mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 17:34:43 +00:00
This pragma did nothing. Ref: - https://github.com/nim-lang/Nim/issues/2172#issuecomment-383276469 - https://github.com/nim-lang/Nim/issues/12975
379 lines
9.9 KiB
Nim
379 lines
9.9 KiB
Nim
#
|
|
#
|
|
# Nim's Runtime Library
|
|
# (c) Copyright 2015 Dennis Felsing
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
|
|
## This module implements rational numbers, consisting of a numerator `num` and
|
|
## a denominator `den`, both of type int. The denominator can not be 0.
|
|
|
|
import math
|
|
import hashes
|
|
|
|
type Rational*[T] = object
|
|
## a rational number, consisting of a numerator and denominator
|
|
num*, den*: T
|
|
|
|
proc initRational*[T: SomeInteger](num, den: T): Rational[T] =
|
|
## Create a new rational number.
|
|
assert(den != 0, "a denominator of zero value is invalid")
|
|
result.num = num
|
|
result.den = den
|
|
|
|
proc `//`*[T](num, den: T): Rational[T] = initRational[T](num, den)
|
|
## A friendlier version of `initRational`. Example usage:
|
|
##
|
|
## .. code-block:: nim
|
|
## var x = 1//3 + 1//5
|
|
|
|
proc `$`*[T](x: Rational[T]): string =
|
|
## Turn a rational number into a string.
|
|
result = $x.num & "/" & $x.den
|
|
|
|
proc toRational*[T: SomeInteger](x: T): Rational[T] =
|
|
## Convert some integer `x` to a rational number.
|
|
result.num = x
|
|
result.den = 1
|
|
|
|
proc toRational*(x: float,
|
|
n: int = high(int) shr (sizeof(int) div 2 * 8)): Rational[int] =
|
|
## Calculates the best rational numerator and denominator
|
|
## that approximates to `x`, where the denominator is
|
|
## smaller than `n` (default is the largest possible
|
|
## int to give maximum resolution).
|
|
##
|
|
## The algorithm is based on the theory of continued fractions.
|
|
##
|
|
## .. code-block:: Nim
|
|
## import math, rationals
|
|
## for i in 1..10:
|
|
## let t = (10 ^ (i+3)).int
|
|
## let x = toRational(PI, t)
|
|
## let newPI = x.num / x.den
|
|
## echo x, " ", newPI, " error: ", PI - newPI, " ", t
|
|
|
|
# David Eppstein / UC Irvine / 8 Aug 1993
|
|
# With corrections from Arno Formella, May 2008
|
|
var
|
|
m11, m22 = 1
|
|
m12, m21 = 0
|
|
ai = int(x)
|
|
x = x
|
|
while m21 * ai + m22 <= n:
|
|
swap m12, m11
|
|
swap m22, m21
|
|
m11 = m12 * ai + m11
|
|
m21 = m22 * ai + m21
|
|
if x == float(ai): break # division by zero
|
|
x = 1/(x - float(ai))
|
|
if x > float(high(int32)): break # representation failure
|
|
ai = int(x)
|
|
result = m11 // m21
|
|
|
|
proc toFloat*[T](x: Rational[T]): float =
|
|
## Convert a rational number `x` to a float.
|
|
x.num / x.den
|
|
|
|
proc toInt*[T](x: Rational[T]): int =
|
|
## Convert a rational number `x` to an int. Conversion rounds towards 0 if
|
|
## `x` does not contain an integer value.
|
|
x.num div x.den
|
|
|
|
proc reduce*[T: SomeInteger](x: var Rational[T]) =
|
|
## Reduce rational `x`.
|
|
let common = gcd(x.num, x.den)
|
|
if x.den > 0:
|
|
x.num = x.num div common
|
|
x.den = x.den div common
|
|
elif x.den < 0:
|
|
x.num = -x.num div common
|
|
x.den = -x.den div common
|
|
else:
|
|
raise newException(DivByZeroDefect, "division by zero")
