Files
Nim/compiler/semdata.nim
metagn 5f9038a5d7 make expressions opt in to symchoices (#22716)
refs #22605

Sym choice nodes are now only allowed to pass through semchecking if
contexts ask for them to (with `efAllowSymChoice`). Otherwise they are
resolved or treated as ambiguous. The contexts that can receive
symchoices in this PR are:

* Call operands and addresses and emulations of such, which will subject
them to overload resolution which will resolve them or fail.
* Type conversion operands only for routine symchoices for type
disambiguation syntax (like `(proc (x: int): int)(foo)`), which will
resolve them or fail.
* Proc parameter default values both at the declaration and during
generic instantiation, which undergo type narrowing and so will resolve
them or fail.

This means unless these contexts mess up sym choice nodes should never
leave the semchecking stage. This serves as a blueprint for future
improvements to intermediate symbol resolution.

Some tangential changes are also in this PR:

1. The `AmbiguousEnum` hint is removed, it was always disabled by
default and since #22606 it only started getting emitted after the
symchoice was soundly resolved.
2. Proc setter syntax (`a.b = c` becoming `` `b=`(a, c) ``) used to
fully type check the RHS before passing the transformed call node to
proc overloading. Now it just passes the original node directly so proc
overloading can deal with its typechecking.
2023-09-18 06:39:22 +02:00

645 lines
24 KiB
Nim

#
#
# The Nim Compiler
# (c) Copyright 2017 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module contains the data structures for the semantic checking phase.
import tables
when defined(nimPreviewSlimSystem):
import std/assertions
import
intsets, options, ast, astalgo, msgs, idents, renderer,
magicsys, vmdef, modulegraphs, lineinfos, sets, pathutils
import ic / ic
type
TOptionEntry* = object # entries to put on a stack for pragma parsing
options*: TOptions
defaultCC*: TCallingConvention
dynlib*: PLib
notes*: TNoteKinds
features*: set[Feature]
otherPragmas*: PNode # every pragma can be pushed
warningAsErrors*: TNoteKinds
POptionEntry* = ref TOptionEntry
PProcCon* = ref TProcCon
TProcCon* {.acyclic.} = object # procedure context; also used for top-level
# statements
owner*: PSym # the symbol this context belongs to
resultSym*: PSym # the result symbol (if we are in a proc)
nestedLoopCounter*: int # whether we are in a loop or not
nestedBlockCounter*: int # whether we are in a block or not
breakInLoop*: bool # whether we are in a loop without block
next*: PProcCon # used for stacking procedure contexts
mappingExists*: bool
mapping*: TIdTable
caseContext*: seq[tuple[n: PNode, idx: int]]
localBindStmts*: seq[PNode]
