Files
Nim/lib/pure/math.nim
2017-10-16 14:59:37 +02:00

542 lines
20 KiB
Nim

#
#
# Nim's Runtime Library
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Constructive mathematics is naturally typed. -- Simon Thompson
##
## Basic math routines for Nim.
## This module is available for the `JavaScript target
## <backends.html#the-javascript-target>`_.
##
## Note that the trigonometric functions naturally operate on radians.
## The helper functions `degToRad` and `radToDeg` provide conversion
## between radians and degrees.
include "system/inclrtl"
{.push debugger:off .} # the user does not want to trace a part
# of the standard library!
proc binom*(n, k: int): int {.noSideEffect.} =
## Computes the binomial coefficient
if k <= 0: return 1
if 2*k > n: return binom(n, n-k)
result = n
for i in countup(2, k):
result = (result * (n + 1 - i)) div i
proc fac*(n: int): int {.noSideEffect.} =
## Computes the faculty/factorial function.
result = 1
for i in countup(2, n):
result = result * i
{.push checks:off, line_dir:off, stack_trace:off.}
when defined(Posix) and not defined(haiku):
{.passl: "-lm".}
const
PI* = 3.1415926535897932384626433 ## the circle constant PI (Ludolph's number)
TAU* = 2.0 * PI ## the circle constant TAU (= 2 * PI)
E* = 2.71828182845904523536028747 ## Euler's number
MaxFloat64Precision* = 16 ## maximum number of meaningful digits
## after the decimal point for Nim's
## ``float64`` type.
MaxFloat32Precision* = 8 ## maximum number of meaningful digits
## after the decimal point for Nim's
## ``float32`` type.
MaxFloatPrecision* = MaxFloat64Precision ## maximum number of
## meaningful digits
## after the decimal point
## for Nim's ``float`` type.
RadPerDeg = PI / 180.0 ## number of radians per degree
type
FloatClass* = enum ## describes the class a floating point value belongs to.
## This is the type that is returned by `classify`.
fcNormal, ## value is an ordinary nonzero floating point value
fcSubnormal, ## value is a subnormal (a very small) floating point value
fcZero, ## value is zero
fcNegZero, ## value is the negative zero
fcNan, ## value is Not-A-Number (NAN)
fcInf, ## value is positive infinity
fcNegInf ## value is negative infinity
proc classify*(x: float): FloatClass =
## Classifies a floating point value. Returns `x`'s class as specified by
## `FloatClass`.
# JavaScript and most C compilers have no classify:
if x == 0.0:
if 1.0/x == Inf:
return fcZero
else:
return fcNegZero
if x*0.5 == x:
if x > 0.0: return fcInf
else: return fcNegInf
if x != x: return fcNan
return fcNormal
# XXX: fcSubnormal is not detected!
proc isPowerOfTwo*(x: int): bool {.noSideEffect.} =
## Returns true, if `x` is a power of two, false otherwise.
## Zero and negative numbers are not a power of two.
return (x > 0) and ((x and (x - 1)) == 0)
proc nextPowerOfTwo*(x: int): int {.noSideEffect.} =
## Returns `x` rounded up to the nearest power of two.
## Zero and negative numbers get rounded up to 1.
result = x - 1
when defined(cpu64):
result = result or (result shr 32)
when sizeof(int) > 2:
result = result or (result shr 16)
when sizeof(int) > 1:
result = result or (result shr 8)
result = result or (result shr 4)
result = result or (result shr 2)
result = result or (result shr 1)
result += 1 + ord(x<=0)
proc countBits32*(n: int32): int {.noSideEffect.} =
## Counts the set bits in `n`.
var v = n
v = v -% ((v shr 1'i32) and 0x55555555'i32)
v = (v and 0x33333333'i32) +% ((v shr 2'i32) and 0x33333333'i32)
result = ((v +% (v shr 4'i32) and 0xF0F0F0F'i32) *% 0x1010101'i32) shr 24'i32
proc sum*[T](x: openArray[T]): T {.noSideEffect.} =
## Computes the sum of the elements in `x`.
## If `x` is empty, 0 is returned.
for i in items(x): result = result + i
{.push noSideEffect.}
when not defined(JS):
proc sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".}
proc sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".}
## Computes the square root of `x`.
proc cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".}
proc cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".}
## Computes the cubic root of `x`
proc ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".}
proc ln*(x: float64): float64 {.importc: "log", header: "<math.h>".}
## Computes the natural log of `x`
proc log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".}
proc log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".}
## Computes the common logarithm (base 10) of `x`
proc log2*[T: float32|float64](x: T): T = return ln(x) / ln(2.0)