|
|
|
|
proc `+` *[T](x, y: Rational[T]): Rational[T] =
|
|
## Add two rational numbers.
|
|
let common = lcm(x.den, y.den)
|
|
result.num = common div x.den * x.num + common div y.den * y.num
|
|
result.den = common
|
|
reduce(result)
|
|
|
|
proc `+` *[T](x: Rational[T], y: T): Rational[T] =
|
|
## Add rational `x` to int `y`.
|
|
result.num = x.num + y * x.den
|
|
result.den = x.den
|
|
|
|
proc `+` *[T](x: T, y: Rational[T]): Rational[T] =
|
|
## Add int `x` to rational `y`.
|
|
result.num = x * y.den + y.num
|
|
result.den = y.den
|
|
|
|
proc `+=` *[T](x: var Rational[T], y: Rational[T]) =
|
|
## Add rational `y` to rational `x`.
|
|
let common = lcm(x.den, y.den)
|
|
x.num = common div x.den * x.num + common div y.den * y.num
|
|
x.den = common
|
|
reduce(x)
|
|
|
|
proc `+=` *[T](x: var Rational[T], y: T) =
|
|
## Add int `y` to rational `x`.
|
|
x.num += y * x.den
|
|
|
|
proc `-` *[T](x: Rational[T]): Rational[T] =
|
|
## Unary minus for rational numbers.
|
|
result.num = -x.num
|
|
result.den = x.den
|
|
|
|
proc `-` *[T](x, y: Rational[T]): Rational[T] =
|
|
## Subtract two rational numbers.
|
|
let common = lcm(x.den, y.den)
|
|
result.num = common div x.den * x.num - common div y.den * y.num
|
|
result.den = common
|
|
reduce(result)
|
|
|
|
proc `-` *[T](x: Rational[T], y: T): Rational[T] =
|
|
## Subtract int `y` from rational `x`.
|
|
result.num = x.num - y * x.den
|
|
result.den = x.den
|
|
|
|
proc `-` *[T](x: T, y: Rational[T]): Rational[T] =
|
|
## Subtract rational `y` from int `x`.
|
|
result.num = x * y.den - y.num
|
|
result.den = y.den
|
|
|
|
proc `-=` *[T](x: var Rational[T], y: Rational[T]) =
|
|
## Subtract rational `y` from rational `x`.
|
|
let common = lcm(x.den, y.den)
|
|
x.num = common div x.den * x.num - common div y.den * y.num
|
|
x.den = common
|
|
reduce(x)
|
|
|
|
proc `-=` *[T](x: var Rational[T], y: T) =
|
|
## Subtract int `y` from rational `x`.
|
|
x.num -= y * x.den
|
|
|
|
proc `*` *[T](x, y: Rational[T]): Rational[T] =
|
|
## Multiply two rational numbers.
|
|
result.num = x.num * y.num
|
|
result.den = x.den * y.den
|
|
reduce(result)
|
|
|
|
proc `*` *[T](x: Rational[T], y: T): Rational[T] =
|
|
## Multiply rational `x` with int `y`.
|
|
result.num = x.num * y
|
|
result.den = x.den
|
|
reduce(result)
|
|
|
|
proc `*` *[T](x: T, y: Rational[T]): Rational[T] =
|
|
## Multiply int `x` with rational `y`.
|
|
result.num = x * y.num
|
|
result.den = y.den
|
|
reduce(result)
|
|
|
|
proc `*=` *[T](x: var Rational[T], y: Rational[T]) =
|
|
## Multiply rationals `y` to `x`.
|
|
x.num *= y.num
|
|
x.den *= y.den
|
|
reduce(x)
