Files
Nim/lib/std/sums.nim
Juan Carlos 42d2c3088e Add Documentation (#13811)
* Add more Docs and runnableExamples
2020-03-31 15:47:57 +02:00

87 lines
2.4 KiB
Nim
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#
#
# Nim's Runtime Library
# (c) Copyright 2019 b3liever
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
## Fast sumation functions.
func sumKbn*[T](x: openArray[T]): T =
## Kahan (compensated) summation: O(1) error growth, at the expense
## of a considerable increase in computational expense.
if len(x) == 0: return
var sum = x[0]
var c = T(0)
for i in 1 ..< len(x):
let xi = x[i]
let t = sum + xi
if abs(sum) >= abs(xi):
c += (sum - t) + xi
else:
c += (xi - t) + sum
sum = t
result = sum + c
func sumPairwise[T](x: openArray[T], i0, n: int): T =
if n < 128:
result = x[i0]
for i in i0 + 1 ..< i0 + n:
result += x[i]
else:
let n2 = n div 2
result = sumPairwise(x, i0, n2) + sumPairwise(x, i0 + n2, n - n2)
func sumPairs*[T](x: openArray[T]): T =
## Pairwise (cascade) summation of ``x[i0:i0+n-1]``, with O(log n) error growth
## (vs O(n) for a simple loop) with negligible performance cost if
## the base case is large enough.
##
## See, e.g.:
## * http://en.wikipedia.org/wiki/Pairwise_summation
## Higham, Nicholas J. (1993), "The accuracy of floating point
## summation", SIAM Journal on Scientific Computing 14 (4): 783799.
##
## In fact, the root-mean-square error growth, assuming random roundoff
## errors, is only O(sqrt(log n)), which is nearly indistinguishable from O(1)
## in practice. See:
## * Manfred Tasche and Hansmartin Zeuner, Handbook of
## Analytic-Computational Methods in Applied Mathematics (2000).
##
let n = len(x)
if n == 0: T(0) else: sumPairwise(x, 0, n)
runnableExamples:
static:
block:
const data = [1, 2, 3, 4, 5, 6, 7, 8, 9]
doAssert sumKbn(data) == 45
doAssert sumPairs(data) == 45
when isMainModule:
from math import pow
var epsilon = 1.0
while 1.0 + epsilon != 1.0:
epsilon /= 2.0
let data = @[1.0, epsilon, -epsilon]
assert sumKbn(data) == 1.0
assert sumPairs(data) != 1.0 # known to fail
assert (1.0 + epsilon) - epsilon != 1.0
var tc1: seq[float]
for n in 1 .. 1000:
tc1.add 1.0 / n.float
assert sumKbn(tc1) == 7.485470860550345
assert sumPairs(tc1) == 7.485470860550345
var tc2: seq[float]
for n in 1 .. 1000:
tc2.add pow(-1.0, n.float) / n.float
assert sumKbn(tc2) == -0.6926474305598203
assert sumPairs(tc2) == -0.6926474305598204