mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-28 17:04:41 +00:00
refs #22605 Sym choice nodes are now only allowed to pass through semchecking if contexts ask for them to (with `efAllowSymChoice`). Otherwise they are resolved or treated as ambiguous. The contexts that can receive symchoices in this PR are: * Call operands and addresses and emulations of such, which will subject them to overload resolution which will resolve them or fail. * Type conversion operands only for routine symchoices for type disambiguation syntax (like `(proc (x: int): int)(foo)`), which will resolve them or fail. * Proc parameter default values both at the declaration and during generic instantiation, which undergo type narrowing and so will resolve them or fail. This means unless these contexts mess up sym choice nodes should never leave the semchecking stage. This serves as a blueprint for future improvements to intermediate symbol resolution. Some tangential changes are also in this PR: 1. The `AmbiguousEnum` hint is removed, it was always disabled by default and since #22606 it only started getting emitted after the symchoice was soundly resolved. 2. Proc setter syntax (`a.b = c` becoming `` `b=`(a, c) ``) used to fully type check the RHS before passing the transformed call node to proc overloading. Now it just passes the original node directly so proc overloading can deal with its typechecking.
3352 lines
126 KiB
Nim
3352 lines
126 KiB
Nim
#
|
|
#
|
|
# The Nim Compiler
|
|
# (c) Copyright 2013 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
# this module does the semantic checking for expressions
|
|
# included from sem.nim
|
|
|
|
when defined(nimCompilerStacktraceHints):
|
|
import std/stackframes
|
|
|
|
const
|
|
errExprXHasNoType = "expression '$1' has no type (or is ambiguous)"
|
|
errXExpectsTypeOrValue = "'$1' expects a type or value"
|
|
errVarForOutParamNeededX = "for a 'var' type a variable needs to be passed; but '$1' is immutable"
|
|
errXStackEscape = "address of '$1' may not escape its stack frame"
|
|
errExprHasNoAddress = "expression has no address"
|
|
errCannotInterpretNodeX = "cannot evaluate '$1'"
|
|
errNamedExprExpected = "named expression expected"
|
|
errNamedExprNotAllowed = "named expression not allowed here"
|
|
errFieldInitTwice = "field initialized twice: '$1'"
|
|
errUndeclaredFieldX = "undeclared field: '$1'"
|
|
|
|
proc semTemplateExpr(c: PContext, n: PNode, s: PSym,
|
|
flags: TExprFlags = {}; expectedType: PType = nil): PNode =
|
|
rememberExpansion(c, n.info, s)
|
|
let info = getCallLineInfo(n)
|
|
markUsed(c, info, s)
|
|
onUse(info, s)
|
|
# Note: This is n.info on purpose. It prevents template from creating an info
|
|
# context when called from an another template
|
|
pushInfoContext(c.config, n.info, s.detailedInfo)
|
|
result = evalTemplate(n, s, getCurrOwner(c), c.config, c.cache,
|
|
c.templInstCounter, c.idgen, efFromHlo in flags)
|
|
if efNoSemCheck notin flags:
|
|
result = semAfterMacroCall(c, n, result, s, flags, expectedType)
|
|
popInfoContext(c.config)
|
|
|
|
# XXX: A more elaborate line info rewrite might be needed
|
|
result.info = info
|
|
|
|
proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags = {}): PNode
|
|
|
|
template rejectEmptyNode(n: PNode) =
|
|
# No matter what a nkEmpty node is not what we want here
|
|
if n.kind == nkEmpty: illFormedAst(n, c.config)
|
|
|
|
proc semOperand(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
|
|
rejectEmptyNode(n)
|
|
# same as 'semExprWithType' but doesn't check for proc vars
|
|
result = semExpr(c, n, flags + {efOperand, efAllowSymChoice})
|
|
if result.typ != nil:
|
|
# XXX tyGenericInst here?
|
|
if result.typ.kind == tyProc and hasUnresolvedParams(result, {efOperand}):
|
|
#and tfUnresolved in result.typ.flags:
|
|
let owner = result.typ.owner
|
|
let err =
|
|
# consistent error message with evaltempl/semMacroExpr
|
|
if owner != nil and owner.kind in {skTemplate, skMacro}:
|
|
errMissingGenericParamsForTemplate % n.renderTree
|
|
else:
|
|
errProcHasNoConcreteType % n.renderTree
|
|
localError(c.config, n.info, err)
|
|
if result.typ.kind in {tyVar, tyLent}: result = newDeref(result)
|
|
elif {efWantStmt, efAllowStmt} * flags != {}:
|
|
result.typ = newTypeS(tyVoid, c)
|
|
else:
|
|
localError(c.config, n.info, errExprXHasNoType %
|
|
renderTree(result, {renderNoComments}))
|
|
result.typ = errorType(c)
|
|
|
|
proc semExprCheck(c: PContext, n: PNode, flags: TExprFlags, expectedType: PType = nil): PNode =
|
|
rejectEmptyNode(n)
|
|
result = semExpr(c, n, flags+{efWantValue}, expectedType)
|
|
|
|
let
|
|
isEmpty = result.kind == nkEmpty
|
|
isTypeError = result.typ != nil and result.typ.kind == tyError
|
|
|
|
if isEmpty or isTypeError:
|
|
# bug #12741, redundant error messages are the lesser evil here:
|
|
localError(c.config, n.info, errExprXHasNoType %
|
|
renderTree(result, {renderNoComments}))
|
|
|
|
if isEmpty:
|
|
# do not produce another redundant error message:
|
|
result = errorNode(c, n)
|
|
|
|
proc semExprWithType(c: PContext, n: PNode, flags: TExprFlags = {}, expectedType: PType = nil): PNode =
|
|
result = semExprCheck(c, n, flags-{efTypeAllowed}, expectedType)
|
|
if result.typ == nil and efInTypeof in flags:
|
|
result.typ = c.voidType
|
|
elif result.typ == nil or result.typ == c.enforceVoidContext:
|
|
localError(c.config, n.info, errExprXHasNoType %
|
|
renderTree(result, {renderNoComments}))
|
|
result.typ = errorType(c)
|
|
elif result.typ.kind == tyError:
|
|
# associates the type error to the current owner
|
|
result.typ = errorType(c)
|
|
elif efTypeAllowed in flags and result.typ.kind == tyProc and
|
|
hasUnresolvedParams(result, {}):
|
|
# mirrored with semOperand but only on efTypeAllowed
|
|
let owner = result.typ.owner
|
|
let err =
|
|
# consistent error message with evaltempl/semMacroExpr
|
|
if owner != nil and owner.kind in {skTemplate, skMacro}:
|
|
errMissingGenericParamsForTemplate % n.renderTree
|
|
else:
|
|
errProcHasNoConcreteType % n.renderTree
|
|
localError(c.config, n.info, err)
|
|
result.typ = errorType(c)
|
|
else:
|
|
if result.typ.kind in {tyVar, tyLent}: result = newDeref(result)
|
|
|
|
proc semExprNoDeref(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
|
|
result = semExprCheck(c, n, flags)
|
|
if result.typ == nil:
|
|
localError(c.config, n.info, errExprXHasNoType %
|
|
renderTree(result, {renderNoComments}))
|
|
result.typ = errorType(c)
|
|
|
|
proc semSymGenericInstantiation(c: PContext, n: PNode, s: PSym): PNode =
|
|
result = symChoice(c, n, s, scClosed)
|
|
|
|
proc semSym(c: PContext, n: PNode, sym: PSym, flags: TExprFlags): PNode
|
|
|
|
proc isSymChoice(n: PNode): bool {.inline.} =
|
|
result = n.kind in nkSymChoices
|
|
|
|
proc semSymChoice(c: PContext, n: PNode, flags: TExprFlags = {}, expectedType: PType = nil): PNode =
|
|
result = n
|
|
if expectedType != nil:
|
|
result = fitNode(c, expectedType, result, n.info)
|
|
if isSymChoice(result) and efAllowSymChoice notin flags:
|
|
# some contexts might want sym choices preserved for later disambiguation
|
|
# in general though they are ambiguous
|
|
let first = n[0].sym
|
|
var foundSym: PSym = nil
|
|
if first.kind == skEnumField and
|
|
not isAmbiguous(c, first.name, {skEnumField}, foundSym) and
|
|
foundSym == first:
|
|
# choose the first resolved enum field, i.e. the latest in scope
|
|
# to mirror behavior before overloadable enums
|
|
result = n[0]
|
|
else:
|
|
var err = "ambiguous identifier '" & first.name.s &
|
|
"' -- use one of the following:\n"
|
|
for child in n:
|
|
let candidate = child.sym
|
|
err.add " " & candidate.owner.name.s & "." & candidate.name.s
|
|
err.add ": " & typeToString(candidate.typ) & "\n"
|
|
localError(c.config, n.info, err)
|
|
n.typ = errorType(c)
|
|
result = n
|
|
if result.kind == nkSym:
|
|
result = semSym(c, result, result.sym, flags)
|
|
|
|
proc inlineConst(c: PContext, n: PNode, s: PSym): PNode {.inline.} =
|
|
result = copyTree(s.astdef)
|
|
if result.isNil:
|
|
localError(c.config, n.info, "constant of type '" & typeToString(s.typ) & "' has no value")
|
|
result = newSymNode(s)
|
|
else:
|
|
result.typ = s.typ
|
|
result.info = n.info
|
|
|
|
type
|
|
TConvStatus = enum
|
|
convOK,
|
|
convNotNeedeed,
|
|
convNotLegal,
|
|
convNotInRange
|
|
|
|
proc checkConversionBetweenObjects(castDest, src: PType; pointers: int): TConvStatus =
|
|
let diff = inheritanceDiff(castDest, src)
|
|
return if diff == high(int) or (pointers > 1 and diff != 0):
|
|
convNotLegal
|
|
else:
|
|
convOK
|
|
|
|
const
|
|
IntegralTypes = {tyBool, tyEnum, tyChar, tyInt..tyUInt64}
|
|
|
|
proc checkConvertible(c: PContext, targetTyp: PType, src: PNode): TConvStatus =
|
|
let srcTyp = src.typ.skipTypes({tyStatic})
|
|
result = convOK
|
|
if sameType(targetTyp, srcTyp) and targetTyp.sym == srcTyp.sym:
|
|
# don't annoy conversions that may be needed on another processor:
|
|
if targetTyp.kind notin IntegralTypes+{tyRange}:
|
|
result = convNotNeedeed
|
|
return
|
|
var d = skipTypes(targetTyp, abstractVar)
|
|
var s = srcTyp
|
|
if s.kind in tyUserTypeClasses and s.isResolvedUserTypeClass:
|
|
s = s.lastSon
|
|
s = skipTypes(s, abstractVar-{tyTypeDesc, tyOwned})
|
|
if s.kind == tyOwned and d.kind != tyOwned:
|
|
s = s.lastSon
|
|
var pointers = 0
|
|
while (d != nil) and (d.kind in {tyPtr, tyRef, tyOwned}):
|
|
if s.kind == tyOwned and d.kind != tyOwned:
|
|
s = s.lastSon
|
|
elif d.kind != s.kind:
|
|
break
|
|
else:
|
|
d = d.lastSon
|
|
s = s.lastSon
|
|
inc pointers
|
|
|
|
let targetBaseTyp = skipTypes(targetTyp, abstractVarRange)
|
|
let srcBaseTyp = skipTypes(srcTyp, abstractVarRange-{tyTypeDesc})
|
|
|
|
if d == nil:
|
|
result = convNotLegal
|
|
elif d.skipTypes(abstractInst).kind == tyObject and s.skipTypes(abstractInst).kind == tyObject:
|
|
result = checkConversionBetweenObjects(d.skipTypes(abstractInst), s.skipTypes(abstractInst), pointers)
|
|
elif (targetBaseTyp.kind in IntegralTypes) and
|
|
(srcBaseTyp.kind in IntegralTypes):
|
|
if targetTyp.kind == tyEnum and srcBaseTyp.kind == tyEnum:
|
|
message(c.config, src.info, warnSuspiciousEnumConv, "suspicious code: enum to enum conversion")
|
|
# `elif` would be incorrect here
|
|
if targetTyp.kind == tyBool:
|
|
discard "convOk"
|
|
elif targetTyp.isOrdinalType:
|
|
if src.kind in nkCharLit..nkUInt64Lit and
|
|
src.getInt notin firstOrd(c.config, targetTyp)..lastOrd(c.config, targetTyp):
|
|
result = convNotInRange
|
|
elif src.kind in nkFloatLit..nkFloat64Lit and
|
|
(classify(src.floatVal) in {fcNan, fcNegInf, fcInf} or
|
|
src.floatVal.int64 notin firstOrd(c.config, targetTyp)..lastOrd(c.config, targetTyp)):
|
|
result = convNotInRange
|
|
elif targetBaseTyp.kind in tyFloat..tyFloat64:
|
|
if src.kind in nkFloatLit..nkFloat64Lit and
|
|
not floatRangeCheck(src.floatVal, targetTyp):
|
|
result = convNotInRange
|
|
elif src.kind in nkCharLit..nkUInt64Lit and
|
|
not floatRangeCheck(src.intVal.float, targetTyp):
|
|
result = convNotInRange
|
|
else:
|
|
# we use d, s here to speed up that operation a bit:
|
|
if d.kind == tyFromExpr:
|
|
result = convNotLegal
|
|
return
|
|
case cmpTypes(c, d, s)
|
|
of isNone, isGeneric:
|
|
if not compareTypes(targetTyp.skipTypes(abstractVar), srcTyp.skipTypes({tyOwned}), dcEqIgnoreDistinct):
|
|
result = convNotLegal
|
|
else:
|
|
discard
|
|
|
|
proc isCastable(c: PContext; dst, src: PType, info: TLineInfo): bool =
|
|
## Checks whether the source type can be cast to the destination type.
|
|
## Casting is very unrestrictive; casts are allowed as long as
|
|
## dst.size >= src.size, and typeAllowed(dst, skParam)
|
|
#const
|
|
# castableTypeKinds = {tyInt, tyPtr, tyRef, tyCstring, tyString,
|
|
# tySequence, tyPointer, tyNil, tyOpenArray,
|
|
# tyProc, tySet, tyEnum, tyBool, tyChar}
|
|
let src = src.skipTypes(tyUserTypeClasses)
|
|
if skipTypes(dst, abstractInst-{tyOpenArray}).kind == tyOpenArray:
|
|
return false
|
|
if skipTypes(src, abstractInst-{tyTypeDesc}).kind == tyTypeDesc:
|
|
return false
|
|
if skipTypes(dst, abstractInst).kind == tyBuiltInTypeClass:
|
|
return false
|
|
let conf = c.config
|
|
if conf.selectedGC in {gcArc, gcOrc, gcAtomicArc}:
|
|
let d = skipTypes(dst, abstractInst)
|
|
let s = skipTypes(src, abstractInst)
|
|
if d.kind == tyRef and s.kind == tyRef and s[0].isFinal != d[0].isFinal:
|
|
return false
|
|
elif d.kind in IntegralTypes and s.kind in {tyString, tySequence}:
|
|
return false
|
|
|
|
var dstSize, srcSize: BiggestInt
|
|
dstSize = computeSize(conf, dst)
|
|
srcSize = computeSize(conf, src)
|
|
if dstSize == -3 or srcSize == -3: # szUnknownSize
|
|
# The Nim compiler can't detect if it's legal or not.
|
|
# Just assume the programmer knows what he is doing.
|
|
return true
|
|
if dstSize < 0:
|
|
return false
|
|
elif srcSize < 0:
|
|
return false
|
|
elif typeAllowed(dst, skParam, c, {taIsCastable}) != nil:
|
|
return false
|
|
elif dst.kind == tyProc and dst.callConv == ccClosure:
|
|
return src.kind == tyProc and src.callConv == ccClosure
|
|
else:
|
|
result = (dstSize >= srcSize) or
|
|
(skipTypes(dst, abstractInst).kind in IntegralTypes) or
|
|
(skipTypes(src, abstractInst-{tyTypeDesc}).kind in IntegralTypes)
|
|
if result and src.kind == tyNil:
|
|
return dst.size <= conf.target.ptrSize
|
|
|
|
proc maybeLiftType(t: var PType, c: PContext, info: TLineInfo) =
|
|
# XXX: liftParamType started to perform addDecl
|
|
# we could do that instead in semTypeNode by snooping for added
|
|
# gnrc. params, then it won't be necessary to open a new scope here
|
|
openScope(c)
|
|
var lifted = liftParamType(c, skType, newNodeI(nkArgList, info),
|
|
t, ":anon", info)
|
|
closeScope(c)
|
|
if lifted != nil: t = lifted
|
|
|
|
proc isOwnedSym(c: PContext; n: PNode): bool =
|
|
let s = qualifiedLookUp(c, n, {})
|
|
result = s != nil and sfSystemModule in s.owner.flags and s.name.s == "owned"
|
|
|
|
proc semConv(c: PContext, n: PNode; flags: TExprFlags = {}, expectedType: PType = nil): PNode =
|
|
if n.len != 2:
|
|
localError(c.config, n.info, "a type conversion takes exactly one argument")
|
|
return n
|
|
|
|
result = newNodeI(nkConv, n.info)
|
|
|
|
var targetType = semTypeNode(c, n[0], nil)
|
|
case targetType.skipTypes({tyDistinct}).kind
|
|
of tyTypeDesc:
|
|
internalAssert c.config, targetType.len > 0
|
|
if targetType.base.kind == tyNone:
|
|
return semTypeOf(c, n)
|
|
else:
|
|
targetType = targetType.base
|
|
of tyStatic:
|
|
var evaluated = semStaticExpr(c, n[1], expectedType)
|
|
if evaluated.kind == nkType or evaluated.typ.kind == tyTypeDesc:
|
|
result = n
|
|
result.typ = c.makeTypeDesc semStaticType(c, evaluated, nil)
|
|
return
|
|
elif targetType.base.kind == tyNone:
|
|
return evaluated
|
|
else:
|
|
targetType = targetType.base
|
|
of tyAnything, tyUntyped, tyTyped:
|
|
localError(c.config, n.info, "illegal type conversion to '$1'" % typeToString(targetType))
|
|
else: discard
|
|
|
|
maybeLiftType(targetType, c, n[0].info)
|
|
|
|
if targetType.kind in {tySink, tyLent} or isOwnedSym(c, n[0]):
|
|
let baseType = semTypeNode(c, n[1], nil).skipTypes({tyTypeDesc})
|
|
let t = newTypeS(targetType.kind, c)
|
|
if targetType.kind == tyOwned:
|
|
t.flags.incl tfHasOwned
|
|
t.rawAddSonNoPropagationOfTypeFlags baseType
|
|
result = newNodeI(nkType, n.info)
|
|
result.typ = makeTypeDesc(c, t)
|
|
return
|
|
|
|
result.add copyTree(n[0])
|
|
|
|
# special case to make MyObject(x = 3) produce a nicer error message:
|
|
if n[1].kind == nkExprEqExpr and
|
|
targetType.skipTypes(abstractPtrs).kind == tyObject:
|
|
localError(c.config, n.info, "object construction uses ':', not '='")
|
|
var op = semExprWithType(c, n[1], flags * {efDetermineType} + {efAllowSymChoice})
|
|
if isSymChoice(op) and op[0].sym.kind notin routineKinds:
|
|
# T(foo) disambiguation syntax only allowed for routines
|
|
op = semSymChoice(c, op)
|
|
if targetType.kind != tyGenericParam and targetType.isMetaType:
|
|
let final = inferWithMetatype(c, targetType, op, true)
|
|
result.add final
|
|
result.typ = final.typ
|
|
return
|
|
|
|
result.typ = targetType
|
|
# XXX op is overwritten later on, this is likely added too early
|
|
# here or needs to be overwritten too then.
|
|
result.add op
|
|
|
|
if targetType.kind == tyGenericParam or
|
|
(op.typ != nil and op.typ.kind == tyFromExpr and c.inGenericContext > 0):
|
|
# expression is compiled early in a generic body
|
|
result.typ = makeTypeFromExpr(c, copyTree(result))
|
|
return result
|
|
|
|
if not isSymChoice(op):
|
|
let status = checkConvertible(c, result.typ, op)
|
|
case status
|
|
of convOK:
|
|
# handle SomeProcType(SomeGenericProc)
|
|
if op.kind == nkSym and op.sym.isGenericRoutine:
|
|
result[1] = fitNode(c, result.typ, result[1], result.info)
|
|
elif op.kind in {nkPar, nkTupleConstr} and targetType.kind == tyTuple:
|
|
op = fitNode(c, targetType, op, result.info)
|
|
of convNotNeedeed:
|
|
message(c.config, n.info, hintConvFromXtoItselfNotNeeded, result.typ.typeToString)
|
|
of convNotLegal:
|
|
result = fitNode(c, result.typ, result[1], result.info)
|
|
if result == nil:
|
|
localError(c.config, n.info, "illegal conversion from '$1' to '$2'" %
|
|
[op.typ.typeToString, result.typ.typeToString])
|
|
of convNotInRange:
|
|
let value =
|
|
if op.kind in {nkCharLit..nkUInt64Lit}: $op.getInt else: $op.getFloat
|
|
localError(c.config, n.info, errGenerated, value & " can't be converted to " &
|
|
result.typ.typeToString)
|
|
else:
|
|
for i in 0..<op.len:
|
|
let it = op[i]
|
|
let status = checkConvertible(c, result.typ, it)
|
|
if status in {convOK, convNotNeedeed}:
|
|
markUsed(c, n.info, it.sym)
|
|
onUse(n.info, it.sym)
|
|
markIndirect(c, it.sym)
|
|
return it
|
|
errorUseQualifier(c, n.info, op[0].sym)
|
|
|
|
proc semCast(c: PContext, n: PNode): PNode =
|
|
## Semantically analyze a casting ("cast[type](param)")
|
|
checkSonsLen(n, 2, c.config)
|
|
let targetType = semTypeNode(c, n[0], nil)
|
|
let castedExpr = semExprWithType(c, n[1])
|
|
if castedExpr.kind == nkClosedSymChoice:
|
|
errorUseQualifier(c, n[1].info, castedExpr)
|
|
if targetType == nil:
|
|
localError(c.config, n.info, "Invalid usage of cast, cast requires a type to convert to, e.g., cast[int](0d).")