## Computes the binary logarithm (base 2) of `x`
proc exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".}
proc exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".}
## Computes the exponential function of `x` (pow(E, x))
proc arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".}
proc arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".}
## Computes the arc cosine of `x`
proc arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".}
proc arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".}
## Computes the arc sine of `x`
proc arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".}
proc arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".}
## Calculate the arc tangent of `y` / `x`
proc arctan2*(y, x: float32): float32 {.importc: "atan2f", header: "<math.h>".}
proc arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".}
## Calculate the arc tangent of `y` / `x`.
## `atan2` returns the arc tangent of `y` / `x`; it produces correct
## results even when the resulting angle is near pi/2 or -pi/2
## (`x` near 0).
proc cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".}
proc cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".}
## Computes the cosine of `x`
proc cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".}
proc cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".}
## Computes the hyperbolic cosine of `x`
proc hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".}
proc hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".}
## Computes the hypotenuse of a right-angle triangle with `x` and
## `y` as its base and height. Equivalent to ``sqrt(x*x + y*y)``.
proc sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".}
proc sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".}
## Computes the hyperbolic sine of `x`
proc sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".}
proc sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".}
## Computes the sine of `x`
proc tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".}
proc tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".}
## Computes the tangent of `x`
proc tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".}
proc tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".}
## Computes the hyperbolic tangent of `x`
proc pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".}
proc pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".}
## computes x to power raised of y.
##
## To compute power between integers, use `^` e.g. 2 ^ 6
proc erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".}
proc erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".}
## The error function
proc erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".}
proc erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".}
## The complementary error function
proc lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".}
proc lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".}
## Natural log of the gamma function
proc tgamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".}
proc tgamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".}
## The gamma function
proc floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".}
proc floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".}
## Computes the floor function (i.e., the largest integer not greater than `x`)
##
## .. code-block:: nim
## echo floor(-3.5) ## -4.0
proc ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".}
proc ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".}
## Computes the ceiling function (i.e., the smallest integer not less than `x`)
##
## .. code-block:: nim
## echo ceil(-2.1) ## -2.0
when defined(windows) and (defined(vcc) or defined(bcc)):
# MSVC 2010 don't have trunc/truncf
# this implementation was inspired by Go-lang Math.Trunc
proc truncImpl(f: float64): float64 =
const
mask : uint64 = 0x7FF
shift: uint64 = 64 - 12
bias : uint64 = 0x3FF
if f < 1:
if f < 0: return -truncImpl(-f)
elif f == 0: return f # Return -0 when f == -0
else: return 0
var x = cast[uint64](f)
let e = (x shr shift) and mask - bias
# Keep the top 12+e bits, the integer part; clear the rest.
if e < 64-12:
x = x and (not (1'u64 shl (64'u64-12'u64-e) - 1'u64))
result = cast[float64](x)
proc truncImpl(f: float32): float32 =
const
mask : uint32 = 0xFF
shift: uint32 = 32 - 9
bias : uint32 = 0x7F
if f < 1:
if f < 0: return -truncImpl(-f)
elif f == 0: return f # Return -0 when f == -0
else: return 0
var x = cast[uint32](f)
let e = (x shr shift) and mask - bias
# Keep the top 9+e bits, the integer part; clear the rest.
if e < 32-9:
x = x and (not (1'u32 shl (32'u32-9'u32-e) - 1'u32))
result = cast[float32](x)
proc trunc*(x: float64): float64 =
if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
result = truncImpl(x)
proc trunc*(x: float32): float32 =
if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
result = truncImpl(x)
proc round0[T: float32|float64](x: T): T =
## Windows compilers prior to MSVC 2012 do not implement 'round',
## 'roundl' or 'roundf'.
result = if x < 0.0: ceil(x - T(0.5)) else: floor(x + T(0.5))
else:
proc round0(x: float32): float32 {.importc: "roundf", header: "<math.h>".}
proc round0(x: float64): float64 {.importc: "round", header: "<math.h>".}
## Rounds a float to zero decimal places. Used internally by the round
## function when the specified number of places is 0.
proc trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".}
proc trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".}
## Truncates `x` to the decimal point
##
## .. code-block:: nim
## echo trunc(PI) # 3.0
proc fmod*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".}
proc fmod*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".}
## Computes the remainder of `x` divided by `y`
##
## .. code-block:: nim
## echo fmod(-2.5, 0.3) ## -0.1
else:
proc floor*(x: float32): float32 {.importc: "Math.floor", nodecl.}
proc floor*(x: float64): float64 {.importc: "Math.floor", nodecl.}
proc ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.}
proc ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.}
proc sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.}
proc sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.}
proc ln*(x: float32): float32 {.importc: "Math.log", nodecl.}
proc ln*(x: float64): float64 {.importc: "Math.log", nodecl.}
proc log10*[T: float32|float64](x: T): T = return ln(x) / ln(10.0)
proc log2*[T: float32|float64](x: T): T = return ln(x) / ln(2.0)
proc exp*(x: float32): float32 {.importc: "Math.exp", nodecl.}
proc exp*(x: float64): float64 {.importc: "Math.exp", nodecl.}
proc round0(x: float): float {.importc: "Math.round", nodecl.}
proc pow*(x, y: float32): float32 {.importC: "Math.pow", nodecl.}
proc pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.}
proc arccos*(x: float32): float32 {.importc: "Math.acos", nodecl.}
proc arccos*(x: float64): float64 {.importc: "Math.acos", nodecl.}
proc arcsin*(x: float32): float32 {.importc: "Math.asin", nodecl.}
proc arcsin*(x: float64): float64 {.importc: "Math.asin", nodecl.}
proc arctan*(x: float32): float32 {.importc: "Math.atan", nodecl.}
proc arctan*(x: float64): float64 {.importc: "Math.atan", nodecl.}
proc arctan2*(y, x: float32): float32 {.importC: "Math.atan2", nodecl.}
proc arctan2*(y, x: float64): float64 {.importc: "Math.atan2", nodecl.}
proc cos*(x: float32): float32 {.importc: "Math.cos", nodecl.}
proc cos*(x: float64): float64 {.importc: "Math.cos", nodecl.}
proc cosh*(x: float32): float32 = return (exp(x)+exp(-x))*0.5
proc cosh*(x: float64): float64 = return (exp(x)+exp(-x))*0.5
proc hypot*[T: float32|float64](x, y: T): T = return sqrt(x*x + y*y)
proc sinh*[T: float32|float64](x: T): T = return (exp(x)-exp(-x))*0.5
proc sin*(x: float32): float32 {.importc: "Math.sin", nodecl.}
proc sin*(x: float64): float64 {.importc: "Math.sin", nodecl.}
proc tan*(x: float32): float32 {.importc: "Math.tan", nodecl.}
proc tan*(x: float64): float64 {.importc: "Math.tan", nodecl.}
proc tanh*[T: float32|float64](x: T): T =
var y = exp(2.0*x)
return (y-1.0)/(y+1.0)
proc round*[T: float32|float64](x: T, places: int = 0): T =
## Round a floating point number.
##
## If `places` is 0 (or omitted), round to the nearest integral value
## following normal mathematical rounding rules (e.g. `round(54.5) -> 55.0`).
## If `places` is greater than 0, round to the given number of decimal
## places, e.g. `round(54.346, 2) -> 54.35`.
## If `places` is negative, round to the left of the decimal place, e.g.
## `round(537.345, -1) -> 540.0`
if places == 0:
result = round0(x)
else:
var mult = pow(10.0, places.T)
result = round0(x*mult)/mult
when not defined(JS):
proc frexp*(x: float32, exponent: var int): float32 {.
importc: "frexp", header: "<math.h>".}
proc frexp*(x: float64, exponent: var int): float64 {.
importc: "frexp", header: "<math.h>".}
## Split a number into mantissa and exponent.
## `frexp` calculates the mantissa m (a float greater than or equal to 0.5
## and less than 1) and the integer value n such that `x` (the original
## float value) equals m * 2**n. frexp stores n in `exponent` and returns
## m.
else:
proc frexp*[T: float32|float64](x: T, exponent: var int): T =
if x == 0.0:
exponent = 0
result = 0.0
elif x < 0.0:
result = -frexp(-x, exponent)
else:
var ex = floor(log2(x))
exponent = round(ex)
result = x / pow(2.0, ex)
proc splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
## Breaks `x` into an integral and a fractional part.
##
## Returns a tuple containing intpart and floatpart representing
## the integer part and the fractional part respectively.
##
## Both parts have the same sign as `x`. Analogous to the `modf`
## function in C.
var
absolute: T
absolute = abs(x)
result.intpart = floor(absolute)
result.floatpart = absolute - result.intpart
if x < 0:
result.intpart = -result.intpart
result.floatpart = -result.floatpart
{.pop.}
proc degToRad*[T: float32|float64](d: T): T {.inline.} =
## Convert from degrees to radians
result = T(d) * RadPerDeg
proc radToDeg*[T: float32|float64](d: T): T {.inline.} =
## Convert from radians to degrees
result = T(d) / RadPerDeg
proc sgn*[T: SomeNumber](x: T): int {.inline.} =
## Sign function. Returns -1 for negative numbers and `NegInf`, 1 for
## positive numbers and `Inf`, and 0 for positive zero, negative zero and
## `NaN`.
ord(T(0) < x) - ord(x < T(0))