TMatchedConcept* = object
candidateType*: PType
prev*: ptr TMatchedConcept
depth*: int
TInstantiationPair* = object
genericSym*: PSym
inst*: PInstantiation
TExprFlag* = enum
efLValue, efWantIterator, efWantIterable, efInTypeof,
efNeedStatic,
# Use this in contexts where a static value is mandatory
efPreferStatic,
# Use this in contexts where a static value could bring more
# information, but it's not strictly mandatory. This may become
# the default with implicit statics in the future.
efPreferNilResult,
# Use this if you want a certain result (e.g. static value),
# but you don't want to trigger a hard error. For example,
# you may be in position to supply a better error message
# to the user.
efWantStmt, efAllowStmt, efDetermineType, efExplain,
efWantValue, efOperand, efNoSemCheck,
efNoEvaluateGeneric, efInCall, efFromHlo, efNoSem2Check,
efNoUndeclared, efIsDotCall, efCannotBeDotCall,
# Use this if undeclared identifiers should not raise an error during
# overload resolution.
efNoDiagnostics,
efTypeAllowed # typeAllowed will be called after
efWantNoDefaults
efAllowSymChoice # symchoice node should not be resolved
TExprFlags* = set[TExprFlag]
ImportMode* = enum
importAll, importSet, importExcept
ImportedModule* = object
m*: PSym
case mode*: ImportMode
of importAll: discard
of importSet:
imported*: IntSet # of PIdent.id
of importExcept:
exceptSet*: IntSet # of PIdent.id
PContext* = ref TContext
TContext* = object of TPassContext # a context represents the module
# that is currently being compiled
enforceVoidContext*: PType
# for `if cond: stmt else: foo`, `foo` will be evaluated under
# enforceVoidContext != nil
voidType*: PType # for typeof(stmt)
module*: PSym # the module sym belonging to the context
currentScope*: PScope # current scope
moduleScope*: PScope # scope for modules
imports*: seq[ImportedModule] # scope for all imported symbols
topLevelScope*: PScope # scope for all top-level symbols
p*: PProcCon # procedure context
intTypeCache*: array[-5..32, PType] # cache some common integer types
# to avoid type allocations
nilTypeCache*: PType
matchedConcept*: ptr TMatchedConcept # the current concept being matched
friendModules*: seq[PSym] # friend modules; may access private data;
# this is used so that generic instantiations
# can access private object fields
instCounter*: int # to prevent endless instantiations
templInstCounter*: ref int # gives every template instantiation a unique id
inGenericContext*: int # > 0 if we are in a generic type
inStaticContext*: int # > 0 if we are inside a static: block
inUnrolledContext*: int # > 0 if we are unrolling a loop
compilesContextId*: int # > 0 if we are in a ``compiles`` magic
compilesContextIdGenerator*: int
inGenericInst*: int # > 0 if we are instantiating a generic
converters*: seq[PSym]
patterns*: seq[PSym] # sequence of pattern matchers
optionStack*: seq[POptionEntry]
symMapping*: TIdTable # every gensym'ed symbol needs to be mapped
# to some new symbol in a generic instantiation
libs*: seq[PLib] # all libs used by this module
semConstExpr*: proc (c: PContext, n: PNode; expectedType: PType = nil): PNode {.nimcall.} # for the pragmas
semExpr*: proc (c: PContext, n: PNode, flags: TExprFlags = {}, expectedType: PType = nil): PNode {.nimcall.}
semExprWithType*: proc (c: PContext, n: PNode, flags: TExprFlags = {}, expectedType: PType = nil): PNode {.nimcall.}
semTryExpr*: proc (c: PContext, n: PNode, flags: TExprFlags = {}): PNode {.nimcall.}
semTryConstExpr*: proc (c: PContext, n: PNode; expectedType: PType = nil): PNode {.nimcall.}
computeRequiresInit*: proc (c: PContext, t: PType): bool {.nimcall.}
hasUnresolvedArgs*: proc (c: PContext, n: PNode): bool
semOperand*: proc (c: PContext, n: PNode, flags: TExprFlags = {}): PNode {.nimcall.}
semConstBoolExpr*: proc (c: PContext, n: PNode): PNode {.nimcall.} # XXX bite the bullet
semOverloadedCall*: proc (c: PContext, n, nOrig: PNode,
filter: TSymKinds, flags: TExprFlags, expectedType: PType = nil): PNode {.nimcall.}
semTypeNode*: proc(c: PContext, n: PNode, prev: PType): PType {.nimcall.}
semInferredLambda*: proc(c: PContext, pt: TIdTable, n: PNode): PNode
semGenerateInstance*: proc (c: PContext, fn: PSym, pt: TIdTable,
info: TLineInfo): PSym
includedFiles*: IntSet # used to detect recursive include files
pureEnumFields*: TStrTable # pure enum fields that can be used unambiguously
userPragmas*: TStrTable
evalContext*: PEvalContext
unknownIdents*: IntSet # ids of all unknown identifiers to prevent
# naming it multiple times
generics*: seq[TInstantiationPair] # pending list of instantiated generics to compile
topStmts*: int # counts the number of encountered top level statements
lastGenericIdx*: int # used for the generics stack
hloLoopDetector*: int # used to prevent endless loops in the HLO
inParallelStmt*: int
instTypeBoundOp*: proc (c: PContext; dc: PSym; t: PType; info: TLineInfo;
op: TTypeAttachedOp; col: int): PSym {.nimcall.}
cache*: IdentCache
graph*: ModuleGraph
signatures*: TStrTable
recursiveDep*: string
suggestionsMade*: bool
isAmbiguous*: bool # little hack
features*: set[Feature]
inTypeContext*, inConceptDecl*: int
unusedImports*: seq[(PSym, TLineInfo)]
exportIndirections*: HashSet[(int, int)] # (module.id, symbol.id)
importModuleMap*: Table[int, int] # (module.id, module.id)
lastTLineInfo*: TLineInfo
sideEffects*: Table[int, seq[(TLineInfo, PSym)]] # symbol.id index
inUncheckedAssignSection*: int
importModuleLookup*: Table[int, seq[int]] # (module.ident.id, [module.id])
skipTypes*: seq[PNode] # used to skip types between passes in type section. So far only used for inheritance, sets and generic bodies.