|
|
if tfHasMeta in targetType.flags:
|
|
localError(c.config, n[0].info, "cannot cast to a non concrete type: '$1'" % $targetType)
|
|
if not isCastable(c, targetType, castedExpr.typ, n.info):
|
|
localError(c.config, n.info, "expression cannot be cast to '$1'" % $targetType)
|
|
result = newNodeI(nkCast, n.info)
|
|
result.typ = targetType
|
|
result.add copyTree(n[0])
|
|
result.add castedExpr
|
|
|
|
proc semLowHigh(c: PContext, n: PNode, m: TMagic): PNode =
|
|
const
|
|
opToStr: array[mLow..mHigh, string] = ["low", "high"]
|
|
if n.len != 2:
|
|
localError(c.config, n.info, errXExpectsTypeOrValue % opToStr[m])
|
|
else:
|
|
n[1] = semExprWithType(c, n[1], {efDetermineType})
|
|
var typ = skipTypes(n[1].typ, abstractVarRange + {tyTypeDesc, tyUserTypeClassInst})
|
|
case typ.kind
|
|
of tySequence, tyString, tyCstring, tyOpenArray, tyVarargs:
|
|
n.typ = getSysType(c.graph, n.info, tyInt)
|
|
of tyArray:
|
|
n.typ = typ[0] # indextype
|
|
if n.typ.kind == tyRange and emptyRange(n.typ.n[0], n.typ.n[1]): #Invalid range
|
|
n.typ = getSysType(c.graph, n.info, tyInt)
|
|
of tyInt..tyInt64, tyChar, tyBool, tyEnum, tyUInt..tyUInt64, tyFloat..tyFloat64:
|
|
n.typ = n[1].typ.skipTypes({tyTypeDesc})
|
|
of tyGenericParam:
|
|
# prepare this for resolving in semtypinst:
|
|
# we must use copyTree here in order to avoid creating a cycle
|
|
# that could easily turn into an infinite recursion in semtypinst
|
|
n.typ = makeTypeFromExpr(c, n.copyTree)
|
|
else:
|
|
localError(c.config, n.info, "invalid argument for: " & opToStr[m])
|
|
result = n
|
|
|
|
proc fixupStaticType(c: PContext, n: PNode) =
|
|
# This proc can be applied to evaluated expressions to assign
|
|
# them a static type.
|
|
#
|
|
# XXX: with implicit static, this should not be necessary,
|
|
# because the output type of operations such as `semConstExpr`
|
|
# should be a static type (as well as the type of any other
|
|
# expression that can be implicitly evaluated). For now, we
|
|
# apply this measure only in code that is enlightened to work
|
|
# with static types.
|
|
if n.typ.kind != tyStatic:
|
|
n.typ = newTypeWithSons(getCurrOwner(c), tyStatic, @[n.typ], c.idgen)
|
|
n.typ.n = n # XXX: cycles like the one here look dangerous.
|
|
# Consider using `n.copyTree`
|
|
|
|
proc isOpImpl(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
internalAssert c.config,
|
|
n.len == 3 and
|
|
n[1].typ != nil and
|
|
n[2].kind in {nkStrLit..nkTripleStrLit, nkType}
|
|
|
|
var
|
|
res = false
|
|
t1 = n[1].typ
|
|
t2 = n[2].typ
|
|
|
|
if t1.kind == tyTypeDesc and t2.kind != tyTypeDesc:
|
|
t1 = t1.base
|
|
|
|
if n[2].kind in {nkStrLit..nkTripleStrLit}:
|
|
case n[2].strVal.normalize
|
|
of "closure":
|
|
let t = skipTypes(t1, abstractRange)
|
|
res = t.kind == tyProc and
|
|
t.callConv == ccClosure
|
|
of "iterator":
|
|
# holdover from when `is iterator` didn't work
|
|
let t = skipTypes(t1, abstractRange)
|
|
res = t.kind == tyProc and
|
|
t.callConv == ccClosure and
|
|
tfIterator in t.flags
|
|
else:
|
|
res = false
|
|
else:
|
|
if t1.skipTypes({tyGenericInst, tyAlias, tySink, tyDistinct}).kind != tyGenericBody:
|
|
maybeLiftType(t2, c, n.info)
|
|
else:
|
|
#[
|
|
for this case:
|
|
type Foo = object[T]
|
|
Foo is Foo
|
|
]#
|
|
discard
|
|
var m = newCandidate(c, t2)
|
|
if efExplain in flags:
|
|
m.diagnostics = @[]
|
|
m.diagnosticsEnabled = true
|
|
res = typeRel(m, t2, t1) >= isSubtype # isNone
|
|
# `res = sameType(t1, t2)` would be wrong, e.g. for `int is (int|float)`
|
|
|
|
result = newIntNode(nkIntLit, ord(res))
|
|
result.typ = n.typ
|
|
|
|
proc semIs(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
if n.len != 3:
|
|
localError(c.config, n.info, "'is' operator takes 2 arguments")
|
|
|
|
let boolType = getSysType(c.graph, n.info, tyBool)
|
|
result = n
|
|
n.typ = boolType
|
|
var liftLhs = true
|
|
|
|
n[1] = semExprWithType(c, n[1], {efDetermineType, efWantIterator})
|
|
if n[2].kind notin {nkStrLit..nkTripleStrLit}:
|
|
let t2 = semTypeNode(c, n[2], nil)
|
|
n[2] = newNodeIT(nkType, n[2].info, t2)
|
|
if t2.kind == tyStatic:
|
|
let evaluated = tryConstExpr(c, n[1])
|
|
if evaluated != nil:
|
|
c.fixupStaticType(evaluated)
|
|
n[1] = evaluated
|
|
else:
|
|
result = newIntNode(nkIntLit, 0)
|
|
result.typ = boolType
|
|
return
|
|
elif t2.kind == tyTypeDesc and
|
|
(t2.base.kind == tyNone or tfExplicit in t2.flags):
|
|
# When the right-hand side is an explicit type, we must
|
|
# not allow regular values to be matched against the type:
|
|
liftLhs = false
|
|
else:
|
|
n[2] = semExpr(c, n[2])
|
|
|
|
var lhsType = n[1].typ
|
|
if lhsType.kind != tyTypeDesc:
|
|
if liftLhs:
|
|
n[1] = makeTypeSymNode(c, lhsType, n[1].info)
|
|
lhsType = n[1].typ
|
|
else:
|
|
if lhsType.base.kind == tyNone or
|
|
(c.inGenericContext > 0 and lhsType.base.containsGenericType):
|
|
# BUGFIX: don't evaluate this too early: ``T is void``
|
|
return
|
|
|
|
result = isOpImpl(c, n, flags)
|
|
|
|
proc semOpAux(c: PContext, n: PNode) =
|
|
const flags = {efDetermineType}
|
|
for i in 1..<n.len:
|
|
var a = n[i]
|
|
if a.kind == nkExprEqExpr and a.len == 2:
|
|
let info = a[0].info
|
|
a[0] = newIdentNode(considerQuotedIdent(c, a[0], a), info)
|
|
a[1] = semExprWithType(c, a[1], flags)
|
|
a.typ = a[1].typ
|
|
else:
|
|
n[i] = semExprWithType(c, a, flags)
|
|
|
|
proc overloadedCallOpr(c: PContext, n: PNode): PNode =
|
|
# quick check if there is *any* () operator overloaded:
|
|
var par = getIdent(c.cache, "()")
|
|
var amb = false
|
|
if searchInScopes(c, par, amb) == nil:
|
|
result = nil
|
|
else:
|
|
result = newNodeI(nkCall, n.info)
|
|
result.add newIdentNode(par, n.info)
|
|
for i in 0..<n.len: result.add n[i]
|
|
result = semExpr(c, result, flags = {efNoUndeclared})
|
|
|
|
proc changeType(c: PContext; n: PNode, newType: PType, check: bool) =
|
|
case n.kind
|
|
of nkCurly, nkBracket:
|
|
for i in 0..<n.len:
|
|
changeType(c, n[i], elemType(newType), check)
|
|
of nkPar, nkTupleConstr:
|
|
let tup = newType.skipTypes({tyGenericInst, tyAlias, tySink, tyDistinct})
|
|
if tup.kind != tyTuple:
|
|
if tup.kind == tyObject: return
|
|
globalError(c.config, n.info, "no tuple type for constructor")
|
|
elif n.len > 0 and n[0].kind == nkExprColonExpr:
|
|
# named tuple?
|
|
for i in 0..<n.len:
|
|
var m = n[i][0]
|
|
if m.kind != nkSym:
|
|
globalError(c.config, m.info, "invalid tuple constructor")
|
|
return
|
|
if tup.n != nil:
|
|
var f = getSymFromList(tup.n, m.sym.name)
|
|
if f == nil:
|
|
globalError(c.config, m.info, "unknown identifier: " & m.sym.name.s)
|
|
return
|
|
changeType(c, n[i][1], f.typ, check)
|
|
else:
|
|
changeType(c, n[i][1], tup[i], check)
|
|
else:
|
|
for i in 0..<n.len:
|
|
changeType(c, n[i], tup[i], check)
|
|
when false:
|
|
var m = n[i]
|
|
var a = newNodeIT(nkExprColonExpr, m.info, newType[i])
|
|
a.add newSymNode(newType.n[i].sym)
|
|
a.add m
|
|
changeType(m, tup[i], check)
|
|
of nkCharLit..nkUInt64Lit:
|
|
if check and n.kind != nkUInt64Lit and not sameType(n.typ, newType):
|
|
let value = n.intVal
|
|
if value < firstOrd(c.config, newType) or value > lastOrd(c.config, newType):
|
|
localError(c.config, n.info, "cannot convert " & $value &
|
|
" to " & typeToString(newType))
|
|
of nkFloatLit..nkFloat64Lit:
|
|
if check and not floatRangeCheck(n.floatVal, newType):
|
|
localError(c.config, n.info, errFloatToString % [$n.floatVal, typeToString(newType)])
|
|
else: discard
|
|
n.typ = newType
|
|
|
|
proc arrayConstrType(c: PContext, n: PNode): PType =
|
|
var typ = newTypeS(tyArray, c)
|
|
rawAddSon(typ, nil) # index type
|
|
if n.len == 0:
|
|
rawAddSon(typ, newTypeS(tyEmpty, c)) # needs an empty basetype!
|
|
else:
|
|
var t = skipTypes(n[0].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
|
|
addSonSkipIntLit(typ, t, c.idgen)
|
|
typ[0] = makeRangeType(c, 0, n.len - 1, n.info)
|
|
result = typ
|
|
|
|
proc semArrayConstr(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
|
|
result = newNodeI(nkBracket, n.info)
|
|
result.typ = newTypeS(tyArray, c)
|
|
var expectedElementType, expectedIndexType: PType = nil
|
|
if expectedType != nil:
|
|
let expected = expectedType.skipTypes(abstractRange-{tyDistinct})
|
|
case expected.kind
|
|
of tyArray:
|
|
expectedIndexType = expected[0]
|
|
expectedElementType = expected[1]
|
|
of tyOpenArray:
|
|
expectedElementType = expected[0]
|
|
else: discard
|
|
rawAddSon(result.typ, nil) # index type
|
|
var
|
|
firstIndex, lastIndex: Int128 = Zero
|
|
indexType = getSysType(c.graph, n.info, tyInt)
|
|
lastValidIndex = lastOrd(c.config, indexType)
|
|
if n.len == 0:
|
|
rawAddSon(result.typ,
|
|
if expectedElementType != nil and
|
|
typeAllowed(expectedElementType, skLet, c) == nil:
|
|
expectedElementType
|
|
else:
|
|
newTypeS(tyEmpty, c)) # needs an empty basetype!
|
|
lastIndex = toInt128(-1)
|
|
else:
|
|
var x = n[0]
|
|
if x.kind == nkExprColonExpr and x.len == 2:
|
|
var idx = semConstExpr(c, x[0], expectedIndexType)
|
|
if not isOrdinalType(idx.typ):
|
|
localError(c.config, idx.info, "expected ordinal value for array " &
|
|
"index, got '$1'" % renderTree(idx))
|
|
else:
|
|
firstIndex = getOrdValue(idx)
|
|
lastIndex = firstIndex
|
|
indexType = idx.typ
|
|
lastValidIndex = lastOrd(c.config, indexType)
|
|
x = x[1]
|
|
|
|
let yy = semExprWithType(c, x, {efTypeAllowed}, expectedElementType)
|
|
var typ = yy.typ
|
|
if expectedElementType == nil:
|
|
expectedElementType = typ
|
|
result.add yy
|
|
#var typ = skipTypes(result[0].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal})
|
|
for i in 1..<n.len:
|
|
if lastIndex == lastValidIndex:
|
|
let validIndex = makeRangeType(c, toInt64(firstIndex), toInt64(lastValidIndex), n.info,
|
|
indexType)
|
|
localError(c.config, n.info, "size of array exceeds range of index " &
|
|
"type '$1' by $2 elements" % [typeToString(validIndex), $(n.len-i)])
|
|
|
|
x = n[i]
|
|
if x.kind == nkExprColonExpr and x.len == 2:
|
|
var idx = semConstExpr(c, x[0], indexType)
|
|
idx = fitNode(c, indexType, idx, x.info)
|
|
if lastIndex+1 != getOrdValue(idx):
|
|
localError(c.config, x.info, "invalid order in array constructor")
|
|
x = x[1]
|
|
|
|
let xx = semExprWithType(c, x, {efTypeAllowed}, expectedElementType)
|
|
result.add xx
|
|
typ = commonType(c, typ, xx.typ)
|
|
#n[i] = semExprWithType(c, x, {})
|
|
#result.add fitNode(c, typ, n[i])
|
|
inc(lastIndex)
|
|
addSonSkipIntLit(result.typ, typ, c.idgen)
|
|
for i in 0..<result.len:
|
|
result[i] = fitNode(c, typ, result[i], result[i].info)
|
|
result.typ[0] = makeRangeType(c, toInt64(firstIndex), toInt64(lastIndex), n.info,
|
|
indexType)
|
|
|
|
proc fixAbstractType(c: PContext, n: PNode) =
|
|
for i in 1..<n.len:
|
|
let it = n[i]
|
|
if it == nil:
|
|
localError(c.config, n.info, "'$1' has nil child at index $2" % [renderTree(n, {renderNoComments}), $i])
|
|
return
|
|
# do not get rid of nkHiddenSubConv for OpenArrays, the codegen needs it:
|
|
if it.kind == nkHiddenSubConv and
|
|
skipTypes(it.typ, abstractVar).kind notin {tyOpenArray, tyVarargs}:
|
|
if skipTypes(it[1].typ, abstractVar).kind in
|
|
{tyNil, tyTuple, tySet} or it[1].isArrayConstr:
|
|
var s = skipTypes(it.typ, abstractVar + tyUserTypeClasses)
|
|
if s.kind != tyUntyped:
|
|
changeType(c, it[1], s, check=true)
|
|
n[i] = it[1]
|
|
|
|
proc isAssignable(c: PContext, n: PNode): TAssignableResult =
|
|
result = parampatterns.isAssignable(c.p.owner, n)
|
|
|
|
proc isUnresolvedSym(s: PSym): bool =
|
|
result = s.kind == skGenericParam
|
|
if not result and s.typ != nil:
|
|
result = tfInferrableStatic in s.typ.flags or
|
|
(s.kind == skParam and s.typ.isMetaType) or
|
|
(s.kind == skType and
|
|
s.typ.flags * {tfGenericTypeParam, tfImplicitTypeParam} != {})
|
|
|
|
proc hasUnresolvedArgs(c: PContext, n: PNode): bool =
|
|
# Checks whether an expression depends on generic parameters that
|
|
# don't have bound values yet. E.g. this could happen in situations
|
|
# such as:
|
|
# type Slot[T] = array[T.size, byte]
|
|
# proc foo[T](x: default(T))
|
|
#
|
|
# Both static parameter and type parameters can be unresolved.
|
|
case n.kind
|
|
of nkSym:
|
|
return isUnresolvedSym(n.sym)
|
|
of nkIdent, nkAccQuoted:
|
|
let ident = considerQuotedIdent(c, n)
|
|
var amb = false
|
|
let sym = searchInScopes(c, ident, amb)
|
|
if sym != nil:
|
|
return isUnresolvedSym(sym)
|
|
else:
|
|
return false
|
|
else:
|
|
for i in 0..<n.safeLen:
|
|
if hasUnresolvedArgs(c, n[i]): return true
|
|
return false
|
|
|
|
proc newHiddenAddrTaken(c: PContext, n: PNode, isOutParam: bool): PNode =
|
|
if n.kind == nkHiddenDeref and not (c.config.backend == backendCpp or
|
|
sfCompileToCpp in c.module.flags):
|
|
checkSonsLen(n, 1, c.config)
|
|
result = n[0]
|
|
else:
|
|
result = newNodeIT(nkHiddenAddr, n.info, makeVarType(c, n.typ))
|
|
result.add n
|
|
let aa = isAssignable(c, n)
|
|
let sym = getRoot(n)
|
|
if aa notin {arLValue, arLocalLValue}:
|
|
if aa == arDiscriminant and c.inUncheckedAssignSection > 0:
|
|
discard "allow access within a cast(unsafeAssign) section"
|
|
elif strictDefs in c.features and aa == arAddressableConst and
|
|
sym != nil and sym.kind == skLet and isOutParam:
|
|
discard "allow let varaibles to be passed to out parameters"
|
|
else:
|
|
localError(c.config, n.info, errVarForOutParamNeededX % renderNotLValue(n))
|
|
|
|
proc analyseIfAddressTaken(c: PContext, n: PNode, isOutParam: bool): PNode =
|
|
result = n
|
|
case n.kind
|
|
of nkSym:
|
|
# n.sym.typ can be nil in 'check' mode ...
|
|
if n.sym.typ != nil and
|
|
skipTypes(n.sym.typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
|
|
incl(n.sym.flags, sfAddrTaken)
|
|
result = newHiddenAddrTaken(c, n, isOutParam)
|
|
of nkDotExpr:
|
|
checkSonsLen(n, 2, c.config)
|
|
if n[1].kind != nkSym:
|
|
internalError(c.config, n.info, "analyseIfAddressTaken")
|
|
return
|
|
if skipTypes(n[1].sym.typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
|
|
incl(n[1].sym.flags, sfAddrTaken)
|
|
result = newHiddenAddrTaken(c, n, isOutParam)
|
|
of nkBracketExpr:
|
|
checkMinSonsLen(n, 1, c.config)
|
|
if skipTypes(n[0].typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
|
|
if n[0].kind == nkSym: incl(n[0].sym.flags, sfAddrTaken)
|
|
result = newHiddenAddrTaken(c, n, isOutParam)
|
|
else:
|
|
result = newHiddenAddrTaken(c, n, isOutParam)
|
|
|
|
proc analyseIfAddressTakenInCall(c: PContext, n: PNode, isConverter = false) =
|
|
checkMinSonsLen(n, 1, c.config)
|
|
const
|
|
FakeVarParams = {mNew, mNewFinalize, mInc, ast.mDec, mIncl, mExcl,
|
|
mSetLengthStr, mSetLengthSeq, mAppendStrCh, mAppendStrStr, mSwap,
|
|
mAppendSeqElem, mNewSeq, mReset, mShallowCopy, mDeepCopy, mMove,
|
|
mWasMoved}
|
|
|
|
template checkIfConverterCalled(c: PContext, n: PNode) =
|
|
## Checks if there is a converter call which wouldn't be checked otherwise
|
|
# Call can sometimes be wrapped in a deref
|
|
let node = if n.kind == nkHiddenDeref: n[0] else: n
|
|
if node.kind == nkHiddenCallConv:
|
|
analyseIfAddressTakenInCall(c, node, true)
|
|
# get the real type of the callee
|
|
# it may be a proc var with a generic alias type, so we skip over them
|
|
var t = n[0].typ.skipTypes({tyGenericInst, tyAlias, tySink})
|
|
if n[0].kind == nkSym and n[0].sym.magic in FakeVarParams:
|
|
# BUGFIX: check for L-Value still needs to be done for the arguments!
|
|
# note sometimes this is eval'ed twice so we check for nkHiddenAddr here:
|
|
for i in 1..<n.len:
|
|
if i < t.len and t[i] != nil and
|
|
skipTypes(t[i], abstractInst-{tyTypeDesc}).kind in {tyVar}:
|
|
let it = n[i]
|
|
let aa = isAssignable(c, it)
|
|
if aa notin {arLValue, arLocalLValue}:
|
|
if it.kind != nkHiddenAddr:
|
|
if aa == arDiscriminant and c.inUncheckedAssignSection > 0:
|
|
discard "allow access within a cast(unsafeAssign) section"
|
|
else:
|
|
localError(c.config, it.info, errVarForOutParamNeededX % $it)
|
|
# Make sure to still check arguments for converters
|
|
c.checkIfConverterCalled(n[i])
|
|
# bug #5113: disallow newSeq(result) where result is a 'var T':
|
|
if n[0].sym.magic in {mNew, mNewFinalize, mNewSeq}:
|
|
var arg = n[1] #.skipAddr
|
|
if arg.kind == nkHiddenDeref: arg = arg[0]
|
|
if arg.kind == nkSym and arg.sym.kind == skResult and
|
|
arg.typ.skipTypes(abstractInst).kind in {tyVar, tyLent}:
|
|
localError(c.config, n.info, errXStackEscape % renderTree(n[1], {renderNoComments}))
|
|
|
|
return
|
|
for i in 1..<n.len:
|
|
let n = if n.kind == nkHiddenDeref: n[0] else: n
|
|
c.checkIfConverterCalled(n[i])
|
|
if i < t.len and
|
|
skipTypes(t[i], abstractInst-{tyTypeDesc}).kind in {tyVar}:
|
|
# Converters wrap var parameters in nkHiddenAddr but they haven't been analysed yet.
|
|
# So we need to make sure we are checking them still when in a converter call
|
|
if n[i].kind != nkHiddenAddr or isConverter:
|
|
n[i] = analyseIfAddressTaken(c, n[i].skipAddr(), isOutParam(skipTypes(t[i], abstractInst-{tyTypeDesc})))
|
|
|
|
include semmagic
|
|
|
|
proc evalAtCompileTime(c: PContext, n: PNode): PNode =
|
|
result = n
|
|
if n.kind notin nkCallKinds or n[0].kind != nkSym: return
|
|
var callee = n[0].sym
|
|
# workaround for bug #537 (overly aggressive inlining leading to
|
|
# wrong NimNode semantics):
|
|
if n.typ != nil and tfTriggersCompileTime in n.typ.flags: return
|
|
|
|
# constant folding that is necessary for correctness of semantic pass:
|
|
if callee.magic != mNone and callee.magic in ctfeWhitelist and n.typ != nil:
|
|
var call = newNodeIT(nkCall, n.info, n.typ)
|
|
call.add(n[0])
|
|
var allConst = true
|
|
for i in 1..<n.len:
|
|
var a = getConstExpr(c.module, n[i], c.idgen, c.graph)
|
|
if a == nil:
|
|
allConst = false
|
|
a = n[i]
|
|
if a.kind == nkHiddenStdConv: a = a[1]
|
|
call.add(a)
|
|
if allConst:
|
|
result = semfold.getConstExpr(c.module, call, c.idgen, c.graph)
|
|
if result.isNil: result = n
|
|
else: return result
|
|
|
|
block maybeLabelAsStatic:
|
|
# XXX: temporary work-around needed for tlateboundstatic.
|
|
# This is certainly not correct, but it will get the job
|
|
# done until we have a more robust infrastructure for
|
|
# implicit statics.
|
|
if n.len > 1:
|
|
for i in 1..<n.len:
|
|
# see bug #2113, it's possible that n[i].typ for errornous code:
|
|
if n[i].typ.isNil or n[i].typ.kind != tyStatic or
|
|
tfUnresolved notin n[i].typ.flags:
|
|
break maybeLabelAsStatic
|
|
n.typ = newTypeWithSons(c, tyStatic, @[n.typ])
|
|
n.typ.flags.incl tfUnresolved
|
|
|
|
# optimization pass: not necessary for correctness of the semantic pass
|
|
if callee.kind == skConst or
|
|
{sfNoSideEffect, sfCompileTime} * callee.flags != {} and
|
|
{sfForward, sfImportc} * callee.flags == {} and n.typ != nil:
|
|
|
|
if callee.kind != skConst and
|
|
sfCompileTime notin callee.flags and
|
|
optImplicitStatic notin c.config.options: return
|
|
|
|
if callee.magic notin ctfeWhitelist: return
|
|
|
|
if callee.kind notin {skProc, skFunc, skConverter, skConst} or callee.isGenericRoutine:
|
|
return
|
|
|
|
if n.typ != nil and typeAllowed(n.typ, skConst, c) != nil: return
|
|
|
|
var call = newNodeIT(nkCall, n.info, n.typ)
|
|
call.add(n[0])
|
|
for i in 1..<n.len:
|
|
let a = getConstExpr(c.module, n[i], c.idgen, c.graph)
|
|
if a == nil: return n
|
|
call.add(a)
|
|
|
|
#echo "NOW evaluating at compile time: ", call.renderTree
|
|
if c.inStaticContext == 0 or sfNoSideEffect in callee.flags:
|
|
if sfCompileTime in callee.flags:
|
|
result = evalStaticExpr(c.module, c.idgen, c.graph, call, c.p.owner)
|
|
if result.isNil:
|
|
localError(c.config, n.info, errCannotInterpretNodeX % renderTree(call))
|
|
else: result = fixupTypeAfterEval(c, result, n)
|
|
else:
|
|
result = evalConstExpr(c.module, c.idgen, c.graph, call)
|
|
if result.isNil: result = n
|
|
else: result = fixupTypeAfterEval(c, result, n)
|
|
else:
|
|
result = n
|
|
#if result != n:
|
|
# echo "SUCCESS evaluated at compile time: ", call.renderTree
|
|
|
|
proc semStaticExpr(c: PContext, n: PNode; expectedType: PType = nil): PNode =
|
|
inc c.inStaticContext
|
|
openScope(c)
|
|
let a = semExprWithType(c, n, expectedType = expectedType)
|
|
closeScope(c)
|
|
dec c.inStaticContext
|
|
if a.findUnresolvedStatic != nil: return a
|
|
result = evalStaticExpr(c.module, c.idgen, c.graph, a, c.p.owner)
|
|
if result.isNil:
|
|
localError(c.config, n.info, errCannotInterpretNodeX % renderTree(n))
|
|
result = c.graph.emptyNode
|
|
else:
|
|
result = fixupTypeAfterEval(c, result, a)
|
|
|
|
proc semOverloadedCallAnalyseEffects(c: PContext, n: PNode, nOrig: PNode,
|
|
flags: TExprFlags; expectedType: PType = nil): PNode =
|
|
if flags*{efInTypeof, efWantIterator, efWantIterable} != {}:
|
|
# consider: 'for x in pReturningArray()' --> we don't want the restriction
|
|
# to 'skIterator' anymore; skIterator is preferred in sigmatch already
|
|
# for typeof support.
|
|
# for ``typeof(countup(1,3))``, see ``tests/ttoseq``.
|
|
result = semOverloadedCall(c, n, nOrig,
|
|
{skProc, skFunc, skMethod, skConverter, skMacro, skTemplate, skIterator}, flags, expectedType)
|
|
else:
|
|
result = semOverloadedCall(c, n, nOrig,
|
|
{skProc, skFunc, skMethod, skConverter, skMacro, skTemplate}, flags, expectedType)
|
|
|
|
if result != nil:
|
|
if result[0].kind != nkSym:
|
|
if not (efDetermineType in flags and c.inGenericContext > 0):
|
|
internalError(c.config, "semOverloadedCallAnalyseEffects")
|
|
return
|
|
let callee = result[0].sym
|
|
case callee.kind
|
|
of skMacro, skTemplate: discard
|
|
else:
|
|
if callee.kind == skIterator and callee.id == c.p.owner.id and
|
|
not isClosureIterator(c.p.owner.typ):
|
|
localError(c.config, n.info, errRecursiveDependencyIteratorX % callee.name.s)
|
|
# error correction, prevents endless for loop elimination in transf.
|
|
# See bug #2051:
|
|
result[0] = newSymNode(errorSym(c, n))
|
|
elif callee.kind == skIterator:
|
|
if efWantIterable in flags:
|
|
let typ = newTypeS(tyIterable, c)
|
|
rawAddSon(typ, result.typ)
|
|
result.typ = typ
|
|
|
|
proc resolveIndirectCall(c: PContext; n, nOrig: PNode;
|
|
t: PType): TCandidate =
|
|
result = initCandidate(c, t)
|
|
matches(c, n, nOrig, result)
|
|
|
|
proc bracketedMacro(n: PNode): PSym =
|
|
if n.len >= 1 and n[0].kind == nkSym:
|
|
result = n[0].sym
|
|
if result.kind notin {skMacro, skTemplate}:
|
|
result = nil
|
|
else:
|
|
result = nil
|
|
|
|
proc afterCallActions(c: PContext; n, orig: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
|
|
if efNoSemCheck notin flags and n.typ != nil and n.typ.kind == tyError:
|
|
return errorNode(c, n)
|
|
if n.typ != nil and n.typ.kind == tyFromExpr and c.inGenericContext > 0:
|
|
return n
|
|
|
|
result = n
|
|
|
|
when defined(nimsuggest):
|
|
if c.config.expandProgress:
|
|
if c.config.expandLevels == 0:
|
|
return n
|
|
else:
|
|
c.config.expandLevels -= 1
|
|
|
|
let callee = result[0].sym
|
|
case callee.kind
|
|
of skMacro: result = semMacroExpr(c, result, orig, callee, flags, expectedType)
|
|
of skTemplate: result = semTemplateExpr(c, result, callee, flags, expectedType)
|
|
else:
|
|
semFinishOperands(c, result)
|
|
activate(c, result)
|
|
fixAbstractType(c, result)
|
|
analyseIfAddressTakenInCall(c, result)
|
|
if callee.magic != mNone:
|
|
result = magicsAfterOverloadResolution(c, result, flags, expectedType)
|
|
when false:
|
|
if result.typ != nil and
|
|
not (result.typ.kind == tySequence and result.typ[0].kind == tyEmpty):
|
|
liftTypeBoundOps(c, result.typ, n.info)
|
|
#result = patchResolvedTypeBoundOp(c, result)
|
|
if c.matchedConcept == nil:
|
|
result = evalAtCompileTime(c, result)
|
|
|
|
proc semIndirectOp(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
|
|
result = nil
|
|
checkMinSonsLen(n, 1, c.config)
|
|
var prc = n[0]
|
|
if n[0].kind == nkDotExpr:
|
|
checkSonsLen(n[0], 2, c.config)
|
|
let n0 = semFieldAccess(c, n[0], {efIsDotCall})
|
|
if n0.kind == nkDotCall:
|
|
# it is a static call!
|
|
result = n0
|
|
result.transitionSonsKind(nkCall)
|
|
result.flags.incl nfExplicitCall
|
|
for i in 1..<n.len: result.add n[i]
|
|
return semExpr(c, result, flags)
|
|
else:
|
|
n[0] = n0
|
|
else:
|
|
n[0] = semExpr(c, n[0], {efInCall, efAllowSymChoice})
|
|
let t = n[0].typ
|
|
if t != nil and t.kind in {tyVar, tyLent}:
|
|
n[0] = newDeref(n[0])
|
|
elif n[0].kind == nkBracketExpr:
|
|
let s = bracketedMacro(n[0])
|
|
if s != nil:
|
|
setGenericParams(c, n[0])
|
|
return semDirectOp(c, n, flags, expectedType)
|
|
elif isSymChoice(n[0]) and nfDotField notin n.flags:
|
|
# overloaded generic procs e.g. newSeq[int] can end up here
|
|
return semDirectOp(c, n, flags, expectedType)
|
|
|
|
var t: PType = nil
|
|
if n[0].typ != nil:
|
|
t = skipTypes(n[0].typ, abstractInst+{tyOwned}-{tyTypeDesc, tyDistinct})
|
|
if t != nil and t.kind == tyTypeDesc:
|
|
if n.len == 1: return semObjConstr(c, n, flags, expectedType)
|
|
return semConv(c, n, flags)
|
|
|
|
let nOrig = n.copyTree
|
|
semOpAux(c, n)
|
|
if t != nil and t.kind == tyProc:
|
|
# This is a proc variable, apply normal overload resolution
|
|
let m = resolveIndirectCall(c, n, nOrig, t)
|
|
if m.state != csMatch:
|
|
if c.config.m.errorOutputs == {}:
|
|
# speed up error generation:
|
|
globalError(c.config, n.info, "type mismatch")
|
|
return c.graph.emptyNode
|
|
else:
|
|
var hasErrorType = false
|
|
var msg = "type mismatch: got <"
|
|
for i in 1..<n.len:
|
|
if i > 1: msg.add(", ")
|
|
let nt = n[i].typ
|
|
msg.add(typeToString(nt))
|
|
if nt.kind == tyError:
|
|
hasErrorType = true
|
|
break
|
|
if not hasErrorType:
|
|
let typ = n[0].typ
|
|
msg.add(">\nbut expected one of:\n" &
|
|
typeToString(typ))
|
|
# prefer notin preferToResolveSymbols
|
|
# t.sym != nil
|
|
# sfAnon notin t.sym.flags
|
|
# t.kind != tySequence(It is tyProc)
|
|
if typ.sym != nil and sfAnon notin typ.sym.flags and
|
|
typ.kind == tyProc:
|
|
# when can `typ.sym != nil` ever happen?
|
|
msg.add(" = " & typeToString(typ, preferDesc))
|
|
msg.addDeclaredLocMaybe(c.config, typ)
|
|
localError(c.config, n.info, msg)
|
|
return errorNode(c, n)
|
|
else:
|
|
result = m.call
|
|
instGenericConvertersSons(c, result, m)
|
|
|
|
else:
|
|
result = overloadedCallOpr(c, n) # this uses efNoUndeclared
|
|
# Now that nkSym does not imply an iteration over the proc/iterator space,
|
|
# the old ``prc`` (which is likely an nkIdent) has to be restored:
|
|
if result == nil or result.kind == nkEmpty:
|
|
# XXX: hmm, what kind of symbols will end up here?
|
|
# do we really need to try the overload resolution?
|
|
n[0] = prc
|
|
nOrig[0] = prc
|
|
n.flags.incl nfExprCall
|
|
result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
|
|
if result == nil: return errorNode(c, n)
|
|
elif result.kind notin nkCallKinds:
|
|
# the semExpr() in overloadedCallOpr can even break this condition!
|
|
# See bug #904 of how to trigger it:
|
|
return result
|
|
#result = afterCallActions(c, result, nOrig, flags)
|
|
if result[0].kind == nkSym:
|
|
result = afterCallActions(c, result, nOrig, flags, expectedType)
|
|
else:
|
|
fixAbstractType(c, result)
|
|
analyseIfAddressTakenInCall(c, result)
|
|
|
|
proc semDirectOp(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
|
|
# this seems to be a hotspot in the compiler!
|
|
let nOrig = n.copyTree
|
|
#semLazyOpAux(c, n)
|
|
result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags, expectedType)
|
|
if result != nil: result = afterCallActions(c, result, nOrig, flags, expectedType)
|
|
else: result = errorNode(c, n)
|
|
|
|
proc buildEchoStmt(c: PContext, n: PNode): PNode =
|
|
# we MUST not check 'n' for semantics again here! But for now we give up:
|
|
result = newNodeI(nkCall, n.info)
|
|
let e = systemModuleSym(c.graph, getIdent(c.cache, "echo"))
|
|
if e != nil:
|
|
result.add(newSymNode(e))
|
|
else:
|
|
result.add localErrorNode(c, n, "system needs: echo")
|
|
result.add(n)
|
|
result.add(newStrNode(nkStrLit, ": " & n.typ.typeToString))
|
|
result = semExpr(c, result)
|
|
|
|
proc semExprNoType(c: PContext, n: PNode): PNode =
|
|
let isPush = c.config.hasHint(hintExtendedContext)
|
|
if isPush: pushInfoContext(c.config, n.info)
|
|
result = semExpr(c, n, {efWantStmt})
|
|
discardCheck(c, result, {})
|
|
if isPush: popInfoContext(c.config)
|
|
|
|
proc isTypeExpr(n: PNode): bool =
|
|
case n.kind
|
|
of nkType, nkTypeOfExpr: result = true
|
|
of nkSym: result = n.sym.kind == skType
|
|
else: result = false
|
|
|
|
proc createSetType(c: PContext; baseType: PType): PType =
|
|
assert baseType != nil
|
|
result = newTypeS(tySet, c)
|
|
rawAddSon(result, baseType)
|
|
|
|
proc lookupInRecordAndBuildCheck(c: PContext, n, r: PNode, field: PIdent,
|
|
check: var PNode): PSym =
|
|
# transform in a node that contains the runtime check for the
|
|
# field, if it is in a case-part...
|
|
result = nil
|
|
case r.kind
|
|
of nkRecList:
|
|
for i in 0..<r.len:
|
|
result = lookupInRecordAndBuildCheck(c, n, r[i], field, check)
|
|
if result != nil: return
|
|
of nkRecCase:
|
|
checkMinSonsLen(r, 2, c.config)
|
|
if (r[0].kind != nkSym): illFormedAst(r, c.config)
|
|
result = lookupInRecordAndBuildCheck(c, n, r[0], field, check)
|
|
if result != nil: return
|
|
let setType = createSetType(c, r[0].typ)
|
|
var s = newNodeIT(nkCurly, r.info, setType)
|
|
for i in 1..<r.len:
|
|
var it = r[i]
|
|
case it.kind
|
|
of nkOfBranch:
|
|
result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
|
|
if result == nil:
|
|
for j in 0..<it.len-1: s.add copyTree(it[j])
|
|
else:
|
|
if check == nil:
|
|
check = newNodeI(nkCheckedFieldExpr, n.info)
|
|
check.add c.graph.emptyNode # make space for access node
|
|
s = newNodeIT(nkCurly, n.info, setType)
|
|
for j in 0..<it.len - 1: s.add copyTree(it[j])
|
|
var inExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
|
|
inExpr.add newSymNode(getSysMagic(c.graph, n.info, "contains", mInSet), n.info)
|
|
inExpr.add s
|
|
inExpr.add copyTree(r[0])
|
|
check.add inExpr
|
|
#check.add semExpr(c, inExpr)
|
|
return
|
|
of nkElse:
|
|
result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
|
|
if result != nil:
|
|
if check == nil:
|
|
check = newNodeI(nkCheckedFieldExpr, n.info)
|
|
check.add c.graph.emptyNode # make space for access node
|
|
var inExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
|
|
inExpr.add newSymNode(getSysMagic(c.graph, n.info, "contains", mInSet), n.info)
|
|
inExpr.add s
|
|
inExpr.add copyTree(r[0])
|
|
var notExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
|
|
notExpr.add newSymNode(getSysMagic(c.graph, n.info, "not", mNot), n.info)
|
|
notExpr.add inExpr
|
|
check.add notExpr
|
|
return
|
|
else: illFormedAst(it, c.config)
|
|
of nkSym:
|
|
if r.sym.name.id == field.id: result = r.sym
|
|
else: illFormedAst(n, c.config)
|
|
|
|
const
|
|
tyTypeParamsHolders = {tyGenericInst, tyCompositeTypeClass}
|
|
tyDotOpTransparent = {tyVar, tyLent, tyPtr, tyRef, tyOwned, tyAlias, tySink}
|
|
|
|
proc readTypeParameter(c: PContext, typ: PType,
|
|
paramName: PIdent, info: TLineInfo): PNode =
|
|
# Note: This function will return emptyNode when attempting to read
|
|
# a static type parameter that is not yet resolved (e.g. this may
|
|
# happen in proc signatures such as `proc(x: T): array[T.sizeParam, U]`
|
|
if typ.kind in {tyUserTypeClass, tyUserTypeClassInst}:
|
|
for statement in typ.n:
|
|
case statement.kind
|
|
of nkTypeSection:
|
|
for def in statement:
|
|
if def[0].sym.name.id == paramName.id:
|
|
# XXX: Instead of lifting the section type to a typedesc
|
|
# here, we could try doing it earlier in semTypeSection.
|
|
# This seems semantically correct and then we'll be able
|
|
# to return the section symbol directly here
|
|
let foundType = makeTypeDesc(c, def[2].typ)
|
|
return newSymNode(copySym(def[0].sym, c.idgen).linkTo(foundType), info)
|
|
|
|
of nkConstSection:
|
|
for def in statement:
|
|
if def[0].sym.name.id == paramName.id:
|
|
return def[2]
|
|
|
|
else:
|
|
discard
|
|
|
|
if typ.kind != tyUserTypeClass:
|
|
let ty = if typ.kind == tyCompositeTypeClass: typ[1].skipGenericAlias
|
|
else: typ.skipGenericAlias
|
|
let tbody = ty[0]
|
|
for s in 0..<tbody.len-1:
|
|
let tParam = tbody[s]
|
|
if tParam.sym.name.id == paramName.id:
|
|
let rawTyp = ty[s + 1]
|
|
if rawTyp.kind == tyStatic:
|
|
if rawTyp.n != nil:
|
|
return rawTyp.n
|
|
else:
|
|
return c.graph.emptyNode
|
|
else:
|
|
let foundTyp = makeTypeDesc(c, rawTyp)
|
|
return newSymNode(copySym(tParam.sym, c.idgen).linkTo(foundTyp), info)
|
|
|
|
return nil
|
|
|
|
proc semSym(c: PContext, n: PNode, sym: PSym, flags: TExprFlags): PNode =
|
|
result = nil
|
|
assert n.kind in nkIdentKinds + {nkDotExpr}
|
|
let s = getGenSym(c, sym)
|
|
case s.kind
|
|
of skConst:
|
|
if n.kind != nkDotExpr: # dotExpr is already checked by builtinFieldAccess
|
|
markUsed(c, n.info, s)
|
|
onUse(n.info, s)
|
|
let typ = skipTypes(s.typ, abstractInst-{tyTypeDesc})
|
|
case typ.kind
|
|
of tyNil, tyChar, tyInt..tyInt64, tyFloat..tyFloat128,
|
|
tyTuple, tySet, tyUInt..tyUInt64:
|
|
if s.magic == mNone: result = inlineConst(c, n, s)
|
|
else: result = newSymNode(s, n.info)
|
|
of tyArray, tySequence:
|
|
# Consider::
|
|
# const x = []
|
|
# proc p(a: openarray[int])
|
|
# proc q(a: openarray[char])
|
|
# p(x)
|
|
# q(x)
|
|
#
|
|
# It is clear that ``[]`` means two totally different things. Thus, we
|
|
# copy `x`'s AST into each context, so that the type fixup phase can
|
|
# deal with two different ``[]``.
|
|
if s.astdef.safeLen == 0: result = inlineConst(c, n, s)
|
|
else: result = newSymNode(s, n.info)
|
|
of tyStatic:
|
|
if typ.n != nil:
|
|
result = typ.n
|
|
result.typ = typ.base
|
|
else:
|
|
result = newSymNode(s, n.info)
|
|
else:
|
|
result = newSymNode(s, n.info)
|
|
of skMacro, skTemplate:
|
|
# check if we cannot use alias syntax (no required args or generic params)
|
|
if sfNoalias in s.flags:
|
|
let info = getCallLineInfo(n)
|
|
markUsed(c, info, s)
|
|
onUse(info, s)
|
|
result = symChoice(c, n, s, scClosed)
|
|
else:
|
|
case s.kind
|
|
of skMacro: result = semMacroExpr(c, n, n, s, flags)
|
|
of skTemplate: result = semTemplateExpr(c, n, s, flags)
|
|
else: discard # unreachable
|
|
of skParam:
|
|
markUsed(c, n.info, s)
|
|
onUse(n.info, s)
|
|
if s.typ != nil and s.typ.kind == tyStatic and s.typ.n != nil:
|
|
# XXX see the hack in sigmatch.nim ...
|
|
return s.typ.n
|
|
elif sfGenSym in s.flags:
|
|
# the owner should have been set by now by addParamOrResult
|
|
internalAssert c.config, s.owner != nil
|
|
result = newSymNode(s, n.info)
|
|
of skVar, skLet, skResult, skForVar:
|
|
if s.magic == mNimvm:
|
|
localError(c.config, n.info, "illegal context for 'nimvm' magic")
|
|
|
|
if n.kind != nkDotExpr: # dotExpr is already checked by builtinFieldAccess
|
|
markUsed(c, n.info, s)
|
|
onUse(n.info, s)
|
|
result = newSymNode(s, n.info)
|
|
# We cannot check for access to outer vars for example because it's still
|
|
# not sure the symbol really ends up being used:
|
|
# var len = 0 # but won't be called
|
|
# genericThatUsesLen(x) # marked as taking a closure?
|
|
if hasWarn(c.config, warnResultUsed):
|
|
message(c.config, n.info, warnResultUsed)
|
|
|
|
of skGenericParam:
|
|
onUse(n.info, s)
|
|
if s.typ.kind == tyStatic:
|
|
result = newSymNode(s, n.info)
|
|
result.typ = s.typ
|
|
elif s.ast != nil:
|
|
result = semExpr(c, s.ast)
|
|
else:
|
|
n.typ = s.typ
|
|
return n
|
|
of skType:
|
|
if n.kind != nkDotExpr: # dotExpr is already checked by builtinFieldAccess
|
|
markUsed(c, n.info, s)
|
|
onUse(n.info, s)
|
|
if s.typ.kind == tyStatic and s.typ.base.kind != tyNone and s.typ.n != nil:
|
|
return s.typ.n
|
|
result = newSymNode(s, n.info)
|
|
result.typ = makeTypeDesc(c, s.typ)
|
|
of skField:
|
|
# old code, not sure if it's live code:
|
|
markUsed(c, n.info, s)
|
|
onUse(n.info, s)
|
|
result = newSymNode(s, n.info)
|
|
of skModule:
|
|
# make sure type is None and not nil for discard checking
|
|
if efWantStmt in flags: s.typ = newTypeS(tyNone, c)
|
|
markUsed(c, n.info, s)
|
|
onUse(n.info, s)
|
|
result = newSymNode(s, n.info)
|
|
else:
|
|
let info = getCallLineInfo(n)
|
|
#if efInCall notin flags:
|
|
markUsed(c, info, s)
|
|
onUse(info, s)
|
|
result = newSymNode(s, info)
|
|
|
|
proc tryReadingGenericParam(c: PContext, n: PNode, i: PIdent, t: PType): PNode =
|
|
case t.kind
|
|
of tyTypeParamsHolders:
|
|
result = readTypeParameter(c, t, i, n.info)
|
|
if result == c.graph.emptyNode:
|
|
result = n
|
|
n.typ = makeTypeFromExpr(c, n.copyTree)
|
|
of tyUserTypeClasses:
|
|
if t.isResolvedUserTypeClass:
|
|
result = readTypeParameter(c, t, i, n.info)
|
|
else:
|
|
n.typ = makeTypeFromExpr(c, copyTree(n))
|
|
result = n
|
|
of tyGenericParam, tyAnything:
|
|
n.typ = makeTypeFromExpr(c, copyTree(n))
|
|
result = n
|
|
else:
|
|
result = nil
|
|
|
|
proc tryReadingTypeField(c: PContext, n: PNode, i: PIdent, ty: PType): PNode =
|
|
result = nil
|
|
var ty = ty.skipTypes(tyDotOpTransparent)
|
|
case ty.kind
|
|
of tyEnum:
|
|
# look up if the identifier belongs to the enum:
|
|
var f = PSym(nil)
|
|
while ty != nil:
|
|
f = getSymFromList(ty.n, i)
|
|
if f != nil: break
|
|
ty = ty[0] # enum inheritance
|
|
if f != nil:
|
|
result = newSymNode(f)
|
|
result.info = n.info
|
|
result.typ = ty
|
|
markUsed(c, n.info, f)
|
|
onUse(n.info, f)
|
|
of tyObject, tyTuple:
|
|
if ty.n != nil and ty.n.kind == nkRecList:
|
|
let field = lookupInRecord(ty.n, i)
|
|
if field != nil:
|
|
n.typ = makeTypeDesc(c, field.typ)
|
|
result = n
|
|
of tyGenericInst:
|
|
result = tryReadingTypeField(c, n, i, ty.lastSon)
|
|
if result == nil:
|
|
result = tryReadingGenericParam(c, n, i, ty)
|
|
else:
|
|
result = tryReadingGenericParam(c, n, i, ty)
|
|
|
|
proc builtinFieldAccess(c: PContext; n: PNode; flags: var TExprFlags): PNode =
|
|
## returns nil if it's not a built-in field access
|
|
checkSonsLen(n, 2, c.config)
|
|
# tests/bind/tbindoverload.nim wants an early exit here, but seems to
|
|
# work without now. template/tsymchoicefield doesn't like an early exit
|
|
# here at all!
|
|
#if isSymChoice(n[1]): return
|
|
when defined(nimsuggest):
|
|
if c.config.cmd == cmdIdeTools:
|
|
suggestExpr(c, n)
|
|
if exactEquals(c.config.m.trackPos, n[1].info): suggestExprNoCheck(c, n)
|
|
|
|
var s = qualifiedLookUp(c, n, {checkAmbiguity, checkUndeclared, checkModule})
|
|
if s != nil:
|
|
if s.kind in OverloadableSyms:
|
|
result = symChoice(c, n, s, scClosed)
|
|
if result.kind == nkSym: result = semSym(c, n, s, flags)
|
|
else:
|
|
markUsed(c, n[1].info, s)
|
|
result = semSym(c, n, s, flags)
|
|
onUse(n[1].info, s)
|
|
return
|
|
|
|
# extra flags since LHS may become a call operand:
|
|
n[0] = semExprWithType(c, n[0], flags+{efDetermineType, efWantIterable, efAllowSymChoice})
|
|
#restoreOldStyleType(n[0])
|
|
var i = considerQuotedIdent(c, n[1], n)
|
|
var ty = n[0].typ
|
|
var f: PSym = nil
|
|
result = nil
|
|
|
|
if ty.kind == tyTypeDesc:
|
|
if ty.base.kind == tyNone:
|
|
# This is a still unresolved typedesc parameter.
|
|
# If this is a regular proc, then all bets are off and we must return
|
|
# tyFromExpr, but when this happen in a macro this is not a built-in
|
|
# field access and we leave the compiler to compile a normal call:
|
|
if getCurrOwner(c).kind != skMacro:
|
|
n.typ = makeTypeFromExpr(c, n.copyTree)
|
|
flags.incl efCannotBeDotCall
|
|
return n
|
|
else:
|
|
return nil
|
|
else:
|
|
flags.incl efCannotBeDotCall
|
|
return tryReadingTypeField(c, n, i, ty.base)
|
|
elif isTypeExpr(n.sons[0]):
|
|
flags.incl efCannotBeDotCall
|
|
return tryReadingTypeField(c, n, i, ty)
|
|
elif ty.kind == tyError:
|
|
# a type error doesn't have any builtin fields
|
|
return nil
|
|
|
|
if ty.kind in tyUserTypeClasses and ty.isResolvedUserTypeClass:
|
|
ty = ty.lastSon
|
|
ty = skipTypes(ty, {tyGenericInst, tyVar, tyLent, tyPtr, tyRef, tyOwned, tyAlias, tySink, tyStatic})
|
|
while tfBorrowDot in ty.flags: ty = ty.skipTypes({tyDistinct, tyGenericInst, tyAlias})
|
|
var check: PNode = nil
|
|
if ty.kind == tyObject:
|
|
while true:
|
|
check = nil
|
|
f = lookupInRecordAndBuildCheck(c, n, ty.n, i, check)
|
|
if f != nil: break
|
|
if ty[0] == nil: break
|
|
ty = skipTypes(ty[0], skipPtrs)
|
|
if f != nil:
|
|
let visibilityCheckNeeded =
|
|
if n[1].kind == nkSym and n[1].sym == f:
|
|
false # field lookup was done already, likely by hygienic template or bindSym
|
|
else: true
|
|
if not visibilityCheckNeeded or fieldVisible(c, f):
|
|
# is the access to a public field or in the same module or in a friend?
|
|
markUsed(c, n[1].info, f)
|
|
onUse(n[1].info, f)
|
|
let info = n[1].info
|
|
n[0] = makeDeref(n[0])
|
|
n[1] = newSymNode(f) # we now have the correct field
|
|
n[1].info = info # preserve the original info
|
|
n.typ = f.typ
|
|
if check == nil:
|
|
result = n
|
|
else:
|
|
check[0] = n
|
|
check.typ = n.typ
|
|
result = check
|
|
elif ty.kind == tyTuple and ty.n != nil:
|
|
f = getSymFromList(ty.n, i)
|
|
if f != nil:
|
|
markUsed(c, n[1].info, f)
|
|
onUse(n[1].info, f)
|
|
n[0] = makeDeref(n[0])
|
|
n[1] = newSymNode(f)
|
|
n.typ = f.typ
|
|
result = n
|
|
|
|
# we didn't find any field, let's look for a generic param
|
|
if result == nil:
|
|
let t = n[0].typ.skipTypes(tyDotOpTransparent)
|
|
result = tryReadingGenericParam(c, n, i, t)
|
|
flags.incl efCannotBeDotCall
|
|
|
|
proc dotTransformation(c: PContext, n: PNode): PNode =
|
|
if isSymChoice(n[1]) or
|
|
# generics usually leave field names as symchoices, but not types
|
|
(n[1].kind == nkSym and n[1].sym.kind == skType):
|
|
result = newNodeI(nkDotCall, n.info)
|
|
result.add n[1]
|
|
result.add copyTree(n[0])
|
|
else:
|
|
var i = considerQuotedIdent(c, n[1], n)
|
|
result = newNodeI(nkDotCall, n.info)
|
|
result.flags.incl nfDotField
|
|
result.add newIdentNode(i, n[1].info)
|
|
result.add copyTree(n[0])
|
|
|
|
proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
# this is difficult, because the '.' is used in many different contexts
|
|
# in Nim. We first allow types in the semantic checking.
|
|
var f = flags - {efIsDotCall}
|
|
result = builtinFieldAccess(c, n, f)
|
|
if result == nil or ((result.typ == nil or result.typ.skipTypes(abstractInst).kind != tyProc) and
|
|
efIsDotCall in flags and callOperator notin c.features and
|
|
efCannotBeDotCall notin f):
|
|
result = dotTransformation(c, n)
|
|
|
|
proc buildOverloadedSubscripts(n: PNode, ident: PIdent): PNode =
|
|
result = newNodeI(nkCall, n.info)
|
|
result.add(newIdentNode(ident, n.info))
|
|
for s in n: result.add s
|
|
|
|
proc semDeref(c: PContext, n: PNode): PNode =
|
|
checkSonsLen(n, 1, c.config)
|
|
n[0] = semExprWithType(c, n[0])
|
|
let a = getConstExpr(c.module, n[0], c.idgen, c.graph)
|
|
if a != nil:
|
|
if a.kind == nkNilLit:
|
|
localError(c.config, n.info, "nil dereference is not allowed")
|
|
n[0] = a
|
|
result = n
|
|
var t = skipTypes(n[0].typ, {tyGenericInst, tyVar, tyLent, tyAlias, tySink, tyOwned})
|
|
case t.kind
|
|
of tyRef, tyPtr: n.typ = t.lastSon
|
|
else: result = nil
|
|
#GlobalError(n[0].info, errCircumNeedsPointer)
|
|
|
|
proc maybeInstantiateGeneric(c: PContext, n: PNode, s: PSym): PNode =
|
|
## Instantiates generic if not lacking implicit generics,
|
|
## otherwise returns n.
|
|
let
|
|
neededGenParams = s.ast[genericParamsPos].len
|
|
heldGenParams = n.len - 1
|
|
var implicitParams = 0
|
|
for x in s.ast[genericParamsPos]:
|
|
if tfImplicitTypeParam in x.typ.flags:
|
|
inc implicitParams
|
|
if heldGenParams != neededGenParams and implicitParams + heldGenParams == neededGenParams:
|
|
# This is an implicit + explicit generic procedure without all args passed,
|
|
# kicking back the sem'd symbol fixes #17212
|
|
# Uncertain the hackiness of this solution.
|
|
result = n
|
|
else:
|
|
result = explicitGenericInstantiation(c, n, s)
|
|
if result == n:
|
|
n[0] = copyTree(result[0])
|
|
else:
|
|
n[0] = result
|
|
|
|
proc semSubscript(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
## returns nil if not a built-in subscript operator; also called for the
|
|
## checking of assignments
|
|
result = nil
|
|
if n.len == 1:
|
|
let x = semDeref(c, n)
|
|
if x == nil: return nil
|
|
result = newNodeIT(nkDerefExpr, x.info, x.typ)
|
|
result.add(x[0])
|
|
return
|
|
checkMinSonsLen(n, 2, c.config)
|
|
# signal that generic parameters may be applied after
|
|
n[0] = semExprWithType(c, n[0], {efNoEvaluateGeneric, efAllowSymChoice})
|
|
var arr = skipTypes(n[0].typ, {tyGenericInst, tyUserTypeClassInst, tyOwned,
|
|
tyVar, tyLent, tyPtr, tyRef, tyAlias, tySink})
|
|
if arr.kind == tyStatic:
|
|
if arr.base.kind == tyNone:
|
|
result = n
|
|
result.typ = semStaticType(c, n[1], nil)
|
|
return
|
|
elif arr.n != nil:
|
|
return semSubscript(c, arr.n, flags)
|
|
else:
|
|
arr = arr.base
|
|
|
|
case arr.kind
|
|
of tyArray, tyOpenArray, tyVarargs, tySequence, tyString, tyCstring,
|
|
tyUncheckedArray:
|
|
if n.len != 2: return nil
|
|
n[0] = makeDeref(n[0])
|
|
for i in 1..<n.len:
|
|
n[i] = semExprWithType(c, n[i],
|
|
flags*{efInTypeof, efDetermineType})
|
|
# Arrays index type is dictated by the range's type
|
|
if arr.kind == tyArray:
|
|
var indexType = arr[0]
|
|
var arg = indexTypesMatch(c, indexType, n[1].typ, n[1])
|
|
if arg != nil:
|
|
n[1] = arg
|
|
result = n
|
|
result.typ = elemType(arr)
|
|
# Other types have a bit more of leeway
|
|
elif n[1].typ.skipTypes(abstractRange-{tyDistinct}).kind in
|
|
{tyInt..tyInt64, tyUInt..tyUInt64}:
|
|
result = n
|
|
result.typ = elemType(arr)
|
|
of tyTypeDesc:
|
|
# The result so far is a tyTypeDesc bound
|
|
# a tyGenericBody. The line below will substitute
|
|
# it with the instantiated type.
|
|
result = n
|
|
result.typ = makeTypeDesc(c, semTypeNode(c, n, nil))
|
|
#result = symNodeFromType(c, semTypeNode(c, n, nil), n.info)
|
|
of tyTuple:
|
|
if n.len != 2: return nil
|
|
n[0] = makeDeref(n[0])
|
|
# [] operator for tuples requires constant expression:
|
|
n[1] = semConstExpr(c, n[1])
|
|
if skipTypes(n[1].typ, {tyGenericInst, tyRange, tyOrdinal, tyAlias, tySink}).kind in
|
|
{tyInt..tyInt64}:
|
|
let idx = getOrdValue(n[1])
|
|
if idx >= 0 and idx < arr.len: n.typ = arr[toInt(idx)]
|
|
else:
|
|
localError(c.config, n.info,
|
|
"invalid index $1 in subscript for tuple of length $2" %
|
|
[$idx, $arr.len])
|
|
result = n
|
|
else:
|
|
result = nil
|
|
else:
|
|
let s = if n[0].kind == nkSym: n[0].sym
|
|
elif n[0].kind in nkSymChoices: n[0][0].sym
|
|
else: nil
|
|
if s != nil:
|
|
case s.kind
|
|
of skProc, skFunc, skMethod, skConverter, skIterator:
|
|
# type parameters: partial generic specialization
|
|
n[0] = semSymGenericInstantiation(c, n[0], s)
|
|
result = maybeInstantiateGeneric(c, n, s)
|
|
of skMacro, skTemplate:
|
|
if efInCall in flags:
|
|
# We are processing macroOrTmpl[] in macroOrTmpl[](...) call.
|
|
# Return as is, so it can be transformed into complete macro or
|
|
# template call in semIndirectOp caller.
|
|
result = n
|
|
else:
|
|
# We are processing macroOrTmpl[] not in call. Transform it to the
|
|
# macro or template call with generic arguments here.
|
|
n.transitionSonsKind(nkCall)
|
|
case s.kind
|
|
of skMacro: result = semMacroExpr(c, n, n, s, flags)
|
|
of skTemplate: result = semTemplateExpr(c, n, s, flags)
|
|
else: discard
|
|
of skType:
|
|
result = symNodeFromType(c, semTypeNode(c, n, nil), n.info)
|
|
else:
|
|
discard
|
|
|
|
proc semArrayAccess(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
|
|
result = semSubscript(c, n, flags)
|
|
if result == nil:
|
|
# overloaded [] operator:
|
|
result = semExpr(c, buildOverloadedSubscripts(n, getIdent(c.cache, "[]")), flags, expectedType)
|
|
|
|
proc propertyWriteAccess(c: PContext, n, nOrig, a: PNode): PNode =
|
|
var id = considerQuotedIdent(c, a[1], a)
|
|
var setterId = newIdentNode(getIdent(c.cache, id.s & '='), n.info)
|
|
# a[0] is already checked for semantics, that does ``builtinFieldAccess``
|
|
# this is ugly. XXX Semantic checking should use the ``nfSem`` flag for
|
|
# nodes?
|
|
let aOrig = nOrig[0]
|
|
result = newTreeI(nkCall, n.info, setterId, a[0], n[1])
|
|
result.flags.incl nfDotSetter
|
|
let orig = newTreeI(nkCall, n.info, setterId, aOrig[0], nOrig[1])
|
|
result = semOverloadedCallAnalyseEffects(c, result, orig, {})
|
|
|
|
if result != nil:
|
|
result = afterCallActions(c, result, nOrig, {})
|
|
#fixAbstractType(c, result)
|
|
#analyseIfAddressTakenInCall(c, result)
|
|
|
|
proc takeImplicitAddr(c: PContext, n: PNode; isLent: bool): PNode =
|
|
# See RFC #7373, calls returning 'var T' are assumed to
|
|
# return a view into the first argument (if there is one):
|
|
let root = exprRoot(n)
|
|
if root != nil and root.owner == c.p.owner:
|
|
template url: string = "var_t_return.html".createDocLink
|
|
if root.kind in {skLet, skVar, skTemp} and sfGlobal notin root.flags:
|
|
localError(c.config, n.info, "'$1' escapes its stack frame; context: '$2'; see $3" % [
|
|
root.name.s, renderTree(n, {renderNoComments}), url])
|
|
elif root.kind == skParam and root.position != 0:
|
|
localError(c.config, n.info, "'$1' is not the first parameter; context: '$2'; see $3" % [
|
|
root.name.s, renderTree(n, {renderNoComments}), url])
|
|
case n.kind
|
|
of nkHiddenAddr, nkAddr: return n
|
|
of nkDerefExpr: return n[0]
|
|
of nkBracketExpr:
|
|
if n.len == 1: return n[0]
|
|
of nkHiddenDeref:
|
|
# issue #13848
|
|
# `proc fun(a: var int): var int = a`
|
|
discard
|
|
else: discard
|
|
let valid = isAssignable(c, n)
|
|
if valid != arLValue:
|
|
if valid in {arAddressableConst, arLentValue} and isLent:
|
|
discard "ok"
|
|
elif valid == arLocalLValue:
|
|
localError(c.config, n.info, errXStackEscape % renderTree(n, {renderNoComments}))
|
|
else:
|
|
localError(c.config, n.info, errExprHasNoAddress)
|
|
result = newNodeIT(nkHiddenAddr, n.info, if n.typ.kind in {tyVar, tyLent}: n.typ else: makePtrType(c, n.typ))
|
|
result.add(n)
|
|
|
|
proc asgnToResultVar(c: PContext, n, le, ri: PNode) {.inline.} =
|
|
if le.kind == nkHiddenDeref:
|
|
var x = le[0]
|
|
if x.kind == nkSym:
|
|
if x.sym.kind == skResult and (x.typ.kind in {tyVar, tyLent} or classifyViewType(x.typ) != noView):
|
|
n[0] = x # 'result[]' --> 'result'
|
|
n[1] = takeImplicitAddr(c, ri, x.typ.kind == tyLent)
|
|
x.typ.flags.incl tfVarIsPtr
|
|
#echo x.info, " setting it for this type ", typeToString(x.typ), " ", n.info
|
|
elif sfGlobal in x.sym.flags:
|
|
x.typ.flags.incl tfVarIsPtr
|
|
|
|
proc borrowCheck(c: PContext, n, le, ri: PNode) =
|
|
const
|
|
PathKinds0 = {nkDotExpr, nkCheckedFieldExpr,
|
|
nkBracketExpr, nkAddr, nkHiddenAddr,
|
|
nkObjDownConv, nkObjUpConv}
|
|
PathKinds1 = {nkHiddenStdConv, nkHiddenSubConv}
|
|
|
|
proc getRoot(n: PNode; followDeref: bool): PNode =
|
|
result = n
|
|
while true:
|
|
case result.kind
|
|
of nkDerefExpr, nkHiddenDeref:
|
|
if followDeref: result = result[0]
|
|
else: break
|
|
of PathKinds0:
|
|
result = result[0]
|
|
of PathKinds1:
|
|
result = result[1]
|
|
else: break
|
|
|
|
proc scopedLifetime(c: PContext; ri: PNode): bool {.inline.} =
|
|
let n = getRoot(ri, followDeref = false)
|
|
result = (ri.kind in nkCallKinds+{nkObjConstr}) or
|
|
(n.kind == nkSym and n.sym.owner == c.p.owner and n.sym.kind != skResult)
|
|
|
|
proc escapes(c: PContext; le: PNode): bool {.inline.} =
|
|
# param[].foo[] = self definitely escapes, we don't need to
|
|
# care about pointer derefs:
|
|
let n = getRoot(le, followDeref = true)
|
|
result = n.kind == nkSym and n.sym.kind == skParam
|
|
|
|
# Special typing rule: do not allow to pass 'owned T' to 'T' in 'result = x':
|
|
const absInst = abstractInst - {tyOwned}
|
|
if ri.typ != nil and ri.typ.skipTypes(absInst).kind == tyOwned and
|
|
le.typ != nil and le.typ.skipTypes(absInst).kind != tyOwned and
|
|
scopedLifetime(c, ri):
|
|
if le.kind == nkSym and le.sym.kind == skResult:
|
|
localError(c.config, n.info, "cannot return an owned pointer as an unowned pointer; " &
|
|
"use 'owned(" & typeToString(le.typ) & ")' as the return type")
|
|
elif escapes(c, le):
|
|
localError(c.config, n.info,
|
|
"assignment produces a dangling ref: the unowned ref lives longer than the owned ref")
|
|
|
|
template resultTypeIsInferrable(typ: PType): untyped =
|
|
typ.isMetaType and typ.kind != tyTypeDesc
|
|
|
|
proc goodLineInfo(arg: PNode): TLineInfo =
|
|
if arg.kind == nkStmtListExpr and arg.len > 0:
|
|
goodLineInfo(arg[^1])
|
|
else:
|
|
arg.info
|
|
|
|
proc makeTupleAssignments(c: PContext; n: PNode): PNode =
|
|
## expand tuple unpacking assignment into series of assignments
|
|
##
|
|
## mirrored with semstmts.makeVarTupleSection
|
|
let lhs = n[0]
|
|
let value = semExprWithType(c, n[1], {efTypeAllowed})
|
|
if value.typ.kind != tyTuple:
|
|
localError(c.config, n[1].info, errTupleUnpackingTupleExpected %
|
|
[typeToString(value.typ, preferDesc)])
|
|
elif lhs.len != value.typ.len:
|
|
localError(c.config, n.info, errTupleUnpackingDifferentLengths %
|
|
[$lhs.len, typeToString(value.typ, preferDesc), $value.typ.len])
|
|
result = newNodeI(nkStmtList, n.info)
|
|
|
|
let temp = newSym(skTemp, getIdent(c.cache, "tmpTupleAsgn"), c.idgen, getCurrOwner(c), n.info)
|
|
temp.typ = value.typ
|
|
temp.flags.incl(sfGenSym)
|
|
var v = newNodeI(nkLetSection, value.info)
|
|
let tempNode = newSymNode(temp) #newIdentNode(getIdent(genPrefix & $temp.id), value.info)
|
|
var vpart = newNodeI(nkIdentDefs, v.info, 3)
|
|
vpart[0] = tempNode
|
|
vpart[1] = c.graph.emptyNode
|
|
vpart[2] = value
|
|
v.add vpart
|
|
result.add(v)
|
|
|
|
for i in 0..<lhs.len:
|
|
if lhs[i].kind == nkIdent and lhs[i].ident.id == ord(wUnderscore):
|
|
# skip _ assignments if we are using a temp as they are already evaluated
|
|
discard
|
|
else:
|
|
result.add newAsgnStmt(lhs[i], newTupleAccessRaw(tempNode, i))
|
|
|
|
proc semAsgn(c: PContext, n: PNode; mode=asgnNormal): PNode =
|
|
checkSonsLen(n, 2, c.config)
|
|
var a = n[0]
|
|
case a.kind
|
|
of nkDotExpr:
|
|
# r.f = x
|
|
# --> `f=` (r, x)
|
|
let nOrig = n.copyTree
|
|
var flags = {efLValue}
|
|
a = builtinFieldAccess(c, a, flags)
|
|
if a == nil:
|
|
a = propertyWriteAccess(c, n, nOrig, n[0])
|
|
if a != nil: return a
|
|
# we try without the '='; proc that return 'var' or macros are still
|
|
# possible:
|
|
a = dotTransformation(c, n[0])
|
|
if a.kind == nkDotCall:
|
|
a.transitionSonsKind(nkCall)
|
|
a = semExprWithType(c, a, {efLValue})
|
|
of nkBracketExpr:
|
|
# a[i] = x
|
|
# --> `[]=`(a, i, x)
|
|
a = semSubscript(c, a, {efLValue})
|
|
if a == nil:
|
|
result = buildOverloadedSubscripts(n[0], getIdent(c.cache, "[]="))
|
|
result.add(n[1])
|
|
if mode == noOverloadedSubscript:
|
|
bracketNotFoundError(c, result)
|
|
return n
|
|
else:
|
|
result = semExprNoType(c, result)
|
|
return result
|
|
of nkCurlyExpr:
|
|
# a{i} = x --> `{}=`(a, i, x)
|
|
result = buildOverloadedSubscripts(n[0], getIdent(c.cache, "{}="))
|
|
result.add(n[1])
|
|
return semExprNoType(c, result)
|
|
of nkPar, nkTupleConstr:
|
|
if a.len >= 2 or a.kind == nkTupleConstr:
|
|
# unfortunately we need to rewrite ``(x, y) = foo()`` already here so
|
|
# that overloading of the assignment operator still works. Usually we
|
|
# prefer to do these rewritings in transf.nim:
|
|
return semStmt(c, makeTupleAssignments(c, n), {})
|
|
else:
|
|
a = semExprWithType(c, a, {efLValue})
|
|
else:
|
|
a = semExprWithType(c, a, {efLValue})
|
|
n[0] = a
|
|
# a = b # both are vars, means: a[] = b[]
|
|
# a = b # b no 'var T' means: a = addr(b)
|
|
var le = a.typ
|
|
let assignable = isAssignable(c, a)
|
|
let root = getRoot(a)
|
|
let useStrictDefLet = root != nil and root.kind == skLet and
|
|
assignable == arAddressableConst and
|
|
strictDefs in c.features and isLocalSym(root)
|
|
if le == nil:
|
|
localError(c.config, a.info, "expression has no type")
|
|
elif (skipTypes(le, {tyGenericInst, tyAlias, tySink}).kind notin {tyVar} and
|
|
assignable in {arNone, arLentValue, arAddressableConst} and not useStrictDefLet
|
|
) or (skipTypes(le, abstractVar).kind in {tyOpenArray, tyVarargs} and views notin c.features):
|
|
# Direct assignment to a discriminant is allowed!
|
|
localError(c.config, a.info, errXCannotBeAssignedTo %
|
|
renderTree(a, {renderNoComments}))
|
|
else:
|
|
let lhs = n[0]
|
|
let rhs = semExprWithType(c, n[1], {efTypeAllowed}, le)
|
|
if lhs.kind == nkSym and lhs.sym.kind == skResult:
|
|
n.typ = c.enforceVoidContext
|
|
if c.p.owner.kind != skMacro and resultTypeIsInferrable(lhs.sym.typ):
|
|
var rhsTyp = rhs.typ
|
|
if rhsTyp.kind in tyUserTypeClasses and rhsTyp.isResolvedUserTypeClass:
|
|
rhsTyp = rhsTyp.lastSon
|
|
if lhs.sym.typ.kind == tyAnything:
|
|
rhsTyp = rhsTyp.skipIntLit(c.idgen)
|
|
if cmpTypes(c, lhs.typ, rhsTyp) in {isGeneric, isEqual}:
|
|
internalAssert c.config, c.p.resultSym != nil
|
|
# Make sure the type is valid for the result variable
|
|
typeAllowedCheck(c, n.info, rhsTyp, skResult)
|
|
lhs.typ = rhsTyp
|
|
c.p.resultSym.typ = rhsTyp
|
|
c.p.owner.typ[0] = rhsTyp
|
|
else:
|
|
typeMismatch(c.config, n.info, lhs.typ, rhsTyp, rhs)
|
|
borrowCheck(c, n, lhs, rhs)
|
|
|
|
n[1] = fitNode(c, le, rhs, goodLineInfo(n[1]))
|
|
when false: liftTypeBoundOps(c, lhs.typ, lhs.info)
|
|
|
|
fixAbstractType(c, n)
|
|
asgnToResultVar(c, n, n[0], n[1])
|
|
result = n
|
|
|
|
proc semReturn(c: PContext, n: PNode): PNode =
|
|
result = n
|
|
checkSonsLen(n, 1, c.config)
|
|
if c.p.owner.kind in {skConverter, skMethod, skProc, skFunc, skMacro} or
|
|
(not c.p.owner.typ.isNil and isClosureIterator(c.p.owner.typ)):
|
|
if n[0].kind != nkEmpty:
|
|
if n[0].kind == nkAsgn and n[0][0].kind == nkSym and c.p.resultSym == n[0][0].sym:
|
|
discard "return is already transformed"
|
|
elif c.p.resultSym != nil:
|
|
# transform ``return expr`` to ``result = expr; return``
|
|
var a = newNodeI(nkAsgn, n[0].info)
|
|
a.add newSymNode(c.p.resultSym)
|
|
a.add n[0]
|
|
n[0] = a
|
|
else:
|
|
localError(c.config, n.info, errNoReturnTypeDeclared)
|
|
return
|
|
result[0] = semAsgn(c, n[0])
|
|
# optimize away ``result = result``:
|
|
if result[0][1].kind == nkSym and result[0][1].sym == c.p.resultSym:
|
|
result[0] = c.graph.emptyNode
|
|
else:
|
|
localError(c.config, n.info, "'return' not allowed here")
|
|
|
|
proc semProcBody(c: PContext, n: PNode; expectedType: PType = nil): PNode =
|
|
when defined(nimsuggest):
|
|
if c.graph.config.expandDone():
|
|
return n
|
|
openScope(c)
|
|
result = semExpr(c, n, expectedType = expectedType)
|
|
if c.p.resultSym != nil and not isEmptyType(result.typ):
|
|
if result.kind == nkNilLit:
|
|
# or ImplicitlyDiscardable(result):
|
|
# new semantic: 'result = x' triggers the void context
|
|
result.typ = nil
|
|
elif result.kind == nkStmtListExpr and result.typ.kind == tyNil:
|
|
# to keep backwards compatibility bodies like:
|
|
# nil
|
|
# # comment
|
|
# are not expressions:
|
|
fixNilType(c, result)
|
|
else:
|
|
var a = newNodeI(nkAsgn, n.info, 2)
|
|
a[0] = newSymNode(c.p.resultSym)
|
|
a[1] = result
|
|
result = semAsgn(c, a)
|
|
else:
|
|
discardCheck(c, result, {})
|
|
|
|
if c.p.owner.kind notin {skMacro, skTemplate} and
|
|
c.p.resultSym != nil and c.p.resultSym.typ.isMetaType:
|
|
if isEmptyType(result.typ):
|
|
# we inferred a 'void' return type:
|
|
c.p.resultSym.typ = errorType(c)
|
|
c.p.owner.typ[0] = nil
|
|
else:
|
|
localError(c.config, c.p.resultSym.info, errCannotInferReturnType %
|
|
c.p.owner.name.s)
|
|
if isIterator(c.p.owner.typ) and c.p.owner.typ[0] != nil and
|
|
c.p.owner.typ[0].kind == tyAnything:
|
|
localError(c.config, c.p.owner.info, errCannotInferReturnType %
|
|
c.p.owner.name.s)
|
|
closeScope(c)
|
|
|
|
proc semYieldVarResult(c: PContext, n: PNode, restype: PType) =
|
|
var t = skipTypes(restype, {tyGenericInst, tyAlias, tySink})
|
|
case t.kind
|
|
of tyVar, tyLent:
|
|
t.flags.incl tfVarIsPtr # bugfix for #4048, #4910, #6892
|
|
if n[0].kind in {nkHiddenStdConv, nkHiddenSubConv}:
|
|
n[0] = n[0][1]
|
|
n[0] = takeImplicitAddr(c, n[0], t.kind == tyLent)
|
|
of tyTuple:
|
|
for i in 0..<t.len:
|
|
let e = skipTypes(t[i], {tyGenericInst, tyAlias, tySink})
|
|
if e.kind in {tyVar, tyLent}:
|
|
e.flags.incl tfVarIsPtr # bugfix for #4048, #4910, #6892
|
|
let tupleConstr = if n[0].kind in {nkHiddenStdConv, nkHiddenSubConv}: n[0][1] else: n[0]
|
|
if tupleConstr.kind in {nkPar, nkTupleConstr}:
|
|
if tupleConstr[i].kind == nkExprColonExpr:
|
|
tupleConstr[i][1] = takeImplicitAddr(c, tupleConstr[i][1], e.kind == tyLent)
|
|
else:
|
|
tupleConstr[i] = takeImplicitAddr(c, tupleConstr[i], e.kind == tyLent)
|
|
else:
|
|
localError(c.config, n[0].info, errXExpected, "tuple constructor")
|
|
elif e.kind == tyEmpty:
|
|
localError(c.config, n[0].info, errTypeExpected)
|
|
else:
|
|
when false:
|
|
# XXX investigate what we really need here.
|
|
if isViewType(t):
|
|
n[0] = takeImplicitAddr(c, n[0], false)
|
|
|
|
proc semYield(c: PContext, n: PNode): PNode =
|
|
result = n
|
|
checkSonsLen(n, 1, c.config)
|
|
if c.p.owner == nil or c.p.owner.kind != skIterator:
|
|
localError(c.config, n.info, errYieldNotAllowedHere)
|
|
elif n[0].kind != nkEmpty:
|
|
n[0] = semExprWithType(c, n[0]) # check for type compatibility:
|
|
var iterType = c.p.owner.typ
|
|
let restype = iterType[0]
|
|
if restype != nil:
|
|
if restype.kind != tyUntyped:
|
|
n[0] = fitNode(c, restype, n[0], n.info)
|
|
if n[0].typ == nil: internalError(c.config, n.info, "semYield")
|
|
|
|
if resultTypeIsInferrable(restype):
|
|
let inferred = n[0].typ
|
|
iterType[0] = inferred
|
|
if c.p.resultSym != nil:
|
|
c.p.resultSym.typ = inferred
|
|
|
|
semYieldVarResult(c, n, restype)
|
|
else:
|
|
localError(c.config, n.info, errCannotReturnExpr)
|
|
elif c.p.owner.typ[0] != nil:
|
|
localError(c.config, n.info, errGenerated, "yield statement must yield a value")
|
|
|
|
proc considerQuotedIdentOrDot(c: PContext, n: PNode, origin: PNode = nil): PIdent =
|
|
if n.kind == nkDotExpr:
|
|
let a = considerQuotedIdentOrDot(c, n[0], origin).s
|
|
let b = considerQuotedIdentOrDot(c, n[1], origin).s
|
|
var s = newStringOfCap(a.len + b.len + 1)
|
|
s.add(a)
|
|
s.add('.')