|
|
|
|
proc `*=` *[T](x: var Rational[T], y: T) =
|
|
## Multiply int `y` to rational `x`.
|
|
x.num *= y
|
|
reduce(x)
|
|
|
|
proc reciprocal*[T](x: Rational[T]): Rational[T] =
|
|
## Calculate the reciprocal of `x`. (1/x)
|
|
if x.num > 0:
|
|
result.num = x.den
|
|
result.den = x.num
|
|
elif x.num < 0:
|
|
result.num = -x.den
|
|
result.den = -x.num
|
|
else:
|
|
raise newException(DivByZeroDefect, "division by zero")
|
|
|
|
proc `/`*[T](x, y: Rational[T]): Rational[T] =
|
|
## Divide rationals `x` by `y`.
|
|
result.num = x.num * y.den
|
|
result.den = x.den * y.num
|
|
reduce(result)
|
|
|
|
proc `/`*[T](x: Rational[T], y: T): Rational[T] =
|
|
## Divide rational `x` by int `y`.
|
|
result.num = x.num
|
|
result.den = x.den * y
|
|
reduce(result)
|
|
|
|
proc `/`*[T](x: T, y: Rational[T]): Rational[T] =
|
|
## Divide int `x` by Rational `y`.
|
|
result.num = x * y.den
|
|
result.den = y.num
|
|
reduce(result)
|
|
|
|
proc `/=`*[T](x: var Rational[T], y: Rational[T]) =
|
|
## Divide rationals `x` by `y` in place.
|
|
x.num *= y.den
|
|
x.den *= y.num
|
|
reduce(x)
|
|
|
|
proc `/=`*[T](x: var Rational[T], y: T) =
|
|
## Divide rational `x` by int `y` in place.
|
|
x.den *= y
|
|
reduce(x)
|
|
|
|
proc cmp*(x, y: Rational): int =
|
|
## Compares two rationals.
|
|
(x - y).num
|
|
|
|
proc `<` *(x, y: Rational): bool =
|
|
(x - y).num < 0
|
|
|
|
proc `<=` *(x, y: Rational): bool =
|
|
(x - y).num <= 0
|
|
|
|
proc `==` *(x, y: Rational): bool =
|
|
(x - y).num == 0
|
|
|
|
proc abs*[T](x: Rational[T]): Rational[T] =
|
|
result.num = abs x.num
|
|
result.den = abs x.den
|
|
|
|
proc `div`*[T: SomeInteger](x, y: Rational[T]): T =
|
|
## Computes the rational truncated division.
|
|
(x.num * y.den) div (y.num * x.den)
|
|
|
|
proc `mod`*[T: SomeInteger](x, y: Rational[T]): Rational[T] =
|
|
## Computes the rational modulo by truncated division (remainder).
|
|
## This is same as ``x - (x div y) * y``.
|
|
result = ((x.num * y.den) mod (y.num * x.den)) // (x.den * y.den)
|
|
reduce(result)
|
|
|
|
proc floorDiv*[T: SomeInteger](x, y: Rational[T]): T =
|
|
## Computes the rational floor division.
|
|
##
|
|
## Floor division is conceptually defined as ``floor(x / y)``.
|
|
## This is different from the ``div`` operator, which is defined
|
|
## as ``trunc(x / y)``. That is, ``div`` rounds towards ``0`` and ``floorDiv``
|
|
## rounds down.
|
|
floorDiv(x.num * y.den, y.num * x.den)
