mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-31 10:22:15 +00:00
* update to the latest Jester * remove deprecated procs from some stdlib modules * 'criterion' is not maintained anymore and relies on obsolete stuff
236 lines
6.6 KiB
Nim
236 lines
6.6 KiB
Nim
#
|
|
#
|
|
# Nim's Runtime Library
|
|
# (c) Copyright 2016 Yuriy Glukhov
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
|
|
##[
|
|
The `heapqueue` module implements a
|
|
`heap data structure<https://en.wikipedia.org/wiki/Heap_(data_structure)>`_
|
|
that can be used as a
|
|
`priority queue<https://en.wikipedia.org/wiki/Priority_queue>`_.
|
|
Heaps are arrays for which `a[k] <= a[2*k+1]` and `a[k] <= a[2*k+2]` for
|
|
all `k`, counting elements from 0. The interesting property of a heap is that
|
|
`a[0]` is always its smallest element.
|
|
|
|
Basic usage
|
|
-----------
|
|
.. code-block:: Nim
|
|
import heapqueue
|
|
|
|
var heap = initHeapQueue[int]()
|
|
heap.push(8)
|
|
heap.push(2)
|
|
heap.push(5)
|
|
# The first element is the lowest element
|
|
assert heap[0] == 2
|
|
# Remove and return the lowest element
|
|
assert heap.pop() == 2
|
|
# The lowest element remaining is 5
|
|
assert heap[0] == 5
|
|
|
|
Usage with custom object
|
|
------------------------
|
|
To use a `HeapQueue` with a custom object, the `<` operator must be
|
|
implemented.
|
|
|
|
.. code-block:: Nim
|
|
import heapqueue
|
|
|
|
type Job = object
|
|
priority: int
|
|
|
|
proc `<`(a, b: Job): bool = a.priority < b.priority
|
|
|
|
var jobs = initHeapQueue[Job]()
|
|
jobs.push(Job(priority: 1))
|
|
jobs.push(Job(priority: 2))
|
|
|
|
assert jobs[0].priority == 1
|
|
]##
|
|
import std/private/since
|
|
|
|
type HeapQueue*[T] = object
|
|
## A heap queue, commonly known as a priority queue.
|
|
data: seq[T]
|
|
|
|
proc initHeapQueue*[T](): HeapQueue[T] =
|
|
## Create a new empty heap.
|
|
discard
|
|
|
|
proc len*[T](heap: HeapQueue[T]): int {.inline.} =
|
|
## Return the number of elements of `heap`.
|
|
heap.data.len
|
|
|
|
proc `[]`*[T](heap: HeapQueue[T], i: Natural): T {.inline.} =
|
|
## Access the i-th element of `heap`.
|
|
heap.data[i]
|
|
|
|
proc heapCmp[T](x, y: T): bool {.inline.} =
|
|
return (x < y)
|
|
|
|
proc siftdown[T](heap: var HeapQueue[T], startpos, p: int) =
|
|
## 'heap' is a heap at all indices >= startpos, except possibly for pos. pos
|
|
## is the index of a leaf with a possibly out-of-order value. Restore the
|
|
## heap invariant.
|
|
var pos = p
|
|
var newitem = heap[pos]
|
|
# Follow the path to the root, moving parents down until finding a place
|
|
# newitem fits.
|
|
while pos > startpos:
|
|
let parentpos = (pos - 1) shr 1
|
|
let parent = heap[parentpos]
|
|
if heapCmp(newitem, parent):
|
|
heap.data[pos] = parent
|
|
pos = parentpos
|
|
else:
|
|
break
|
|
heap.data[pos] = newitem
|
|
|
|
proc siftup[T](heap: var HeapQueue[T], p: int) =
|
|
let endpos = len(heap)
|
|
var pos = p
|
|
let startpos = pos
|
|
let newitem = heap[pos]
|
|
# Bubble up the smaller child until hitting a leaf.
|
|
var childpos = 2*pos + 1 # leftmost child position
|
|
while childpos < endpos:
|
|
# Set childpos to index of smaller child.
|
|
let rightpos = childpos + 1
|
|
if rightpos < endpos and not heapCmp(heap[childpos], heap[rightpos]):
|
|
childpos = rightpos
|
|
# Move the smaller child up.
|
|
heap.data[pos] = heap[childpos]
|
|
pos = childpos
|
|
childpos = 2*pos + 1
|
|
# The leaf at pos is empty now. Put newitem there, and bubble it up
|
|
# to its final resting place (by sifting its parents down).
|
|
heap.data[pos] = newitem
|
|
siftdown(heap, startpos, pos)