|
|
s.add(b)
|
|
result = getIdent(c.cache, s)
|
|
else:
|
|
result = considerQuotedIdent(c, n, origin)
|
|
|
|
proc semDefined(c: PContext, n: PNode): PNode =
|
|
checkSonsLen(n, 2, c.config)
|
|
# we replace this node by a 'true' or 'false' node:
|
|
result = newIntNode(nkIntLit, 0)
|
|
result.intVal = ord isDefined(c.config, considerQuotedIdentOrDot(c, n[1], n).s)
|
|
result.info = n.info
|
|
result.typ = getSysType(c.graph, n.info, tyBool)
|
|
|
|
proc lookUpForDeclared(c: PContext, n: PNode, onlyCurrentScope: bool): PSym =
|
|
case n.kind
|
|
of nkIdent, nkAccQuoted:
|
|
var amb = false
|
|
let ident = considerQuotedIdent(c, n)
|
|
result = if onlyCurrentScope:
|
|
localSearchInScope(c, ident)
|
|
else:
|
|
searchInScopes(c, ident, amb)
|
|
of nkDotExpr:
|
|
result = nil
|
|
if onlyCurrentScope: return
|
|
checkSonsLen(n, 2, c.config)
|
|
var m = lookUpForDeclared(c, n[0], onlyCurrentScope)
|
|
if m != nil and m.kind == skModule:
|
|
let ident = considerQuotedIdent(c, n[1], n)
|
|
if m == c.module:
|
|
result = strTableGet(c.topLevelScope.symbols, ident)
|
|
else:
|
|
result = someSym(c.graph, m, ident)
|
|
of nkSym:
|
|
result = n.sym
|
|
of nkOpenSymChoice, nkClosedSymChoice:
|
|
result = n[0].sym
|
|
else:
|
|
localError(c.config, n.info, "identifier expected, but got: " & renderTree(n))
|
|
result = nil
|
|
|
|
proc semDeclared(c: PContext, n: PNode, onlyCurrentScope: bool): PNode =
|
|
checkSonsLen(n, 2, c.config)
|
|
# we replace this node by a 'true' or 'false' node:
|
|
result = newIntNode(nkIntLit, 0)
|
|
result.intVal = ord lookUpForDeclared(c, n[1], onlyCurrentScope) != nil
|
|
result.info = n.info
|
|
result.typ = getSysType(c.graph, n.info, tyBool)
|
|
|
|
proc expectMacroOrTemplateCall(c: PContext, n: PNode): PSym =
|
|
## The argument to the proc should be nkCall(...) or similar
|
|
## Returns the macro/template symbol
|
|
if isCallExpr(n):
|
|
var expandedSym = qualifiedLookUp(c, n[0], {checkUndeclared})
|
|
if expandedSym == nil:
|
|
errorUndeclaredIdentifier(c, n.info, n[0].renderTree)
|
|
return errorSym(c, n[0])
|
|
|
|
if expandedSym.kind notin {skMacro, skTemplate}:
|
|
localError(c.config, n.info, "'$1' is not a macro or template" % expandedSym.name.s)
|
|
return errorSym(c, n[0])
|
|
|
|
result = expandedSym
|
|
else:
|
|
localError(c.config, n.info, "'$1' is not a macro or template" % n.renderTree)
|
|
result = errorSym(c, n)
|
|
|
|
proc expectString(c: PContext, n: PNode): string =
|
|
var n = semConstExpr(c, n)
|
|
if n.kind in nkStrKinds:
|
|
return n.strVal
|
|
else:
|
|
result = ""
|
|
localError(c.config, n.info, errStringLiteralExpected)
|
|
|
|
proc newAnonSym(c: PContext; kind: TSymKind, info: TLineInfo): PSym =
|
|
result = newSym(kind, c.cache.idAnon, c.idgen, getCurrOwner(c), info)
|
|
|
|
proc semExpandToAst(c: PContext, n: PNode): PNode =
|
|
let macroCall = n[1]
|
|
|
|
when false:
|
|
let expandedSym = expectMacroOrTemplateCall(c, macroCall)
|
|
if expandedSym.kind == skError: return n
|
|
|
|
macroCall[0] = newSymNode(expandedSym, macroCall.info)
|
|
markUsed(c, n.info, expandedSym)
|
|
onUse(n.info, expandedSym)
|
|
|
|
if isCallExpr(macroCall):
|
|
for i in 1..<macroCall.len:
|
|
#if macroCall[0].typ[i].kind != tyUntyped:
|
|
macroCall[i] = semExprWithType(c, macroCall[i], {})
|
|
# performing overloading resolution here produces too serious regressions:
|
|
let headSymbol = macroCall[0]
|
|
var cands = 0
|
|
var cand: PSym = nil
|
|
var o: TOverloadIter
|
|
var symx = initOverloadIter(o, c, headSymbol)
|
|
while symx != nil:
|
|
if symx.kind in {skTemplate, skMacro} and symx.typ.len == macroCall.len:
|
|
cand = symx
|
|
inc cands
|
|
symx = nextOverloadIter(o, c, headSymbol)
|
|
if cands == 0:
|
|
localError(c.config, n.info, "expected a template that takes " & $(macroCall.len-1) & " arguments")
|
|
elif cands >= 2:
|
|
localError(c.config, n.info, "ambiguous symbol in 'getAst' context: " & $macroCall)
|
|
else:
|
|
let info = macroCall[0].info
|
|
macroCall[0] = newSymNode(cand, info)
|
|
markUsed(c, info, cand)
|
|
onUse(info, cand)
|
|
|
|
# we just perform overloading resolution here:
|
|
#n[1] = semOverloadedCall(c, macroCall, macroCall, {skTemplate, skMacro})
|
|
else:
|
|
localError(c.config, n.info, "getAst takes a call, but got " & n.renderTree)
|
|
# Preserve the magic symbol in order to be handled in evals.nim
|
|
internalAssert c.config, n[0].sym.magic == mExpandToAst
|
|
#n.typ = getSysSym("NimNode").typ # expandedSym.getReturnType
|
|
if n.kind == nkStmtList and n.len == 1: result = n[0]
|
|
else: result = n
|
|
result.typ = sysTypeFromName(c.graph, n.info, "NimNode")
|
|
|
|
proc semExpandToAst(c: PContext, n: PNode, magicSym: PSym,
|
|
flags: TExprFlags = {}): PNode =
|
|
if n.len == 2:
|
|
n[0] = newSymNode(magicSym, n.info)
|
|
result = semExpandToAst(c, n)
|
|
else:
|
|
result = semDirectOp(c, n, flags)
|
|
|
|
proc processQuotations(c: PContext; n: var PNode, op: string,
|
|
quotes: var seq[PNode],
|
|
ids: var seq[PNode]) =
|
|
template returnQuote(q) =
|
|
quotes.add q
|
|
n = newIdentNode(getIdent(c.cache, $quotes.len), n.info)
|
|
ids.add n
|
|
return
|
|
|
|
template handlePrefixOp(prefixed) =
|
|
if prefixed[0].kind == nkIdent:
|
|
let examinedOp = prefixed[0].ident.s
|
|
if examinedOp == op:
|
|
returnQuote prefixed[1]
|
|
elif examinedOp.startsWith(op):
|
|
prefixed[0] = newIdentNode(getIdent(c.cache, examinedOp.substr(op.len)), prefixed.info)
|
|
|
|
if n.kind == nkPrefix:
|
|
checkSonsLen(n, 2, c.config)
|
|
handlePrefixOp(n)
|
|
elif n.kind == nkAccQuoted:
|
|
if op == "``":
|
|
returnQuote n[0]
|
|
else: # [bug #7589](https://github.com/nim-lang/Nim/issues/7589)
|
|
if n.len == 2 and n[0].ident.s == op:
|
|
var tempNode = nkPrefix.newTree()
|
|
tempNode.newSons(2)
|
|
tempNode[0] = n[0]
|
|
tempNode[1] = n[1]
|
|
handlePrefixOp(tempNode)
|
|
elif n.kind == nkIdent:
|
|
if n.ident.s == "result":
|
|
n = ids[0]
|
|
|
|
for i in 0..<n.safeLen:
|
|
processQuotations(c, n[i], op, quotes, ids)
|
|
|
|
proc semQuoteAst(c: PContext, n: PNode): PNode =
|
|
if n.len != 2 and n.len != 3:
|
|
localError(c.config, n.info, "'quote' expects 1 or 2 arguments")
|
|
return n
|
|
# We transform the do block into a template with a param for
|
|
# each interpolation. We'll pass this template to getAst.
|
|
var
|
|
quotedBlock = n[^1]
|
|
op = if n.len == 3: expectString(c, n[1]) else: "``"
|
|
quotes = newSeq[PNode](2)
|
|
# the quotes will be added to a nkCall statement
|
|
# leave some room for the callee symbol and the result symbol
|
|
ids = newSeq[PNode](1)
|
|
# this will store the generated param names
|
|
# leave some room for the result symbol
|
|
|
|
if quotedBlock.kind != nkStmtList:
|
|
localError(c.config, n.info, errXExpected, "block")
|
|
|
|
# This adds a default first field to pass the result symbol
|
|
ids[0] = newAnonSym(c, skParam, n.info).newSymNode
|
|
processQuotations(c, quotedBlock, op, quotes, ids)
|
|
|
|
let dummyTemplateSym = newAnonSym(c, skTemplate, n.info)
|
|
incl(dummyTemplateSym.flags, sfTemplateRedefinition)
|
|
var dummyTemplate = newProcNode(
|
|
nkTemplateDef, quotedBlock.info, body = quotedBlock,
|
|
params = c.graph.emptyNode,
|
|
name = dummyTemplateSym.newSymNode,
|
|
pattern = c.graph.emptyNode, genericParams = c.graph.emptyNode,
|
|
pragmas = c.graph.emptyNode, exceptions = c.graph.emptyNode)
|
|
|
|
if ids.len > 0:
|
|
dummyTemplate[paramsPos] = newNodeI(nkFormalParams, n.info)
|
|
dummyTemplate[paramsPos].add getSysSym(c.graph, n.info, "untyped").newSymNode # return type
|
|
dummyTemplate[paramsPos].add newTreeI(nkIdentDefs, n.info, ids[0], getSysSym(c.graph, n.info, "typed").newSymNode, c.graph.emptyNode)
|
|
for i in 1..<ids.len:
|
|
let exp = semExprWithType(c, quotes[i+1], {})
|
|
let typ = exp.typ
|
|
if tfTriggersCompileTime notin typ.flags and exp.kind == nkSym and exp.sym.kind notin routineKinds + {skType}:
|
|
dummyTemplate[paramsPos].add newTreeI(nkIdentDefs, n.info, ids[i], newNodeIT(nkType, n.info, typ), c.graph.emptyNode)
|
|
else:
|
|
dummyTemplate[paramsPos].add newTreeI(nkIdentDefs, n.info, ids[i], getSysSym(c.graph, n.info, "typed").newSymNode, c.graph.emptyNode)
|
|
var tmpl = semTemplateDef(c, dummyTemplate)
|
|
quotes[0] = tmpl[namePos]
|
|
# This adds a call to newIdentNode("result") as the first argument to the template call
|
|
let identNodeSym = getCompilerProc(c.graph, "newIdentNode")
|
|
# so that new Nim compilers can compile old macros.nim versions, we check for 'nil'
|
|
# here and provide the old fallback solution:
|
|
let identNode = if identNodeSym == nil:
|
|
newIdentNode(getIdent(c.cache, "newIdentNode"), n.info)
|
|
else:
|
|
identNodeSym.newSymNode
|
|
quotes[1] = newTreeI(nkCall, n.info, identNode, newStrNode(nkStrLit, "result"))
|
|
result = newTreeI(nkCall, n.info,
|
|
createMagic(c.graph, c.idgen, "getAst", mExpandToAst).newSymNode,
|
|
newTreeI(nkCall, n.info, quotes))
|
|
result = semExpandToAst(c, result)
|
|
|
|
proc tryExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
|
|
# watch out, hacks ahead:
|
|
when defined(nimsuggest):
|
|
# Remove the error hook so nimsuggest doesn't report errors there
|
|
let tempHook = c.graph.config.structuredErrorHook
|
|
c.graph.config.structuredErrorHook = nil
|
|
let oldErrorCount = c.config.errorCounter
|
|
let oldErrorMax = c.config.errorMax
|
|
let oldCompilesId = c.compilesContextId
|
|
# if this is a nested 'when compiles', do not increase the ID so that
|
|
# generic instantiations can still be cached for this level.
|
|
if c.compilesContextId == 0:
|
|
inc c.compilesContextIdGenerator
|
|
c.compilesContextId = c.compilesContextIdGenerator
|
|
c.config.errorMax = high(int) # `setErrorMaxHighMaybe` not appropriate here
|
|
|
|
# open a scope for temporary symbol inclusions:
|
|
let oldScope = c.currentScope
|
|
openScope(c)
|
|
let oldOwnerLen = c.graph.owners.len
|
|
let oldGenerics = c.generics
|
|
let oldErrorOutputs = c.config.m.errorOutputs
|
|
if efExplain notin flags: c.config.m.errorOutputs = {}
|
|
let oldContextLen = msgs.getInfoContextLen(c.config)
|
|
|
|
let oldInGenericContext = c.inGenericContext
|
|
let oldInUnrolledContext = c.inUnrolledContext
|
|
let oldInGenericInst = c.inGenericInst
|
|
let oldInStaticContext = c.inStaticContext
|
|
let oldProcCon = c.p
|
|
c.generics = @[]
|
|
var err: string
|
|
try:
|
|
result = semExpr(c, n, flags)
|
|
if result != nil and efNoSem2Check notin flags:
|
|
trackStmt(c, c.module, result, isTopLevel = false)
|
|
if c.config.errorCounter != oldErrorCount:
|
|
result = nil
|
|
except ERecoverableError:
|
|
result = nil
|
|
# undo symbol table changes (as far as it's possible):
|
|
c.compilesContextId = oldCompilesId
|
|
c.generics = oldGenerics
|
|
c.inGenericContext = oldInGenericContext
|
|
c.inUnrolledContext = oldInUnrolledContext
|
|
c.inGenericInst = oldInGenericInst
|
|
c.inStaticContext = oldInStaticContext
|
|
c.p = oldProcCon
|
|
msgs.setInfoContextLen(c.config, oldContextLen)
|
|
setLen(c.graph.owners, oldOwnerLen)
|
|
c.currentScope = oldScope
|
|
c.config.m.errorOutputs = oldErrorOutputs
|
|
c.config.errorCounter = oldErrorCount
|
|
c.config.errorMax = oldErrorMax
|
|
when defined(nimsuggest):
|
|
# Restore the error hook
|
|
c.graph.config.structuredErrorHook = tempHook
|
|
|
|
proc semCompiles(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
# we replace this node by a 'true' or 'false' node:
|
|
if n.len != 2: return semDirectOp(c, n, flags)
|
|
|
|
result = newIntNode(nkIntLit, ord(tryExpr(c, n[1], flags) != nil))
|
|
result.info = n.info
|
|
result.typ = getSysType(c.graph, n.info, tyBool)
|
|
|
|
proc semShallowCopy(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
if n.len == 3:
|
|
# XXX ugh this is really a hack: shallowCopy() can be overloaded only
|
|
# with procs that take not 2 parameters:
|
|
result = newNodeI(nkFastAsgn, n.info)
|
|
result.add(n[1])
|
|
result.add(n[2])
|
|
result = semAsgn(c, result)
|
|
else:
|
|
result = semDirectOp(c, n, flags)
|
|
|
|
proc createFlowVar(c: PContext; t: PType; info: TLineInfo): PType =
|
|
result = newType(tyGenericInvocation, nextTypeId c.idgen, c.module)
|
|
addSonSkipIntLit(result, magicsys.getCompilerProc(c.graph, "FlowVar").typ, c.idgen)
|
|
addSonSkipIntLit(result, t, c.idgen)
|
|
result = instGenericContainer(c, info, result, allowMetaTypes = false)
|
|
|
|
proc instantiateCreateFlowVarCall(c: PContext; t: PType;
|
|
info: TLineInfo): PSym =
|
|
let sym = magicsys.getCompilerProc(c.graph, "nimCreateFlowVar")
|
|
if sym == nil:
|
|
localError(c.config, info, "system needs: nimCreateFlowVar")
|
|
var bindings: TIdTable = initIdTable()
|
|
bindings.idTablePut(sym.ast[genericParamsPos][0].typ, t)
|
|
result = c.semGenerateInstance(c, sym, bindings, info)
|
|
# since it's an instantiation, we unmark it as a compilerproc. Otherwise
|
|
# codegen would fail:
|
|
if sfCompilerProc in result.flags:
|
|
result.flags.excl {sfCompilerProc, sfExportc, sfImportc}
|
|
result.loc.r = ""
|
|
|
|
proc setMs(n: PNode, s: PSym): PNode =
|
|
result = n
|
|
n[0] = newSymNode(s)
|
|
n[0].info = n.info
|
|
|
|
proc semSizeof(c: PContext, n: PNode): PNode =
|
|
if n.len != 2:
|
|
localError(c.config, n.info, errXExpectsTypeOrValue % "sizeof")
|
|
else:
|
|
n[1] = semExprWithType(c, n[1], {efDetermineType})
|
|
#restoreOldStyleType(n[1])
|
|
n.typ = getSysType(c.graph, n.info, tyInt)
|
|
result = foldSizeOf(c.config, n, n)
|
|
|
|
proc semMagic(c: PContext, n: PNode, s: PSym, flags: TExprFlags; expectedType: PType = nil): PNode =
|
|
# this is a hotspot in the compiler!
|
|
result = n
|
|
case s.magic # magics that need special treatment
|
|
of mAddr:
|
|
markUsed(c, n.info, s)
|
|
checkSonsLen(n, 2, c.config)
|
|
result[0] = newSymNode(s, n[0].info)
|
|
result[1] = semAddrArg(c, n[1])
|
|
result.typ = makePtrType(c, result[1].typ)
|
|
of mTypeOf:
|
|
markUsed(c, n.info, s)
|
|
result = semTypeOf(c, n)
|
|
of mDefined:
|
|
markUsed(c, n.info, s)
|
|
result = semDefined(c, setMs(n, s))
|
|
of mDeclared:
|
|
markUsed(c, n.info, s)
|
|
result = semDeclared(c, setMs(n, s), false)
|
|
of mDeclaredInScope:
|
|
markUsed(c, n.info, s)
|
|
result = semDeclared(c, setMs(n, s), true)
|
|
of mCompiles:
|
|
markUsed(c, n.info, s)
|
|
result = semCompiles(c, setMs(n, s), flags)
|
|
of mIs:
|
|
markUsed(c, n.info, s)
|
|
result = semIs(c, setMs(n, s), flags)
|
|
of mShallowCopy:
|
|
markUsed(c, n.info, s)
|
|
result = semShallowCopy(c, n, flags)
|
|
of mExpandToAst:
|
|
markUsed(c, n.info, s)
|
|
result = semExpandToAst(c, n, s, flags)
|
|
of mQuoteAst:
|
|
markUsed(c, n.info, s)
|
|
result = semQuoteAst(c, n)
|
|
of mAstToStr:
|
|
markUsed(c, n.info, s)
|
|
checkSonsLen(n, 2, c.config)
|
|
result = newStrNodeT(renderTree(n[1], {renderNoComments}), n, c.graph)
|
|
result.typ = getSysType(c.graph, n.info, tyString)
|
|
of mParallel:
|
|
markUsed(c, n.info, s)
|
|
if parallel notin c.features:
|
|
localError(c.config, n.info, "use the {.experimental.} pragma to enable 'parallel'")
|
|
result = setMs(n, s)
|
|
var x = n.lastSon
|
|
if x.kind == nkDo: x = x[bodyPos]
|
|
inc c.inParallelStmt
|
|
result[1] = semStmt(c, x, {})
|
|
dec c.inParallelStmt
|
|
of mSpawn:
|
|
markUsed(c, n.info, s)
|
|
when defined(leanCompiler):
|
|
result = localErrorNode(c, n, "compiler was built without 'spawn' support")
|
|
else:
|
|
result = setMs(n, s)
|
|
for i in 1..<n.len:
|
|
result[i] = semExpr(c, n[i])
|
|
|
|
if n.len > 1 and n[1].kind notin nkCallKinds:
|
|
return localErrorNode(c, n, n[1].info, "'spawn' takes a call expression; got: " & $n[1])
|
|
|
|
let typ = result[^1].typ
|
|
if not typ.isEmptyType:
|
|
if spawnResult(typ, c.inParallelStmt > 0) == srFlowVar:
|
|
result.typ = createFlowVar(c, typ, n.info)
|
|
else:
|
|
result.typ = typ
|
|
result.add instantiateCreateFlowVarCall(c, typ, n.info).newSymNode
|
|
else:
|
|
result.add c.graph.emptyNode
|
|
of mProcCall:
|
|
markUsed(c, n.info, s)
|
|
result = setMs(n, s)
|
|
result[1] = semExpr(c, n[1])
|
|
result.typ = n[1].typ
|
|
of mPlugin:
|
|
markUsed(c, n.info, s)
|
|
# semDirectOp with conditional 'afterCallActions':
|
|
let nOrig = n.copyTree
|
|
#semLazyOpAux(c, n)
|
|
result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
|
|
if result == nil:
|
|
result = errorNode(c, n)
|
|
else:
|
|
let callee = result[0].sym
|
|
if callee.magic == mNone:
|
|
semFinishOperands(c, result)
|
|
activate(c, result)
|
|
fixAbstractType(c, result)
|
|
analyseIfAddressTakenInCall(c, result)
|
|
if callee.magic != mNone:
|
|
result = magicsAfterOverloadResolution(c, result, flags)
|
|
of mRunnableExamples:
|
|
markUsed(c, n.info, s)
|
|
if c.config.cmd in cmdDocLike and n.len >= 2 and n.lastSon.kind == nkStmtList:
|
|
when false:
|
|
# some of this dead code was moved to `prepareExamples`
|
|
if sfMainModule in c.module.flags:
|
|
let inp = toFullPath(c.config, c.module.info)
|
|
if c.runnableExamples == nil:
|
|
c.runnableExamples = newTree(nkStmtList,
|
|
newTree(nkImportStmt, newStrNode(nkStrLit, expandFilename(inp))))
|
|
let imports = newTree(nkStmtList)
|
|
var savedLastSon = copyTree n.lastSon
|
|
extractImports(savedLastSon, imports)
|
|
for imp in imports: c.runnableExamples.add imp
|
|
c.runnableExamples.add newTree(nkBlockStmt, c.graph.emptyNode, copyTree savedLastSon)
|
|
result = setMs(n, s)
|
|
else:
|
|
result = c.graph.emptyNode
|
|
of mSizeOf:
|
|
markUsed(c, n.info, s)
|
|
result = semSizeof(c, setMs(n, s))
|
|
of mArrToSeq, mOpenArrayToSeq:
|
|
if expectedType != nil and (
|
|
let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
|
|
expected.kind in {tySequence, tyOpenArray}):
|
|
# seq type inference
|
|
var arrayType = newType(tyOpenArray, nextTypeId(c.idgen), expected.owner)
|
|
arrayType.rawAddSon(expected[0])
|
|
if n[0].kind == nkSym and sfFromGeneric in n[0].sym.flags:
|
|
# may have been resolved to `@`[empty] at some point,
|
|
# reset to `@` to deal with this
|
|
n[0] = newSymNode(n[0].sym.instantiatedFrom, n[0].info)
|
|
n[1] = semExpr(c, n[1], flags, arrayType)
|
|
result = semDirectOp(c, n, flags, expectedType)
|
|
else:
|
|
result = semDirectOp(c, n, flags, expectedType)
|
|
|
|
proc semWhen(c: PContext, n: PNode, semCheck = true): PNode =
|
|
# If semCheck is set to false, ``when`` will return the verbatim AST of
|
|
# the correct branch. Otherwise the AST will be passed through semStmt.
|
|
result = nil
|
|
|
|
template setResult(e: untyped) =
|
|
if semCheck: result = semExpr(c, e) # do not open a new scope!