|
|
|
|
proc floorMod*[T: SomeInteger](x, y: Rational[T]): Rational[T] =
|
|
## Computes the rational modulo by floor division (modulo).
|
|
##
|
|
## This is same as ``x - floorDiv(x, y) * y``.
|
|
## This proc behaves the same as the ``%`` operator in python.
|
|
result = floorMod(x.num * y.den, y.num * x.den) // (x.den * y.den)
|
|
reduce(result)
|
|
|
|
proc hash*[T](x: Rational[T]): Hash =
|
|
## Computes hash for rational `x`
|
|
# reduce first so that hash(x) == hash(y) for x == y
|
|
var copy = x
|
|
reduce(copy)
|
|
|
|
var h: Hash = 0
|
|
h = h !& hash(copy.num)
|
|
h = h !& hash(copy.den)
|
|
result = !$h
|
|
|
|
when isMainModule:
|
|
var
|
|
z = Rational[int](num: 0, den: 1)
|
|
o = initRational(num = 1, den = 1)
|
|
a = initRational(1, 2)
|
|
b = -1 // -2
|
|
m1 = -1 // 1
|
|
tt = 10 // 2
|
|
|
|
assert(a == a)
|
|
assert( (a-a) == z)
|
|
assert( (a+b) == o)
|
|
assert( (a/b) == o)
|
|
assert( (a*b) == 1 // 4)
|
|
assert( (3/a) == 6 // 1)
|
|
assert( (a/3) == 1 // 6)
|
|
assert(a*b == 1 // 4)
|
|
assert(tt*z == z)
|
|
assert(10*a == tt)
|
|
assert(a*10 == tt)
|
|
assert(tt/10 == a)
|
|
assert(a-m1 == 3 // 2)
|
|
assert(a+m1 == -1 // 2)
|
|
assert(m1+tt == 16 // 4)
|
|
assert(m1-tt == 6 // -1)
|
|
|
|
assert(z < o)
|
|
assert(z <= o)
|
|
assert(z == z)
|
|
assert(cmp(z, o) < 0)
|
|
assert(cmp(o, z) > 0)
|
|
|
|
assert(o == o)
|
|
assert(o >= o)
|
|
assert(not(o > o))
|
|
assert(cmp(o, o) == 0)
|
|
assert(cmp(z, z) == 0)
|
|
assert(hash(o) == hash(o))
|
|
|
|
assert(a == b)
|
|
assert(a >= b)
|
|
assert(not(b > a))
|
|
assert(cmp(a, b) == 0)
|
|
assert(hash(a) == hash(b))
|
|
|
|
var x = 1//3
|
|
|
|
x *= 5//1
|
|
assert(x == 5//3)
|
|
x += 2 // 9
|
|
assert(x == 17//9)
|
|
x -= 9//18
|
|
assert(x == 25//18)
|
|
x /= 1//2
|
|
assert(x == 50//18)
|
|
|
|
var y = 1//3
|
|
|
|
y *= 4
|
|
assert(y == 4//3)
|
|
y += 5
|
|
assert(y == 19//3)
|
|
y -= 2
|
|
assert(y == 13//3)
|
|
y /= 9
|
|
assert(y == 13//27)
|
|
|
|
assert toRational(5) == 5//1
|
|
assert abs(toFloat(y) - 0.4814814814814815) < 1.0e-7
|
|
assert toInt(z) == 0
|
|
|
|
when sizeof(int) == 8:
|
|
assert toRational(0.98765432) == 2111111029 // 2137499919
|
|
assert toRational(PI) == 817696623 // 260280919
|
|
when sizeof(int) == 4:
|
|
assert toRational(0.98765432) == 80 // 81
|
|
assert toRational(PI) == 355 // 113
|
|
|
|
assert toRational(0.1) == 1 // 10
|
|
assert toRational(0.9) == 9 // 10
|
|
|
|
assert toRational(0.0) == 0 // 1
|
|
assert toRational(-0.25) == 1 // -4
|
|
assert toRational(3.2) == 16 // 5
|
|
assert toRational(0.33) == 33 // 100
|
|
assert toRational(0.22) == 11 // 50
|
|
assert toRational(10.0) == 10 // 1
|
|
|
|
assert (1//1) div (3//10) == 3
|
|
assert (-1//1) div (3//10) == -3
|
|
assert (3//10) mod (1//1) == 3//10
|
|
assert (-3//10) mod (1//1) == -3//10
|
|
assert floorDiv(1//1, 3//10) == 3
|
|
assert floorDiv(-1//1, 3//10) == -4
|
|
assert floorMod(3//10, 1//1) == 3//10
|
|
assert floorMod(-3//10, 1//1) == 7//10
|