wrong! Then the write barrier for the ``self.root`` assignment would
# free the old data and all is lost! Lesson: Don't be too smart, trust the
# lower level C++ optimizer to specialize this code.
proc skipTrivials(c: var Con, n: PNode): PNode =
result = n
while true:
case result.kind
of PathKinds0 - {nkBracketExpr}:
result = result[0]
of nkBracketExpr:
gen(c, result[1])
result = result[0]
of PathKinds1:
result = result[1]
else: break
proc genUse(c: var Con; orig: PNode) =
let n = c.skipTrivials(orig)
if n.kind == nkSym and n.sym.kind in InterestingSyms:
c.code.add Instr(n: orig, kind: use)
elif n.kind in nkCallKinds:
gen(c, n)
proc genDef(c: var Con; orig: PNode) =
let n = c.skipTrivials(orig)
if n.kind == nkSym and n.sym.kind in InterestingSyms:
c.code.add Instr(n: orig, kind: def)
proc genCall(c: var Con; n: PNode) =
gen(c, n[0])
var t = n[0].typ
if t != nil: t = t.skipTypes(abstractInst)
for i in 1..<n.len:
gen(c, n[i])
when false:
if t != nil and i < t.len and t[i].kind == tyOut:
# Pass by 'out' is a 'must def'. Good enough for a move optimizer.
genDef(c, n[i])
# every call can potentially raise:
if c.inTryStmt > 0 and canRaiseConservative(n[0]):
# we generate the instruction sequence:
# fork lab1
# goto exceptionHandler (except or finally)
# lab1:
# join F1
forkT(n):
for i in countdown(c.blocks.high, 0):
if c.blocks[i].isTryBlock:
genBreakOrRaiseAux(c, i, n)
break
proc genMagic(c: var Con; n: PNode; m: TMagic) =
case m
of mAnd, mOr: c.genAndOr(n)
of mNew, mNewFinalize:
genDef(c, n[1])
for i in 2..<n.len: gen(c, n[i])
else:
genCall(c, n)
proc genVarSection(c: var Con; n: PNode) =
for a in n:
if a.kind == nkCommentStmt:
discard
elif a.kind == nkVarTuple:
gen(c, a.lastSon)
for i in 0..<a.len-2: genDef(c, a[i])
else:
gen(c, a.lastSon)
if a.lastSon.kind != nkEmpty:
genDef(c, a[0])
func gen(c: var Con; n: PNode) =
case n.kind
of nkSym: genUse(c, n)
of nkCallKinds:
if n[0].kind == nkSym:
let s = n[0].sym
if s.magic != mNone:
genMagic(c, n, s.magic)
else:
genCall(c, n)
if sfNoReturn in n[0].sym.flags:
genNoReturn(c, n)
else:
genCall(c, n)
of nkCharLit..nkNilLit: discard
of nkAsgn, nkFastAsgn:
gen(c, n[1])
# watch out: 'obj[i].f2 = value' sets 'f2' but
# "uses" 'i'. But we are only talking about builtin array indexing so
# it doesn't matter and 'x = 34' is NOT a usage of 'x'.
genDef(c, n[0])
of PathKinds0 - {nkObjDownConv, nkObjUpConv}:
genUse(c, n)
of nkIfStmt, nkIfExpr: genIf(c, n)
of nkWhenStmt:
# This is "when nimvm" node. Chose the first branch.
gen(c, n[0][1])
of nkCaseStmt: genCase(c, n)
of nkWhileStmt: genWhile(c, n)
of nkBlockExpr, nkBlockStmt: genBlock(c, n)
of nkReturnStmt: genReturn(c, n)
of nkRaiseStmt: genRaise(c, n)
of nkBreakStmt: genBreak(c, n)
of nkTryStmt, nkHiddenTryStmt: genTry(c, n)
of nkStmtList, nkStmtListExpr, nkChckRangeF, nkChckRange64, nkChckRange,
nkBracket, nkCurly, nkPar, nkTupleConstr, nkClosure, nkObjConstr, nkYieldStmt:
for x in n: gen(c, x)
of nkPragmaBlock: gen(c, n.lastSon)
of nkDiscardStmt, nkObjDownConv, nkObjUpConv, nkStringToCString, nkCStringToString:
gen(c, n[0])
of nkConv, nkExprColonExpr, nkExprEqExpr, nkCast, PathKinds1:
gen(c, n[1])
of nkVarSection, nkLetSection: genVarSection(c, n)
of nkDefer: doAssert false, "dfa construction pass requires the elimination of 'defer'"
else: discard
proc constructCfg*(s: PSym; body: PNode): ControlFlowGraph =
## constructs a control flow graph for ``body``.
var c = Con(code: @[], blocks: @[], owner: s)
withBlock(s):
gen(c, body)
genImplicitReturn(c)
when defined(gcArc) or defined(gcOrc):
result = c.code # will move
else:
shallowCopy(result, c.code)