|
|
|
|
proc push*[T](heap: var HeapQueue[T], item: T) =
|
|
## Push `item` onto heap, maintaining the heap invariant.
|
|
heap.data.add(item)
|
|
siftdown(heap, 0, len(heap)-1)
|
|
|
|
proc pop*[T](heap: var HeapQueue[T]): T =
|
|
## Pop and return the smallest item from `heap`,
|
|
## maintaining the heap invariant.
|
|
let lastelt = heap.data.pop()
|
|
if heap.len > 0:
|
|
result = heap[0]
|
|
heap.data[0] = lastelt
|
|
siftup(heap, 0)
|
|
else:
|
|
result = lastelt
|
|
|
|
proc find*[T](heap: HeapQueue[T], x: T): int {.since: (1, 3).} =
|
|
## Linear scan to find index of item ``x`` or -1 if not found.
|
|
result = -1
|
|
for i in 0 ..< heap.len:
|
|
if heap[i] == x: return i
|
|
|
|
proc del*[T](heap: var HeapQueue[T], index: Natural) =
|
|
## Removes the element at `index` from `heap`, maintaining the heap invariant.
|
|
swap(heap.data[^1], heap.data[index])
|
|
let newLen = heap.len - 1
|
|
heap.data.setLen(newLen)
|
|
if index < newLen:
|
|
heap.siftup(index)
|
|
|
|
proc replace*[T](heap: var HeapQueue[T], item: T): T =
|
|
## Pop and return the current smallest value, and add the new item.
|
|
## This is more efficient than pop() followed by push(), and can be
|
|
## more appropriate when using a fixed-size heap. Note that the value
|
|
## returned may be larger than item! That constrains reasonable uses of
|
|
## this routine unless written as part of a conditional replacement:
|
|
##
|
|
## .. code-block:: nim
|
|
## if item > heap[0]:
|
|
## item = replace(heap, item)
|
|
result = heap[0]
|
|
heap.data[0] = item
|
|
siftup(heap, 0)
|
|
|
|
proc pushpop*[T](heap: var HeapQueue[T], item: T): T =
|
|
## Fast version of a push followed by a pop.
|
|
if heap.len > 0 and heapCmp(heap[0], item):
|
|
swap(item, heap[0])
|
|
siftup(heap, 0)
|
|
return item
|
|
|
|
proc clear*[T](heap: var HeapQueue[T]) =
|
|
## Remove all elements from `heap`, making it empty.
|
|
runnableExamples:
|
|
var heap = initHeapQueue[int]()
|
|
heap.push(1)
|
|
heap.clear()
|
|
assert heap.len == 0
|
|
heap.data.setLen(0)
|
|
|
|
proc `$`*[T](heap: HeapQueue[T]): string =
|
|
## Turn a heap into its string representation.
|
|
runnableExamples:
|
|
var heap = initHeapQueue[int]()
|
|
heap.push(1)
|
|
heap.push(2)
|
|
assert $heap == "[1, 2]"
|
|
result = "["
|
|
for x in heap.data:
|
|
if result.len > 1: result.add(", ")
|
|
result.addQuoted(x)
|
|
result.add("]")
|
|
|
|
when isMainModule:
|
|
proc toSortedSeq[T](h: HeapQueue[T]): seq[T] =
|
|
var tmp = h
|
|
result = @[]
|
|
while tmp.len > 0:
|
|
result.add(pop(tmp))
|
|
|
|
block: # Simple sanity test
|
|
var heap = initHeapQueue[int]()
|
|
let data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
|
|
for item in data:
|
|
push(heap, item)
|
|
doAssert(heap[0] == 0)
|
|
doAssert(heap.toSortedSeq == @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
|
|
|
|
block: # Test del
|
|
var heap = initHeapQueue[int]()
|
|
let data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
|
|
for item in data: push(heap, item)
|
|
|
|
heap.del(0)
|
|
doAssert(heap[0] == 1)
|
|
|
|
heap.del(heap.find(7))
|
|
doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 5, 6, 8, 9])
|
|
|
|
heap.del(heap.find(5))
|
|
doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 6, 8, 9])
|
|
|
|
heap.del(heap.find(6))
|
|
doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 8, 9])
|
|
|
|
heap.del(heap.find(2))
|
|
doAssert(heap.toSortedSeq == @[1, 3, 4, 8, 9])
|
|
|
|
doAssert(heap.find(2) == -1)
|
|
|
|
block: # Test del last
|
|
var heap = initHeapQueue[int]()
|
|
let data = [1, 2, 3]
|
|
for item in data: push(heap, item)
|
|
|
|
heap.del(2)
|
|
doAssert(heap.toSortedSeq == @[1, 2])
|
|
|
|
heap.del(1)
|
|
doAssert(heap.toSortedSeq == @[1])
|
|
|
|
heap.del(0)
|
|
doAssert(heap.toSortedSeq == @[])
|