TBorrowState* = enum
bsNone, bsReturnNotMatch, bsNoDistinct, bsGeneric, bsNotSupported, bsMatch
template config*(c: PContext): ConfigRef = c.graph.config
proc getIntLitType*(c: PContext; literal: PNode): PType =
# we cache some common integer literal types for performance:
let value = literal.intVal
if value >= low(c.intTypeCache) and value <= high(c.intTypeCache):
result = c.intTypeCache[value.int]
if result == nil:
let ti = getSysType(c.graph, literal.info, tyInt)
result = copyType(ti, nextTypeId(c.idgen), ti.owner)
result.n = literal
c.intTypeCache[value.int] = result
else:
let ti = getSysType(c.graph, literal.info, tyInt)
result = copyType(ti, nextTypeId(c.idgen), ti.owner)
result.n = literal
proc setIntLitType*(c: PContext; result: PNode) =
let i = result.intVal
case c.config.target.intSize
of 8: result.typ = getIntLitType(c, result)
of 4:
if i >= low(int32) and i <= high(int32):
result.typ = getIntLitType(c, result)
else:
result.typ = getSysType(c.graph, result.info, tyInt64)
of 2:
if i >= low(int16) and i <= high(int16):
result.typ = getIntLitType(c, result)
elif i >= low(int32) and i <= high(int32):
result.typ = getSysType(c.graph, result.info, tyInt32)
else:
result.typ = getSysType(c.graph, result.info, tyInt64)
of 1:
# 8 bit CPUs are insane ...
if i >= low(int8) and i <= high(int8):
result.typ = getIntLitType(c, result)
elif i >= low(int16) and i <= high(int16):
result.typ = getSysType(c.graph, result.info, tyInt16)
elif i >= low(int32) and i <= high(int32):
result.typ = getSysType(c.graph, result.info, tyInt32)
else:
result.typ = getSysType(c.graph, result.info, tyInt64)
else:
internalError(c.config, result.info, "invalid int size")
proc makeInstPair*(s: PSym, inst: PInstantiation): TInstantiationPair =
result.genericSym = s
result.inst = inst
proc filename*(c: PContext): string =
# the module's filename
return toFilename(c.config, FileIndex c.module.position)
proc scopeDepth*(c: PContext): int {.inline.} =
result = if c.currentScope != nil: c.currentScope.depthLevel
else: 0
proc getCurrOwner*(c: PContext): PSym =
# owner stack (used for initializing the
# owner field of syms)
# the documentation comment always gets
# assigned to the current owner
result = c.graph.owners[^1]
proc pushOwner*(c: PContext; owner: PSym) =
c.graph.owners.add(owner)
proc popOwner*(c: PContext) =
if c.graph.owners.len > 0: setLen(c.graph.owners, c.graph.owners.len - 1)
else: internalError(c.config, "popOwner")
proc lastOptionEntry*(c: PContext): POptionEntry =
result = c.optionStack[^1]
proc popProcCon*(c: PContext) {.inline.} = c.p = c.p.next
proc put*(p: PProcCon; key, val: PSym) =
if not p.mappingExists:
p.mapping = initIdTable()
p.mappingExists = true
#echo "put into table ", key.info
p.mapping.idTablePut(key, val)
proc get*(p: PProcCon; key: PSym): PSym =
if not p.mappingExists: return nil
result = PSym(p.mapping.idTableGet(key))
proc getGenSym*(c: PContext; s: PSym): PSym =
if sfGenSym notin s.flags: return s
var it = c.p
while it != nil:
result = get(it, s)
if result != nil:
#echo "got from table ", result.name.s, " ", result.info
return result
it = it.next
result = s
proc considerGenSyms*(c: PContext; n: PNode) =
if n == nil:
discard "can happen for nkFormalParams/nkArgList"
elif n.kind == nkSym:
let s = getGenSym(c, n.sym)
if n.sym != s:
n.sym = s
else:
for i in 0..<n.safeLen:
considerGenSyms(c, n[i])
proc newOptionEntry*(conf: ConfigRef): POptionEntry =
new(result)
result.options = conf.options
result.defaultCC = ccNimCall
result.dynlib = nil
result.notes = conf.notes
result.warningAsErrors = conf.warningAsErrors
proc pushOptionEntry*(c: PContext): POptionEntry =
new(result)
var prev = c.optionStack[^1]
result.options = c.config.options
result.defaultCC = prev.defaultCC
result.dynlib = prev.dynlib
result.notes = c.config.notes
result.warningAsErrors = c.config.warningAsErrors
result.features = c.features
c.optionStack.add(result)
proc popOptionEntry*(c: PContext) =
c.config.options = c.optionStack[^1].options
c.config.notes = c.optionStack[^1].notes
c.config.warningAsErrors = c.optionStack[^1].warningAsErrors
c.features = c.optionStack[^1].features
c.optionStack.setLen(c.optionStack.len - 1)
proc newContext*(graph: ModuleGraph; module: PSym): PContext =
new(result)
result.optionStack = @[newOptionEntry(graph.config)]
result.libs = @[]
result.module = module
result.friendModules = @[module]
result.converters = @[]
result.patterns = @[]
result.includedFiles = initIntSet()
result.pureEnumFields = initStrTable()
result.userPragmas = initStrTable()
result.generics = @[]
result.unknownIdents = initIntSet()
result.cache = graph.cache
result.graph = graph
result.signatures = initStrTable()
result.features = graph.config.features
if graph.config.symbolFiles != disabledSf:
let id = module.position
assert graph.packed[id].status in {undefined, outdated}
graph.packed[id].status = storing
graph.packed[id].module = module
initEncoder graph, module
template packedRepr*(c): untyped = c.graph.packed[c.module.position].fromDisk
template encoder*(c): untyped = c.graph.encoders[c.module.position]
proc addIncludeFileDep*(c: PContext; f: FileIndex) =
if c.config.symbolFiles != disabledSf:
addIncludeFileDep(c.encoder, c.packedRepr, f)
proc addImportFileDep*(c: PContext; f: FileIndex) =
if c.config.symbolFiles != disabledSf:
addImportFileDep(c.encoder, c.packedRepr, f)
proc addPragmaComputation*(c: PContext; n: PNode) =
if c.config.symbolFiles != disabledSf:
addPragmaComputation(c.encoder, c.packedRepr, n)
proc inclSym(sq: var seq[PSym], s: PSym): bool =
for i in 0..<sq.len:
if sq[i].id == s.id: return false
sq.add s
result = true
proc addConverter*(c: PContext, conv: LazySym) =
assert conv.sym != nil
if inclSym(c.converters, conv.sym):
add(c.graph.ifaces[c.module.position].converters, conv)
proc addConverterDef*(c: PContext, conv: LazySym) =
addConverter(c, conv)
if c.config.symbolFiles != disabledSf:
addConverter(c.encoder, c.packedRepr, conv.sym)
proc addPureEnum*(c: PContext, e: LazySym) =
assert e.sym != nil
add(c.graph.ifaces[c.module.position].pureEnums, e)
if c.config.symbolFiles != disabledSf:
addPureEnum(c.encoder, c.packedRepr, e.sym)
proc addPattern*(c: PContext, p: LazySym) =
assert p.sym != nil
if inclSym(c.patterns, p.sym):
add(c.graph.ifaces[c.module.position].patterns, p)
if c.config.symbolFiles != disabledSf:
addTrmacro(c.encoder, c.packedRepr, p.sym)
proc exportSym*(c: PContext; s: PSym) =
strTableAdds(c.graph, c.module, s)
if c.config.symbolFiles != disabledSf:
addExported(c.encoder, c.packedRepr, s)
proc reexportSym*(c: PContext; s: PSym) =
strTableAdds(c.graph, c.module, s)
if c.config.symbolFiles != disabledSf:
addReexport(c.encoder, c.packedRepr, s)
proc newLib*(kind: TLibKind): PLib =
new(result)
result.kind = kind #result.syms = initObjectSet()
proc addToLib*(lib: PLib, sym: PSym) =
#if sym.annex != nil and not isGenericRoutine(sym):
# LocalError(sym.info, errInvalidPragma)
sym.annex = lib
proc newTypeS*(kind: TTypeKind, c: PContext, sons: seq[PType] = @[]): PType =
result = newType(kind, nextTypeId(c.idgen), getCurrOwner(c), sons = sons)
proc makePtrType*(owner: PSym, baseType: PType; idgen: IdGenerator): PType =
result = newType(tyPtr, nextTypeId(idgen), owner)
addSonSkipIntLit(result, baseType, idgen)
proc makePtrType*(c: PContext, baseType: PType): PType =
makePtrType(getCurrOwner(c), baseType, c.idgen)
proc makeTypeWithModifier*(c: PContext,
modifier: TTypeKind,
baseType: PType): PType =
assert modifier in {tyVar, tyLent, tyPtr, tyRef, tyStatic, tyTypeDesc}
if modifier in {tyVar, tyLent, tyTypeDesc} and baseType.kind == modifier:
result = baseType
else:
result = newTypeS(modifier, c)
addSonSkipIntLit(result, baseType, c.idgen)
proc makeVarType*(c: PContext, baseType: PType; kind = tyVar): PType =
if baseType.kind == kind:
result = baseType
else:
result = newTypeS(kind, c)
addSonSkipIntLit(result, baseType, c.idgen)
proc makeVarType*(owner: PSym, baseType: PType; idgen: IdGenerator; kind = tyVar): PType =
if baseType.kind == kind:
result = baseType
else:
result = newType(kind, nextTypeId(idgen), owner)
addSonSkipIntLit(result, baseType, idgen)
proc makeTypeSymNode*(c: PContext, typ: PType, info: TLineInfo): PNode =
let typedesc = newTypeS(tyTypeDesc, c)
incl typedesc.flags, tfCheckedForDestructor
internalAssert(c.config, typ != nil)
typedesc.addSonSkipIntLit(typ, c.idgen)
let sym = newSym(skType, c.cache.idAnon, c.idgen, getCurrOwner(c), info,
c.config.options).linkTo(typedesc)
result = newSymNode(sym, info)
proc makeTypeFromExpr*(c: PContext, n: PNode): PType =
result = newTypeS(tyFromExpr, c)
assert n != nil
result.n = n
proc newTypeWithSons*(owner: PSym, kind: TTypeKind, sons: seq[PType];
idgen: IdGenerator): PType =
result = newType(kind, nextTypeId(idgen), owner, sons = sons)
proc newTypeWithSons*(c: PContext, kind: TTypeKind,
sons: seq[PType]): PType =
result = newType(kind, nextTypeId(c.idgen), getCurrOwner(c), sons = sons)
proc newTypeWithSons*(c: PContext, kind: TTypeKind,
parent: PType): PType =
result = newType(kind, nextTypeId(c.idgen), getCurrOwner(c), parent = parent)
proc makeStaticExpr*(c: PContext, n: PNode): PNode =
result = newNodeI(nkStaticExpr, n.info)