|
|
else: result = e
|
|
|
|
# Check if the node is "when nimvm"
|
|
# when nimvm:
|
|
# ...
|
|
# else:
|
|
# ...
|
|
var whenNimvm = false
|
|
var typ = commonTypeBegin
|
|
if n.len in 1..2 and n[0].kind == nkElifBranch and (
|
|
n.len == 1 or n[1].kind == nkElse):
|
|
let exprNode = n[0][0]
|
|
if exprNode.kind == nkIdent:
|
|
whenNimvm = lookUp(c, exprNode).magic == mNimvm
|
|
elif exprNode.kind == nkSym:
|
|
whenNimvm = exprNode.sym.magic == mNimvm
|
|
if whenNimvm: n.flags.incl nfLL
|
|
|
|
for i in 0..<n.len:
|
|
var it = n[i]
|
|
case it.kind
|
|
of nkElifBranch, nkElifExpr:
|
|
checkSonsLen(it, 2, c.config)
|
|
if whenNimvm:
|
|
if semCheck:
|
|
it[1] = semExpr(c, it[1])
|
|
typ = commonType(c, typ, it[1].typ)
|
|
result = n # when nimvm is not elimited until codegen
|
|
else:
|
|
let e = forceBool(c, semConstExpr(c, it[0]))
|
|
if e.kind != nkIntLit:
|
|
# can happen for cascading errors, assume false
|
|
# InternalError(n.info, "semWhen")
|
|
discard
|
|
elif e.intVal != 0 and result == nil:
|
|
setResult(it[1])
|
|
return # we're not in nimvm and we already have a result
|
|
of nkElse, nkElseExpr:
|
|
checkSonsLen(it, 1, c.config)
|
|
if result == nil or whenNimvm:
|
|
if semCheck:
|
|
it[0] = semExpr(c, it[0])
|
|
typ = commonType(c, typ, it[0].typ)
|
|
if result == nil:
|
|
result = it[0]
|
|
else: illFormedAst(n, c.config)
|
|
if result == nil:
|
|
result = newNodeI(nkEmpty, n.info)
|
|
if whenNimvm:
|
|
result.typ = typ
|
|
if n.len == 1:
|
|
result.add(newTree(nkElse, newNode(nkStmtList)))
|
|
|
|
proc semSetConstr(c: PContext, n: PNode, expectedType: PType = nil): PNode =
|
|
result = newNodeI(nkCurly, n.info)
|
|
result.typ = newTypeS(tySet, c)
|
|
result.typ.flags.incl tfIsConstructor
|
|
var expectedElementType: PType = nil
|
|
if expectedType != nil and (
|
|
let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
|
|
expected.kind == tySet):
|
|
expectedElementType = expected[0]
|
|
if n.len == 0:
|
|
rawAddSon(result.typ,
|
|
if expectedElementType != nil and
|
|
typeAllowed(expectedElementType, skLet, c) == nil:
|
|
expectedElementType
|
|
else:
|
|
newTypeS(tyEmpty, c))
|
|
else:
|
|
# only semantic checking for all elements, later type checking:
|
|
var typ: PType = nil
|
|
for i in 0..<n.len:
|
|
let doSetType = typ == nil
|
|
if isRange(n[i]):
|
|
checkSonsLen(n[i], 3, c.config)
|
|
n[i][1] = semExprWithType(c, n[i][1], {efTypeAllowed}, expectedElementType)
|
|
n[i][2] = semExprWithType(c, n[i][2], {efTypeAllowed}, expectedElementType)
|
|
if doSetType:
|
|
typ = skipTypes(n[i][1].typ,
|
|
{tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
|
|
n[i].typ = n[i][2].typ # range node needs type too
|
|
elif n[i].kind == nkRange:
|
|
# already semchecked
|
|
if doSetType:
|
|
typ = skipTypes(n[i][0].typ,
|
|
{tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
|
|
else:
|
|
n[i] = semExprWithType(c, n[i], {efTypeAllowed}, expectedElementType)
|
|
if doSetType:
|
|
typ = skipTypes(n[i].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
|
|
if doSetType:
|
|
if not isOrdinalType(typ, allowEnumWithHoles=true):
|
|
localError(c.config, n.info, errOrdinalTypeExpected % typeToString(typ, preferDesc))
|
|
typ = makeRangeType(c, 0, MaxSetElements-1, n.info)
|
|
elif isIntLit(typ):
|
|
# set of int literal, use a default range smaller than the max range
|
|
typ = makeRangeType(c, 0, DefaultSetElements-1, n.info)
|
|
elif lengthOrd(c.config, typ) > MaxSetElements:
|
|
message(c.config, n.info, warnAboveMaxSizeSet, "type '" &
|
|
typeToString(typ, preferDesc) & "' is too big to be a `set` element, " &
|
|
"assuming a range of 0.." & $(MaxSetElements - 1) &
|
|
", explicitly write this range to get rid of warning")
|
|
typ = makeRangeType(c, 0, MaxSetElements-1, n.info)
|
|
if expectedElementType == nil:
|
|
expectedElementType = typ
|
|
addSonSkipIntLit(result.typ, typ, c.idgen)
|
|
for i in 0..<n.len:
|
|
var m: PNode
|
|
let info = n[i].info
|
|
if isRange(n[i]):
|
|
m = newNodeI(nkRange, info)
|
|
m.add fitNode(c, typ, n[i][1], info)
|
|
m.add fitNode(c, typ, n[i][2], info)
|
|
elif n[i].kind == nkRange: m = n[i] # already semchecked
|
|
else:
|
|
m = fitNode(c, typ, n[i], info)
|
|
result.add m
|
|
|
|
proc semTableConstr(c: PContext, n: PNode; expectedType: PType = nil): PNode =
|
|
# we simply transform ``{key: value, key2, key3: value}`` to
|
|
# ``[(key, value), (key2, value2), (key3, value2)]``
|
|
result = newNodeI(nkBracket, n.info)
|
|
var lastKey = 0
|
|
for i in 0..<n.len:
|
|
var x = n[i]
|
|
if x.kind == nkExprColonExpr and x.len == 2:
|
|
for j in lastKey..<i:
|
|
var pair = newNodeI(nkTupleConstr, x.info)
|
|
pair.add(n[j])
|
|
pair.add(x[1])
|
|
result.add(pair)
|
|
|
|
var pair = newNodeI(nkTupleConstr, x.info)
|
|
pair.add(x[0])
|
|
pair.add(x[1])
|
|
result.add(pair)
|
|
|
|
lastKey = i+1
|
|
|
|
if lastKey != n.len: illFormedAst(n, c.config)
|
|
result = semExpr(c, result, expectedType = expectedType)
|
|
|
|
type
|
|
TParKind = enum
|
|
paNone, paSingle, paTupleFields, paTuplePositions
|
|
|
|
proc checkPar(c: PContext; n: PNode): TParKind =
|
|
if n.len == 0:
|
|
result = paTuplePositions # ()
|
|
elif n.len == 1:
|
|
if n[0].kind == nkExprColonExpr: result = paTupleFields
|
|
elif n.kind == nkTupleConstr: result = paTuplePositions
|
|
else: result = paSingle # (expr)
|
|
else:
|
|
if n[0].kind == nkExprColonExpr: result = paTupleFields
|
|
else: result = paTuplePositions
|
|
for i in 0..<n.len:
|
|
if result == paTupleFields:
|
|
if (n[i].kind != nkExprColonExpr) or
|
|
n[i][0].kind notin {nkSym, nkIdent, nkAccQuoted}:
|
|
localError(c.config, n[i].info, errNamedExprExpected)
|
|
return paNone
|
|
else:
|
|
if n[i].kind == nkExprColonExpr:
|
|
localError(c.config, n[i].info, errNamedExprNotAllowed)
|
|
return paNone
|
|
|
|
proc semTupleFieldsConstr(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
|
|
result = newNodeI(nkTupleConstr, n.info)
|
|
var expected: PType = nil
|
|
if expectedType != nil:
|
|
expected = expectedType.skipTypes(abstractRange-{tyDistinct})
|
|
if not (expected.kind == tyTuple and expected.len == n.len):
|
|
expected = nil
|
|
var typ = newTypeS(tyTuple, c)
|
|
typ.n = newNodeI(nkRecList, n.info) # nkIdentDefs
|
|
var ids = initIntSet()
|
|
for i in 0..<n.len:
|
|
if n[i].kind != nkExprColonExpr:
|
|
illFormedAst(n[i], c.config)
|
|
let id = considerQuotedIdent(c, n[i][0])
|
|
if containsOrIncl(ids, id.id):
|
|
localError(c.config, n[i].info, errFieldInitTwice % id.s)
|
|
# can check if field name matches expected type here
|
|
let expectedElemType = if expected != nil: expected[i] else: nil
|
|
n[i][1] = semExprWithType(c, n[i][1], {}, expectedElemType)
|
|
|
|
if n[i][1].typ.kind == tyTypeDesc:
|
|
localError(c.config, n[i][1].info, "typedesc not allowed as tuple field.")
|
|
n[i][1].typ = errorType(c)
|
|
|
|
var f = newSymS(skField, n[i][0], c)
|
|
f.typ = skipIntLit(n[i][1].typ, c.idgen)
|
|
f.position = i
|
|
rawAddSon(typ, f.typ)
|
|
typ.n.add newSymNode(f)
|
|
n[i][0] = newSymNode(f)
|
|
result.add n[i]
|
|
result.typ = typ
|
|
|
|
proc semTuplePositionsConstr(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
|
|
result = n # we don't modify n, but compute the type:
|
|
result.transitionSonsKind(nkTupleConstr)
|
|
var expected: PType = nil
|
|
if expectedType != nil:
|
|
expected = expectedType.skipTypes(abstractRange-{tyDistinct})
|
|
if not (expected.kind == tyTuple and expected.len == n.len):
|
|
expected = nil
|
|
var typ = newTypeS(tyTuple, c) # leave typ.n nil!
|
|
for i in 0..<n.len:
|
|
let expectedElemType = if expected != nil: expected[i] else: nil
|
|
n[i] = semExprWithType(c, n[i], {}, expectedElemType)
|
|
addSonSkipIntLit(typ, n[i].typ, c.idgen)
|
|
result.typ = typ
|
|
|
|
include semobjconstr
|
|
|
|
proc semBlock(c: PContext, n: PNode; flags: TExprFlags; expectedType: PType = nil): PNode =
|
|
result = n
|
|
inc(c.p.nestedBlockCounter)
|
|
let oldBreakInLoop = c.p.breakInLoop
|
|
c.p.breakInLoop = false
|
|
checkSonsLen(n, 2, c.config)
|
|
openScope(c) # BUGFIX: label is in the scope of block!
|
|
if n[0].kind != nkEmpty:
|
|
var labl = newSymG(skLabel, n[0], c)
|
|
if sfGenSym notin labl.flags:
|
|
addDecl(c, labl)
|
|
elif labl.owner == nil:
|
|
labl.owner = c.p.owner
|
|
n[0] = newSymNode(labl, n[0].info)
|
|
suggestSym(c.graph, n[0].info, labl, c.graph.usageSym)
|
|
styleCheckDef(c, labl)
|
|
onDef(n[0].info, labl)
|
|
n[1] = semExpr(c, n[1], flags, expectedType)
|
|
n.typ = n[1].typ
|
|
if isEmptyType(n.typ): n.transitionSonsKind(nkBlockStmt)
|
|
else: n.transitionSonsKind(nkBlockExpr)
|
|
closeScope(c)
|
|
c.p.breakInLoop = oldBreakInLoop
|
|
dec(c.p.nestedBlockCounter)
|
|
|
|
proc semExportExcept(c: PContext, n: PNode): PNode =
|
|
let moduleName = semExpr(c, n[0])
|
|
if moduleName.kind != nkSym or moduleName.sym.kind != skModule:
|
|
localError(c.config, n.info, "The export/except syntax expects a module name")
|
|
return n
|
|
let exceptSet = readExceptSet(c, n)
|
|
let exported = moduleName.sym
|
|
result = newNodeI(nkExportStmt, n.info)
|
|
reexportSym(c, exported)
|
|
for s in allSyms(c.graph, exported):
|
|
if s.kind in ExportableSymKinds+{skModule} and
|
|
s.name.id notin exceptSet and sfError notin s.flags:
|
|
reexportSym(c, s)
|
|
result.add newSymNode(s, n.info)
|
|
markUsed(c, n.info, exported)
|
|
|
|
proc semExport(c: PContext, n: PNode): PNode =
|
|
proc specialSyms(c: PContext; s: PSym) {.inline.} =
|
|
if s.kind == skConverter: addConverter(c, LazySym(sym: s))
|
|
elif s.kind == skType and s.typ != nil and s.typ.kind == tyEnum and sfPure in s.flags:
|
|
addPureEnum(c, LazySym(sym: s))
|
|
|
|
result = newNodeI(nkExportStmt, n.info)
|
|
for i in 0..<n.len:
|
|
let a = n[i]
|
|
var o: TOverloadIter
|
|
var s = initOverloadIter(o, c, a)
|
|
if s == nil:
|
|
localError(c.config, a.info, errGenerated, "cannot export: " & renderTree(a))
|
|
elif s.kind == skModule:
|
|
# forward everything from that module:
|
|
reexportSym(c, s)
|
|
for it in allSyms(c.graph, s):
|
|
if it.kind in ExportableSymKinds+{skModule}:
|
|
reexportSym(c, it)
|
|
result.add newSymNode(it, a.info)
|
|
specialSyms(c, it)
|
|
markUsed(c, n.info, s)
|
|
else:
|
|
while s != nil:
|
|
if s.kind == skEnumField:
|
|
localError(c.config, a.info, errGenerated, "cannot export: " & renderTree(a) &
|
|
"; enum field cannot be exported individually")
|
|
if s.kind in ExportableSymKinds+{skModule} and sfError notin s.flags:
|
|
result.add(newSymNode(s, a.info))
|
|
reexportSym(c, s)
|
|
markUsed(c, n.info, s)
|
|
specialSyms(c, s)
|
|
if s.kind == skType and sfPure notin s.flags:
|
|
var etyp = s.typ
|
|
if etyp.kind in {tyBool, tyEnum}:
|
|
for j in 0..<etyp.n.len:
|
|
var e = etyp.n[j].sym
|
|
if e.kind != skEnumField:
|
|
internalError(c.config, s.info, "rawImportSymbol")
|
|
reexportSym(c, e)
|
|
|
|
s = nextOverloadIter(o, c, a)
|
|
|
|
proc semTupleConstr(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode =
|
|
var tupexp = semTuplePositionsConstr(c, n, flags, expectedType)
|
|
var isTupleType: bool = false
|
|
if tupexp.len > 0: # don't interpret () as type
|
|
isTupleType = tupexp[0].typ.kind == tyTypeDesc
|
|
# check if either everything or nothing is tyTypeDesc
|
|
for i in 1..<tupexp.len:
|
|
if isTupleType != (tupexp[i].typ.kind == tyTypeDesc):
|
|
return localErrorNode(c, n, tupexp[i].info, "Mixing types and values in tuples is not allowed.")
|
|
if isTupleType: # expressions as ``(int, string)`` are reinterpret as type expressions
|
|
result = n
|
|
var typ = semTypeNode(c, n, nil).skipTypes({tyTypeDesc})
|
|
result.typ = makeTypeDesc(c, typ)
|
|
else:
|
|
result = tupexp
|
|
|
|
proc shouldBeBracketExpr(n: PNode): bool =
|
|
result = false
|
|
assert n.kind in nkCallKinds
|
|
let a = n[0]
|
|
if a.kind in nkCallKinds:
|
|
let b = a[0]
|
|
if b.kind in nkSymChoices:
|
|
for i in 0..<b.len:
|
|
if b[i].kind == nkSym and b[i].sym.magic == mArrGet:
|
|
let be = newNodeI(nkBracketExpr, n.info)
|
|
for i in 1..<a.len: be.add(a[i])
|
|
n[0] = be
|
|
return true
|
|
|
|
proc asBracketExpr(c: PContext; n: PNode): PNode =
|
|
proc isGeneric(c: PContext; n: PNode): bool =
|
|
if n.kind in {nkIdent, nkAccQuoted}:
|
|
let s = qualifiedLookUp(c, n, {})
|
|
result = s != nil and isGenericRoutineStrict(s)
|
|
else:
|
|
result = false
|
|
|
|
assert n.kind in nkCallKinds
|
|
if n.len > 1 and isGeneric(c, n[1]):
|
|
let b = n[0]
|
|
if b.kind in nkSymChoices:
|
|
for i in 0..<b.len:
|
|
if b[i].kind == nkSym and b[i].sym.magic == mArrGet:
|
|
result = newNodeI(nkBracketExpr, n.info)
|
|
for i in 1..<n.len: result.add(n[i])
|
|
return result
|
|
return nil
|
|
|
|
proc hoistParamsUsedInDefault(c: PContext, call, letSection, defExpr: var PNode) =
