mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-28 17:04:41 +00:00
* Add the ability to sample elements from an openArray according to a parallel array of weights/unnormalized probabilities (any sort of histogram, basically). Also add a non-thread safe version for convenience. * Address Araq comments on https://github.com/nim-lang/Nim/pull/10072 * import at top of file and space after '#'. * Put in a check for non-zero total weight. * Clarify constraint on `w`. * Rename `rand(openArray[T])` to `sample(openArray[T])` to `sample`, deprecating old name and name new (openArray[T], openArray[U]) variants `sample`. * Rename caller-provided state version of rand(openArray[T]) and also clean up doc comments. * Add test for new non-uniform array sampler. 3 sd bound makes it 99% likely that it will still pass in the future if the random number generator changes. We cannot both have a tight bound to check distribution *and* loose check to ensure resilience to RNG changes. (We cannot *guarantee* resilience, anyway. There's always a small chance any test hits a legitimate random fluctuation.)
108 lines
2.8 KiB
Nim
108 lines
2.8 KiB
Nim
discard """
|
|
action: run
|
|
output: '''[Suite] random int
|
|
|
|
[Suite] random float
|
|
|
|
[Suite] random sample
|
|
|
|
[Suite] ^
|
|
|
|
'''
|
|
"""
|
|
|
|
import math, random, os
|
|
import unittest
|
|
import sets, tables
|
|
|
|
suite "random int":
|
|
test "there might be some randomness":
|
|
var set = initSet[int](128)
|
|
randomize()
|
|
for i in 1..1000:
|
|
incl(set, random(high(int)))
|
|
check len(set) == 1000
|
|
test "single number bounds work":
|
|
randomize()
|
|
var rand: int
|
|
for i in 1..1000:
|
|
rand = random(1000)
|
|
check rand < 1000
|
|
check rand > -1
|
|
test "slice bounds work":
|
|
randomize()
|
|
var rand: int
|
|
for i in 1..1000:
|
|
rand = random(100..1000)
|
|
check rand < 1000
|
|
check rand >= 100
|
|
test "randomize() again gives new numbers":
|
|
randomize()
|
|
var rand1 = random(1000000)
|
|
os.sleep(200)
|
|
randomize()
|
|
var rand2 = random(1000000)
|
|
check rand1 != rand2
|
|
|
|
|
|
suite "random float":
|
|
test "there might be some randomness":
|
|
var set = initSet[float](128)
|
|
randomize()
|
|
for i in 1..100:
|
|
incl(set, random(1.0))
|
|
check len(set) == 100
|
|
test "single number bounds work":
|
|
randomize()
|
|
var rand: float
|
|
for i in 1..1000:
|
|
rand = random(1000.0)
|
|
check rand < 1000.0
|
|
check rand > -1.0
|
|
test "slice bounds work":
|
|
randomize()
|
|
var rand: float
|
|
for i in 1..1000:
|
|
rand = random(100.0..1000.0)
|
|
check rand < 1000.0
|
|
check rand >= 100.0
|
|
test "randomize() again gives new numbers":
|
|
randomize()
|
|
var rand1:float = random(1000000.0)
|
|
os.sleep(200)
|
|
randomize()
|
|
var rand2:float = random(1000000.0)
|
|
check rand1 != rand2
|
|
|
|
suite "random sample":
|
|
test "non-uniform array sample":
|
|
let values = [ 10, 20, 30, 40, 50 ] # values
|
|
let weight = [ 4, 3, 2, 1, 0 ] # weights aka unnormalized probabilities
|
|
let weightSum = 10.0 # sum of weights
|
|
var histo = initCountTable[int]()
|
|
for v in sample(values, weight, 5000):
|
|
histo.inc(v)
|
|
check histo.len == 4 # number of non-zero in `weight`
|
|
# Any one bin is a binomial random var for n samples, each with prob p of
|
|
# adding a count to k; E[k]=p*n, Var k=p*(1-p)*n, approximately Normal for
|
|
# big n. So, P(abs(k - p*n)/sqrt(p*(1-p)*n))>3.0) =~ 0.0027, while
|
|
# P(wholeTestFails) =~ 1 - P(binPasses)^4 =~ 1 - (1-0.0027)^4 =~ 0.01.
|
|
for i, w in weight:
|
|
if w == 0:
|
|
check values[i] notin histo
|
|
continue
|
|
let p = float(w) / float(weightSum)
|
|
let n = 5000.0
|
|
let expected = p * n
|
|
let stdDev = sqrt(n * p * (1.0 - p))
|
|
check abs(float(histo[values[i]]) - expected) <= 3.0 * stdDev
|
|
|
|
|
|
suite "^":
|
|
test "compiles for valid types":
|
|
check: compiles(5 ^ 2)
|
|
check: compiles(5.5 ^ 2)
|
|
check: compiles(5.5 ^ 2.int8)
|
|
check: compiles(5.5 ^ 2.uint)
|
|
check: compiles(5.5 ^ 2.uint8)
|
|
check: not compiles(5.5 ^ 2.2) |