proc `mod`*[T: float32|float64](x, y: T): T =
## Computes the modulo operation for float operators. Equivalent
## to ``x - y * floor(x/y)``. Note that the remainder will always
## have the same sign as the divisor.
##
## .. code-block:: nim
## echo (4.0 mod -3.1) # -2.2
result = if y == 0.0: x else: x - y * (x/y).floor
{.pop.}
{.pop.}
proc `^`*[T](x: T, y: Natural): T =
## Computes ``x`` to the power ``y`. ``x`` must be non-negative, use
## `pow <#pow,float,float>` for negative exponents.
when compiles(y >= T(0)):
assert y >= T(0)
else:
assert T(y) >= T(0)
var (x, y) = (x, y)
result = 1
while true:
if (y and 1) != 0:
result *= x
y = y shr 1
if y == 0:
break
x *= x
proc gcd*[T](x, y: T): T =
## Computes the greatest common divisor of ``x`` and ``y``.
## Note that for floats, the result cannot always be interpreted as
## "greatest decimal `z` such that ``z*N == x and z*M == y``
## where N and M are positive integers."
var (x,y) = (x,y)
while y != 0:
x = x mod y
swap x, y
abs x
proc lcm*[T](x, y: T): T =
## Computes the least common multiple of ``x`` and ``y``.
x div gcd(x, y) * y
when isMainModule and not defined(JS):
# Check for no side effect annotation
proc mySqrt(num: float): float {.noSideEffect.} =
return sqrt(num)
# check gamma function
assert($tgamma(5.0) == $24.0) # 4!
assert(lgamma(1.0) == 0.0) # ln(1.0) == 0.0
assert(erf(6.0) > erf(5.0))
assert(erfc(6.0) < erfc(5.0))
when isMainModule:
# Function for approximate comparison of floats
proc `==~`(x, y: float): bool = (abs(x-y) < 1e-9)
block: # round() tests
# Round to 0 decimal places
doAssert round(54.652) ==~ 55.0
doAssert round(54.352) ==~ 54.0
doAssert round(-54.652) ==~ -55.0
doAssert round(-54.352) ==~ -54.0
doAssert round(0.0) ==~ 0.0
# Round to positive decimal places
doAssert round(-547.652, 1) ==~ -547.7
doAssert round(547.652, 1) ==~ 547.7
doAssert round(-547.652, 2) ==~ -547.65
doAssert round(547.652, 2) ==~ 547.65
# Round to negative decimal places
doAssert round(547.652, -1) ==~ 550.0
doAssert round(547.652, -2) ==~ 500.0
doAssert round(547.652, -3) ==~ 1000.0
doAssert round(547.652, -4) ==~ 0.0
doAssert round(-547.652, -1) ==~ -550.0
doAssert round(-547.652, -2) ==~ -500.0
doAssert round(-547.652, -3) ==~ -1000.0
doAssert round(-547.652, -4) ==~ 0.0
block: # splitDecimal() tests
doAssert splitDecimal(54.674).intpart ==~ 54.0
doAssert splitDecimal(54.674).floatpart ==~ 0.674
doAssert splitDecimal(-693.4356).intpart ==~ -693.0
doAssert splitDecimal(-693.4356).floatpart ==~ -0.4356
doAssert splitDecimal(0.0).intpart ==~ 0.0
doAssert splitDecimal(0.0).floatpart ==~ 0.0
block: # trunc tests for vcc
doAssert(trunc(-1.1) == -1)
doAssert(trunc(1.1) == 1)
doAssert(trunc(-0.1) == -0)
doAssert(trunc(0.1) == 0)
#special case
doAssert(classify(trunc(1e1000000)) == fcInf)
doAssert(classify(trunc(-1e1000000)) == fcNegInf)
doAssert(classify(trunc(0.0/0.0)) == fcNan)
doAssert(classify(trunc(0.0)) == fcZero)
#trick the compiler to produce signed zero
let
f_neg_one = -1.0
f_zero = 0.0
f_nan = f_zero / f_zero
doAssert(classify(trunc(f_neg_one*f_zero)) == fcNegZero)
doAssert(trunc(-1.1'f32) == -1)
doAssert(trunc(1.1'f32) == 1)
doAssert(trunc(-0.1'f32) == -0)
doAssert(trunc(0.1'f32) == 0)
doAssert(classify(trunc(1e1000000'f32)) == fcInf)
doAssert(classify(trunc(-1e1000000'f32)) == fcNegInf)
doAssert(classify(trunc(f_nan.float32)) == fcNan)
doAssert(classify(trunc(0.0'f32)) == fcZero)
block: # sgn() tests
assert sgn(1'i8) == 1
assert sgn(1'i16) == 1
assert sgn(1'i32) == 1
assert sgn(1'i64) == 1
assert sgn(1'u8) == 1
assert sgn(1'u16) == 1
assert sgn(1'u32) == 1
assert sgn(1'u64) == 1
assert sgn(-12342.8844'f32) == -1
assert sgn(123.9834'f64) == 1
assert sgn(0'i32) == 0
assert sgn(0'f32) == 0
assert sgn(NegInf) == -1
assert sgn(Inf) == 1
assert sgn(NaN) == 0