result.sons = @[n]
result.typ = if n.typ != nil and n.typ.kind == tyStatic: n.typ
else: newTypeWithSons(c, tyStatic, @[n.typ])
proc makeAndType*(c: PContext, t1, t2: PType): PType =
result = newTypeS(tyAnd, c, sons = @[t1, t2])
propagateToOwner(result, t1)
propagateToOwner(result, t2)
result.flags.incl((t1.flags + t2.flags) * {tfHasStatic})
result.flags.incl tfHasMeta
proc makeOrType*(c: PContext, t1, t2: PType): PType =
if t1.kind != tyOr and t2.kind != tyOr:
result = newTypeS(tyOr, c, sons = @[t1, t2])
else:
result = newTypeS(tyOr, c)
template addOr(t1) =
if t1.kind == tyOr:
for x in t1: result.rawAddSon x
else:
result.rawAddSon t1
addOr(t1)
addOr(t2)
propagateToOwner(result, t1)
propagateToOwner(result, t2)
result.flags.incl((t1.flags + t2.flags) * {tfHasStatic})
result.flags.incl tfHasMeta
proc makeNotType*(c: PContext, t1: PType): PType =
result = newTypeS(tyNot, c, sons = @[t1])
propagateToOwner(result, t1)
result.flags.incl(t1.flags * {tfHasStatic})
result.flags.incl tfHasMeta
proc nMinusOne(c: PContext; n: PNode): PNode =
result = newTreeI(nkCall, n.info, newSymNode(getSysMagic(c.graph, n.info, "pred", mPred)), n)
# Remember to fix the procs below this one when you make changes!
proc makeRangeWithStaticExpr*(c: PContext, n: PNode): PType =
let intType = getSysType(c.graph, n.info, tyInt)
result = newTypeS(tyRange, c, sons = @[intType])
if n.typ != nil and n.typ.n == nil:
result.flags.incl tfUnresolved
result.n = newTreeI(nkRange, n.info, newIntTypeNode(0, intType),
makeStaticExpr(c, nMinusOne(c, n)))
template rangeHasUnresolvedStatic*(t: PType): bool =
tfUnresolved in t.flags
proc errorType*(c: PContext): PType =
## creates a type representing an error state
result = newTypeS(tyError, c)
result.flags.incl tfCheckedForDestructor
proc errorNode*(c: PContext, n: PNode): PNode =
result = newNodeI(nkEmpty, n.info)
result.typ = errorType(c)
# These mimic localError
template localErrorNode*(c: PContext, n: PNode, info: TLineInfo, msg: TMsgKind, arg: string): PNode =
liMessage(c.config, info, msg, arg, doNothing, instLoc())
errorNode(c, n)
template localErrorNode*(c: PContext, n: PNode, info: TLineInfo, arg: string): PNode =
liMessage(c.config, info, errGenerated, arg, doNothing, instLoc())
errorNode(c, n)
template localErrorNode*(c: PContext, n: PNode, msg: TMsgKind, arg: string): PNode =
let n2 = n
liMessage(c.config, n2.info, msg, arg, doNothing, instLoc())
errorNode(c, n2)
template localErrorNode*(c: PContext, n: PNode, arg: string): PNode =
let n2 = n
liMessage(c.config, n2.info, errGenerated, arg, doNothing, instLoc())
errorNode(c, n2)
proc fillTypeS*(dest: PType, kind: TTypeKind, c: PContext) =
dest.kind = kind
dest.owner = getCurrOwner(c)
dest.size = - 1
proc makeRangeType*(c: PContext; first, last: BiggestInt;
info: TLineInfo; intType: PType = nil): PType =
let intType = if intType != nil: intType else: getSysType(c.graph, info, tyInt)
var n = newNodeI(nkRange, info)
n.add newIntTypeNode(first, intType)
n.add newIntTypeNode(last, intType)
result = newTypeS(tyRange, c)