|
|
# This takes care of complicated signatures such as:
|
|
# proc foo(a: int, b = a)
|
|
# proc bar(a: int, b: int, c = a + b)
|
|
#
|
|
# The recursion may confuse you. It performs two duties:
|
|
#
|
|
# 1) extracting all referenced params from default expressions
|
|
# into a let section preceding the call
|
|
#
|
|
# 2) replacing the "references" within the default expression
|
|
# with these extracted skLet symbols.
|
|
#
|
|
# The first duty is carried out directly in the code here, while the second
|
|
# duty is activated by returning a non-nil value. The caller is responsible
|
|
# for replacing the input to the function with the returned non-nil value.
|
|
# (which is the hoisted symbol)
|
|
if defExpr.kind == nkSym and defExpr.sym.kind == skParam and defExpr.sym.owner == call[0].sym:
|
|
let paramPos = defExpr.sym.position + 1
|
|
|
|
if call[paramPos].kind != nkSym:
|
|
let hoistedVarSym = newSym(skLet, getIdent(c.graph.cache, genPrefix), c.idgen,
|
|
c.p.owner, letSection.info, c.p.owner.options)
|
|
hoistedVarSym.typ = call[paramPos].typ
|
|
|
|
letSection.add newTreeI(nkIdentDefs, letSection.info,
|
|
newSymNode(hoistedVarSym),
|
|
newNodeI(nkEmpty, letSection.info),
|
|
call[paramPos])
|
|
|
|
call[paramPos] = newSymNode(hoistedVarSym) # Refer the original arg to its hoisted sym
|
|
|
|
# arg we refer to is a sym, wether introduced by hoisting or not doesn't matter, we simply reuse it
|
|
defExpr = call[paramPos]
|
|
else:
|
|
for i in 0..<defExpr.safeLen:
|
|
hoistParamsUsedInDefault(c, call, letSection, defExpr[i])
|
|
|
|
proc getNilType(c: PContext): PType =
|
|
result = c.nilTypeCache
|
|
if result == nil:
|
|
result = newTypeS(tyNil, c)
|
|
result.size = c.config.target.ptrSize
|
|
result.align = c.config.target.ptrSize.int16
|
|
c.nilTypeCache = result
|
|
|
|
proc enumFieldSymChoice(c: PContext, n: PNode, s: PSym): PNode =
|
|
var o: TOverloadIter
|
|
var i = 0
|
|
var a = initOverloadIter(o, c, n)
|
|
while a != nil:
|
|
if a.kind == skEnumField:
|
|
inc(i)
|
|
if i > 1: break
|
|
a = nextOverloadIter(o, c, n)
|
|
let info = getCallLineInfo(n)
|
|
if i <= 1:
|
|
if sfGenSym notin s.flags:
|
|
result = newSymNode(s, info)
|
|
markUsed(c, info, s)
|
|
onUse(info, s)
|
|
else:
|
|
result = n
|
|
else:
|
|
result = newNodeIT(nkClosedSymChoice, info, newTypeS(tyNone, c))
|
|
a = initOverloadIter(o, c, n)
|
|
while a != nil:
|
|
if a.kind == skEnumField:
|
|
incl(a.flags, sfUsed)
|
|
markOwnerModuleAsUsed(c, a)
|
|
result.add newSymNode(a, info)
|
|
onUse(info, a)
|
|
a = nextOverloadIter(o, c, n)
|
|
|
|
proc semPragmaStmt(c: PContext; n: PNode) =
|
|
if c.p.owner.kind == skModule:
|
|
pragma(c, c.p.owner, n, stmtPragmas+stmtPragmasTopLevel, true)
|
|
else:
|
|
pragma(c, c.p.owner, n, stmtPragmas, true)
|
|
|
|
proc semExpr(c: PContext, n: PNode, flags: TExprFlags = {}, expectedType: PType = nil): PNode =
|
|
when defined(nimCompilerStacktraceHints):
|
|
setFrameMsg c.config$n.info & " " & $n.kind
|
|
when false: # see `tdebugutils`
|
|
if isCompilerDebug():
|
|
echo (">", c.config$n.info, n, flags, n.kind)
|
|
defer:
|
|
if isCompilerDebug():
|
|
echo ("<", c.config$n.info, n, ?.result.typ)
|
|
template directLiteral(typeKind: TTypeKind) =
|
|
if result.typ == nil:
|
|
if expectedType != nil and (
|
|
let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
|
|
expected.kind == typeKind):
|
|
result.typ = expected
|
|
changeType(c, result, expectedType, check=true)
|
|
else:
|
|
result.typ = getSysType(c.graph, n.info, typeKind)
|
|
|
|
result = n
|
|
when defined(nimsuggest):
|
|
var expandStarted = false
|
|
if c.config.ideCmd == ideExpand and not c.config.expandProgress and
|
|
((n.kind in {nkFuncDef, nkProcDef, nkIteratorDef, nkTemplateDef, nkMethodDef, nkConverterDef} and
|
|
n.info.exactEquals(c.config.expandPosition)) or
|
|
(n.kind in {nkCall, nkCommand} and
|
|
n[0].info.exactEquals(c.config.expandPosition))):
|
|
expandStarted = true
|
|
c.config.expandProgress = true
|
|
if c.config.expandLevels == 0:
|
|
c.config.expandNodeResult = $n
|
|
suggestQuit()
|
|
|
|
if c.config.cmd == cmdIdeTools: suggestExpr(c, n)
|
|
if nfSem in n.flags: return
|
|
case n.kind
|
|
of nkIdent, nkAccQuoted:
|
|
var s: PSym = nil
|
|
if expectedType != nil and (
|
|
let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
|
|
expected.kind == tyEnum):
|
|
let nameId = considerQuotedIdent(c, n).id
|
|
for f in expected.n:
|
|
if f.kind == nkSym and f.sym.name.id == nameId:
|
|
s = f.sym
|
|
break
|
|
if s == nil:
|
|
let checks = if efNoEvaluateGeneric in flags:
|
|
{checkUndeclared, checkPureEnumFields}
|
|
elif efInCall in flags:
|
|
{checkUndeclared, checkModule, checkPureEnumFields}
|
|
else:
|
|
{checkUndeclared, checkModule, checkAmbiguity, checkPureEnumFields}
|
|
s = qualifiedLookUp(c, n, checks)
|
|
if s == nil:
|
|
return
|
|
if c.matchedConcept == nil: semCaptureSym(s, c.p.owner)
|
|
case s.kind
|
|
of skProc, skFunc, skMethod, skConverter, skIterator:
|
|
#performProcvarCheck(c, n, s)
|
|
result = symChoice(c, n, s, scClosed)
|
|
if result.kind == nkSym:
|
|
markIndirect(c, result.sym)
|
|
# if isGenericRoutine(result.sym):
|
|
# localError(c.config, n.info, errInstantiateXExplicitly, s.name.s)
|
|
# "procs literals" are 'owned'
|
|
if optOwnedRefs in c.config.globalOptions:
|
|
result.typ = makeVarType(c, result.typ, tyOwned)
|
|
of skEnumField:
|
|
result = enumFieldSymChoice(c, n, s)
|
|
else:
|
|
result = semSym(c, n, s, flags)
|
|
if isSymChoice(result):
|
|
result = semSymChoice(c, result, flags, expectedType)
|
|
of nkClosedSymChoice, nkOpenSymChoice:
|
|
result = semSymChoice(c, result, flags, expectedType)
|
|
of nkSym:
|
|
# because of the changed symbol binding, this does not mean that we
|
|
# don't have to check the symbol for semantics here again!
|
|
result = semSym(c, n, n.sym, flags)
|
|
of nkEmpty, nkNone, nkCommentStmt, nkType:
|
|
discard
|
|
of nkNilLit:
|
|
if result.typ == nil:
|
|
result.typ = getNilType(c)
|
|
if expectedType != nil:
|
|
var m = newCandidate(c, result.typ)
|
|
if typeRel(m, expectedType, result.typ) >= isSubtype:
|
|
result.typ = expectedType
|
|
# or: result = fitNode(c, expectedType, result, n.info)
|
|
of nkIntLit:
|
|
if result.typ == nil:
|
|
if expectedType != nil and (
|
|
let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
|
|
expected.kind in {tyInt..tyInt64,
|
|
tyUInt..tyUInt64,
|
|
tyFloat..tyFloat128}):
|
|
result.typ = expected
|
|
if expected.kind in {tyFloat..tyFloat128}:
|
|
n.transitionIntToFloatKind(nkFloatLit)
|
|
changeType(c, result, expectedType, check=true)
|
|
else:
|
|
setIntLitType(c, result)
|
|
of nkInt8Lit: directLiteral(tyInt8)
|
|
of nkInt16Lit: directLiteral(tyInt16)
|
|
of nkInt32Lit: directLiteral(tyInt32)
|
|
of nkInt64Lit: directLiteral(tyInt64)
|
|
of nkUIntLit: directLiteral(tyUInt)
|
|
of nkUInt8Lit: directLiteral(tyUInt8)
|
|
of nkUInt16Lit: directLiteral(tyUInt16)
|
|
of nkUInt32Lit: directLiteral(tyUInt32)
|
|
of nkUInt64Lit: directLiteral(tyUInt64)
|
|
of nkFloatLit:
|
|
if result.typ == nil:
|
|
if expectedType != nil and (
|
|
let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
|
|
expected.kind in {tyFloat..tyFloat128}):
|
|
result.typ = expected
|
|
changeType(c, result, expectedType, check=true)
|
|
else:
|
|
result.typ = getSysType(c.graph, n.info, tyFloat64)
|
|
of nkFloat32Lit: directLiteral(tyFloat32)
|
|
of nkFloat64Lit: directLiteral(tyFloat64)
|
|
of nkFloat128Lit: directLiteral(tyFloat128)
|
|
of nkStrLit..nkTripleStrLit:
|
|
if result.typ == nil:
|
|
if expectedType != nil and (
|
|
let expected = expectedType.skipTypes(abstractRange-{tyDistinct});
|
|
expected.kind in {tyString, tyCstring}):
|
|
result.typ = expectedType
|
|
else:
|
|
result.typ = getSysType(c.graph, n.info, tyString)
|
|
of nkCharLit: directLiteral(tyChar)
|
|
of nkDotExpr:
|
|
result = semFieldAccess(c, n, flags)
|
|
if result.kind == nkDotCall:
|
|
result.transitionSonsKind(nkCall)
|
|
result = semExpr(c, result, flags)
|
|
of nkBind:
|
|
message(c.config, n.info, warnDeprecated, "bind is deprecated")
|
|
result = semExpr(c, n[0], flags, expectedType)
|
|
of nkTypeOfExpr..nkTupleClassTy, nkStaticTy, nkRefTy..nkEnumTy:
|
|
if c.matchedConcept != nil and n.len == 1:
|
|
let modifier = n.modifierTypeKindOfNode
|
|
if modifier != tyNone:
|
|
var baseType = semExpr(c, n[0]).typ.skipTypes({tyTypeDesc})
|
|
result.typ = c.makeTypeDesc(c.newTypeWithSons(modifier, @[baseType]))
|
|
return
|
|
var typ = semTypeNode(c, n, nil).skipTypes({tyTypeDesc})
|
|
result.typ = makeTypeDesc(c, typ)
|
|
of nkStmtListType:
|
|
let typ = semTypeNode(c, n, nil)
|
|
result.typ = makeTypeDesc(c, typ)
|
|
of nkCall, nkInfix, nkPrefix, nkPostfix, nkCommand, nkCallStrLit:
|
|
# check if it is an expression macro:
|
|
checkMinSonsLen(n, 1, c.config)
|
|
#when defined(nimsuggest):
|
|
# if gIdeCmd == ideCon and c.config.m.trackPos == n.info: suggestExprNoCheck(c, n)
|
|
let mode = if nfDotField in n.flags: {} else: {checkUndeclared}
|
|
c.isAmbiguous = false
|
|
var s = qualifiedLookUp(c, n[0], mode)
|
|
if s != nil:
|
|
case s.kind
|
|
of skMacro, skTemplate:
|
|
result = semDirectOp(c, n, flags, expectedType)
|
|
of skType:
|
|
# XXX think about this more (``set`` procs)
|
|
let ambig = c.isAmbiguous
|
|
if not (n[0].kind in {nkClosedSymChoice, nkOpenSymChoice, nkIdent} and ambig) and n.len == 2:
|
|
result = semConv(c, n, flags, expectedType)
|
|
elif ambig and n.len == 1:
|
|
errorUseQualifier(c, n.info, s)
|
|
elif n.len == 1:
|
|
result = semObjConstr(c, n, flags, expectedType)
|
|
elif s.magic == mNone: result = semDirectOp(c, n, flags, expectedType)
|
|
else: result = semMagic(c, n, s, flags, expectedType)
|
|
of skProc, skFunc, skMethod, skConverter, skIterator:
|
|
if s.magic == mNone: result = semDirectOp(c, n, flags, expectedType)
|
|
else: result = semMagic(c, n, s, flags, expectedType)
|
|
else:
|
|
#liMessage(n.info, warnUser, renderTree(n));
|
|
result = semIndirectOp(c, n, flags, expectedType)
|
|
elif (n[0].kind == nkBracketExpr or shouldBeBracketExpr(n)) and
|
|
isSymChoice(n[0][0]):
|
|
# indirectOp can deal with explicit instantiations; the fixes
|
|
# the 'newSeq[T](x)' bug
|
|
setGenericParams(c, n[0])
|
|
result = semDirectOp(c, n, flags, expectedType)
|
|
elif nfDotField in n.flags:
|
|
result = semDirectOp(c, n, flags, expectedType)
|
|
elif isSymChoice(n[0]):
|
|
let b = asBracketExpr(c, n)
|
|
if b != nil:
|
|
result = semExpr(c, b, flags, expectedType)
|
|
else:
|
|
result = semDirectOp(c, n, flags, expectedType)
|
|
else:
|
|
result = semIndirectOp(c, n, flags, expectedType)
|
|
|
|
if nfDefaultRefsParam in result.flags:
|
|
result = result.copyTree #XXX: Figure out what causes default param nodes to be shared.. (sigmatch bug?)
|
|
# We've found a default value that references another param.
|
|
# See the notes in `hoistParamsUsedInDefault` for more details.
|
|
var hoistedParams = newNodeI(nkLetSection, result.info)
|
|
for i in 1..<result.len:
|
|
hoistParamsUsedInDefault(c, result, hoistedParams, result[i])
|
|
result = newTreeIT(nkStmtListExpr, result.info, result.typ, hoistedParams, result)
|
|
of nkWhen:
|
|
if efWantStmt in flags:
|
|
result = semWhen(c, n, true)
|
|
else:
|
|
result = semWhen(c, n, false)
|
|
if result == n:
|
|
# This is a "when nimvm" stmt.
|
|
result = semWhen(c, n, true)
|
|
else:
|
|
result = semExpr(c, result, flags, expectedType)
|
|
of nkBracketExpr:
|
|
checkMinSonsLen(n, 1, c.config)
|
|
result = semArrayAccess(c, n, flags, expectedType)
|
|
of nkCurlyExpr:
|
|
result = semExpr(c, buildOverloadedSubscripts(n, getIdent(c.cache, "{}")), flags, expectedType)
|
|
of nkPragmaExpr:
|
|
var
|
|
pragma = n[1]
|
|
pragmaName = considerQuotedIdent(c, pragma[0])
|
|
flags = flags
|
|
finalNodeFlags: TNodeFlags = {}
|
|
|
|
case whichKeyword(pragmaName)
|
|
of wExplain:
|
|
flags.incl efExplain
|
|
of wExecuteOnReload:
|
|
finalNodeFlags.incl nfExecuteOnReload
|
|
else:
|
|
# what other pragmas are allowed for expressions? `likely`, `unlikely`
|
|
invalidPragma(c, n)
|
|
|
|
result = semExpr(c, n[0], flags)
|
|
result.flags.incl finalNodeFlags
|
|
of nkPar, nkTupleConstr:
|
|
case checkPar(c, n)
|
|
of paNone: result = errorNode(c, n)
|
|
of paTuplePositions: result = semTupleConstr(c, n, flags, expectedType)
|
|
of paTupleFields: result = semTupleFieldsConstr(c, n, flags, expectedType)
|
|
of paSingle: result = semExpr(c, n[0], flags, expectedType)
|
|
of nkCurly: result = semSetConstr(c, n, expectedType)
|
|
of nkBracket:
|
|
result = semArrayConstr(c, n, flags, expectedType)
|
|
of nkObjConstr: result = semObjConstr(c, n, flags, expectedType)
|
|
of nkLambdaKinds: result = semProcAux(c, n, skProc, lambdaPragmas, flags)
|
|
of nkDerefExpr: result = semDeref(c, n)
|
|
of nkAddr:
|
|
result = n
|
|
checkSonsLen(n, 1, c.config)
|
|
result[0] = semAddrArg(c, n[0])
|
|
result.typ = makePtrType(c, result[0].typ)
|
|
of nkHiddenAddr, nkHiddenDeref:
|
|
checkSonsLen(n, 1, c.config)
|
|
n[0] = semExpr(c, n[0], flags, expectedType)
|
|
of nkCast: result = semCast(c, n)
|
|
of nkIfExpr, nkIfStmt: result = semIf(c, n, flags, expectedType)
|
|
of nkHiddenStdConv, nkHiddenSubConv, nkConv, nkHiddenCallConv:
|
|
checkSonsLen(n, 2, c.config)
|
|
considerGenSyms(c, n)
|
|
of nkStringToCString, nkCStringToString, nkObjDownConv, nkObjUpConv:
|
|
checkSonsLen(n, 1, c.config)
|
|
considerGenSyms(c, n)
|
|
of nkChckRangeF, nkChckRange64, nkChckRange:
|
|
checkSonsLen(n, 3, c.config)
|
|
considerGenSyms(c, n)
|
|
of nkCheckedFieldExpr:
|
|
checkMinSonsLen(n, 2, c.config)
|
|
considerGenSyms(c, n)
|
|
of nkTableConstr:
|
|
result = semTableConstr(c, n, expectedType)
|
|
of nkStaticExpr: result = semStaticExpr(c, n[0], expectedType)
|
|
of nkAsgn, nkFastAsgn: result = semAsgn(c, n)
|
|
of nkBlockStmt, nkBlockExpr: result = semBlock(c, n, flags, expectedType)
|
|
of nkStmtList, nkStmtListExpr: result = semStmtList(c, n, flags, expectedType)
|
|
of nkRaiseStmt: result = semRaise(c, n)
|
|
of nkVarSection: result = semVarOrLet(c, n, skVar)
|
|
of nkLetSection: result = semVarOrLet(c, n, skLet)
|
|
of nkConstSection: result = semConst(c, n)
|
|
of nkTypeSection: result = semTypeSection(c, n)
|
|
of nkDiscardStmt: result = semDiscard(c, n)
|
|
of nkWhileStmt: result = semWhile(c, n, flags)
|
|
of nkTryStmt, nkHiddenTryStmt: result = semTry(c, n, flags, expectedType)
|
|
of nkBreakStmt, nkContinueStmt: result = semBreakOrContinue(c, n)
|
|
of nkForStmt, nkParForStmt: result = semFor(c, n, flags)
|
|
of nkCaseStmt: result = semCase(c, n, flags, expectedType)
|
|
of nkReturnStmt: result = semReturn(c, n)
|
|
of nkUsingStmt: result = semUsing(c, n)
|
|
of nkAsmStmt: result = semAsm(c, n)
|
|
of nkYieldStmt: result = semYield(c, n)
|
|
of nkPragma: semPragmaStmt(c, n)
|
|
of nkIteratorDef: result = semIterator(c, n)
|
|
of nkProcDef: result = semProc(c, n)
|
|
of nkFuncDef: result = semFunc(c, n)
|
|
of nkMethodDef: result = semMethod(c, n)
|
|
of nkConverterDef: result = semConverterDef(c, n)
|
|
of nkMacroDef: result = semMacroDef(c, n)
|
|
of nkTemplateDef: result = semTemplateDef(c, n)
|
|
of nkImportStmt:
|
|
# this particular way allows 'import' in a 'compiles' context so that
|
|
# template canImport(x): bool =
|
|
# compiles:
|
|
# import x
|
|
#
|
|
# works:
|
|
if c.currentScope.depthLevel > 2 + c.compilesContextId:
|
|
localError(c.config, n.info, errXOnlyAtModuleScope % "import")
|
|
result = evalImport(c, n)
|
|
of nkImportExceptStmt:
|
|
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "import")
|
|
result = evalImportExcept(c, n)
|
|
of nkFromStmt:
|
|
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "from")
|
|
result = evalFrom(c, n)
|
|
of nkIncludeStmt:
|
|
#if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "include")
|
|
result = evalInclude(c, n)
|
|
of nkExportStmt:
|
|
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "export")
|
|
result = semExport(c, n)
|
|
of nkExportExceptStmt:
|
|
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "export")
|
|
result = semExportExcept(c, n)
|
|
of nkPragmaBlock:
|
|
result = semPragmaBlock(c, n, expectedType)
|
|
of nkStaticStmt:
|
|
result = semStaticStmt(c, n)
|
|
of nkDefer:
|
|
if c.currentScope == c.topLevelScope:
|
|
localError(c.config, n.info, "defer statement not supported at top level")
|
|
openScope(c)
|
|
n[0] = semExpr(c, n[0])
|
|
closeScope(c)
|
|
if not n[0].typ.isEmptyType and not implicitlyDiscardable(n[0]):
|
|
localError(c.config, n.info, "'defer' takes a 'void' expression")
|
|
#localError(c.config, n.info, errGenerated, "'defer' not allowed in this context")
|
|
of nkGotoState, nkState:
|
|
if n.len != 1 and n.len != 2: illFormedAst(n, c.config)
|
|
for i in 0..<n.len:
|
|
n[i] = semExpr(c, n[i])
|
|
of nkComesFrom: discard "ignore the comes from information for now"
|
|
of nkMixinStmt: discard
|
|
of nkBindStmt:
|
|
if c.p != nil:
|
|
if n.len > 0 and n[0].kind == nkSym:
|
|
c.p.localBindStmts.add n
|
|
else:
|
|
localError(c.config, n.info, "invalid context for 'bind' statement: " &
|
|
renderTree(n, {renderNoComments}))
|
|
else:
|
|
localError(c.config, n.info, "invalid expression: " &
|
|
renderTree(n, {renderNoComments}))
|
|
if result != nil: incl(result.flags, nfSem)
|
|
|
|
when defined(nimsuggest):
|
|
if expandStarted:
|
|
c.config.expandNodeResult = $result
|
|
suggestQuit()
|