result.n = n
addSonSkipIntLit(result, intType, c.idgen) # basetype of range
proc isSelf*(t: PType): bool {.inline.} =
## Is this the magical 'Self' type from concepts?
t.kind == tyTypeDesc and tfPacked in t.flags
proc makeTypeDesc*(c: PContext, typ: PType): PType =
if typ.kind == tyTypeDesc and not isSelf(typ):
result = typ
else:
result = newTypeS(tyTypeDesc, c)
incl result.flags, tfCheckedForDestructor
result.addSonSkipIntLit(typ, c.idgen)
proc symFromType*(c: PContext; t: PType, info: TLineInfo): PSym =
if t.sym != nil: return t.sym
result = newSym(skType, getIdent(c.cache, "AnonType"), c.idgen, t.owner, info)
result.flags.incl sfAnon
result.typ = t
proc symNodeFromType*(c: PContext, t: PType, info: TLineInfo): PNode =
result = newSymNode(symFromType(c, t, info), info)
result.typ = makeTypeDesc(c, t)
proc markIndirect*(c: PContext, s: PSym) {.inline.} =
if s.kind in {skProc, skFunc, skConverter, skMethod, skIterator}:
incl(s.flags, sfAddrTaken)
# XXX add to 'c' for global analysis
proc illFormedAst*(n: PNode; conf: ConfigRef) =
globalError(conf, n.info, errIllFormedAstX, renderTree(n, {renderNoComments}))
proc illFormedAstLocal*(n: PNode; conf: ConfigRef) =
localError(conf, n.info, errIllFormedAstX, renderTree(n, {renderNoComments}))
proc checkSonsLen*(n: PNode, length: int; conf: ConfigRef) =
if n.len != length: illFormedAst(n, conf)
proc checkMinSonsLen*(n: PNode, length: int; conf: ConfigRef) =
if n.len < length: illFormedAst(n, conf)
proc isTopLevel*(c: PContext): bool {.inline.} =
result = c.currentScope.depthLevel <= 2
proc isTopLevelInsideDeclaration*(c: PContext, sym: PSym): bool {.inline.} =
# for routeKinds the scope isn't closed yet:
c.currentScope.depthLevel <= 2 + ord(sym.kind in routineKinds)
proc pushCaseContext*(c: PContext, caseNode: PNode) =
c.p.caseContext.add((caseNode, 0))
proc popCaseContext*(c: PContext) =
discard pop(c.p.caseContext)
proc setCaseContextIdx*(c: PContext, idx: int) =
c.p.caseContext[^1].idx = idx
template addExport*(c: PContext; s: PSym) =
## convenience to export a symbol from the current module
addExport(c.graph, c.module, s)
proc storeRodNode*(c: PContext, n: PNode) =
if c.config.symbolFiles != disabledSf:
toPackedNodeTopLevel(n, c.encoder, c.packedRepr)
proc addToGenericProcCache*(c: PContext; s: PSym; inst: PInstantiation) =
c.graph.procInstCache.mgetOrPut(s.itemId, @[]).add LazyInstantiation(module: c.module.position, inst: inst)
if c.config.symbolFiles != disabledSf:
storeInstantiation(c.encoder, c.packedRepr, s, inst)
proc addToGenericCache*(c: PContext; s: PSym; inst: PType) =
c.graph.typeInstCache.mgetOrPut(s.itemId, @[]).add LazyType(typ: inst)
if c.config.symbolFiles != disabledSf:
storeTypeInst(c.encoder, c.packedRepr, s, inst)
proc sealRodFile*(c: PContext) =
if c.config.symbolFiles != disabledSf:
if c.graph.vm != nil:
for (m, n) in PCtx(c.graph.vm).vmstateDiff:
if m == c.module:
addPragmaComputation(c, n)
c.idgen.sealed = true # no further additions are allowed
proc rememberExpansion*(c: PContext; info: TLineInfo; expandedSym: PSym) =
## Templates and macros are very special in Nim; these have
## inlining semantics so after semantic checking they leave no trace
## in the sem'checked AST. This is very bad for IDE-like tooling
## ("find all usages of this template" would not work). We need special
## logic to remember macro/template expansions. This is done here and
## delegated to the "rod" file mechanism.
if c.config.symbolFiles != disabledSf:
storeExpansion(c.encoder, c.packedRepr, info, expandedSym)