mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 09:24:36 +00:00
641 lines
19 KiB
Nim
641 lines
19 KiB
Nim
discard """
|
|
output: '''1 [2, 3, 4, 7]
|
|
[0, 0]'''
|
|
targets: "c"
|
|
joinable: false
|
|
disabled: 32bit
|
|
cmd: "nim c --gc:arc $file"
|
|
"""
|
|
|
|
# bug #13110: This test failed with --gc:arc.
|
|
|
|
# this test wasn't written for 32 bit
|
|
# don't join because the code is too messy.
|
|
|
|
# Nim RTree and R*Tree implementation
|
|
# S. Salewski, 06-JAN-2018
|
|
|
|
# http://www-db.deis.unibo.it/courses/SI-LS/papers/Gut84.pdf
|
|
# http://dbs.mathematik.uni-marburg.de/publications/myPapers/1990/BKSS90.pdf
|
|
|
|
# RT: range type like float, int
|
|
# D: Dimension
|
|
# M: Max entries in one node
|
|
# LT: leaf type
|
|
|
|
type
|
|
Dim* = static[int]
|
|
Ext[RT] = tuple[a, b: RT] # extend (range)
|
|
Box*[D: Dim; RT] = array[D, Ext[RT]] # Rectangle for 2D
|
|
BoxCenter*[D: Dim; RT] = array[D, RT]
|
|
L*[D: Dim; RT, LT] = tuple[b: Box[D, RT]; l: LT] # called Index Entry or index record in the Guttman paper
|
|
H[M, D: Dim; RT, LT] = ref object of RootRef
|
|
parent: H[M, D, RT, LT]
|
|
numEntries: int
|
|
level: int
|
|
N[M, D: Dim; RT, LT] = tuple[b: Box[D, RT]; n: H[M, D, RT, LT]]
|
|
LA[M, D: Dim; RT, LT] = array[M, L[D, RT, LT]]
|
|
NA[M, D: Dim; RT, LT] = array[M, N[M, D, RT, LT]]
|
|
Leaf[M, D: Dim; RT, LT] = ref object of H[M, D, RT, LT]
|
|
a: LA[M, D, RT, LT]
|
|
Node[M, D: Dim; RT, LT] = ref object of H[M, D, RT, LT]
|
|
a: NA[M, D, RT, LT]
|
|
|
|
RTree*[M, D: Dim; RT, LT] = ref object of RootRef
|
|
root: H[M, D, RT, LT]
|
|
bigM: int
|
|
m: int
|
|
|
|
RStarTree*[M, D: Dim; RT, LT] = ref object of RTree[M, D, RT, LT]
|
|
firstOverflow: array[32, bool]
|
|
p: int
|
|
|
|
proc newLeaf[M, D: Dim; RT, LT](): Leaf[M, D, RT, LT] =
|
|
new result
|
|
|
|
proc newNode[M, D: Dim; RT, LT](): Node[M, D, RT, LT] =
|
|
new result
|
|
|
|
proc newRTree*[M, D: Dim; RT, LT](minFill: range[30 .. 50] = 40): RTree[M, D, RT, LT] =
|
|
assert(M > 1 and M < 101)
|
|
new result
|
|
result.bigM = M
|
|
result.m = M * minFill div 100
|
|
result.root = newLeaf[M, D, RT, LT]()
|
|
|
|
proc newRStarTree*[M, D: Dim; RT, LT](minFill: range[30 .. 50] = 40): RStarTree[M, D, RT, LT] =
|
|
assert(M > 1 and M < 101)
|
|
new result
|
|
result.bigM = M
|
|
result.m = M * minFill div 100
|
|
result.p = M * 30 div 100
|
|
result.root = newLeaf[M, D, RT, LT]()
|
|
|
|
proc center(r: Box): auto =#BoxCenter[r.len, typeof(r[0].a)] =
|
|
var res: BoxCenter[r.len, typeof(r[0].a)]
|
|
for i in 0 .. r.high:
|
|
when r[0].a is SomeInteger:
|
|
res[i] = (r[i].a + r[i].b) div 2
|
|
elif r[0].a is SomeFloat:
|
|
res[i] = (r[i].a + r[i].b) / 2
|
|
else: assert false
|
|
return res
|
|
|
|
proc distance(c1, c2: BoxCenter): auto =
|
|
var res: typeof(c1[0])
|
|
for i in 0 .. c1.high:
|
|
res += (c1[i] - c2[i]) * (c1[i] - c2[i])
|
|
return res
|
|
|
|
proc overlap(r1, r2: Box): auto =
|
|
result = typeof(r1[0].a)(1)
|
|
for i in 0 .. r1.high:
|
|
result *= (min(r1[i].b, r2[i].b) - max(r1[i].a, r2[i].a))
|
|
if result <= 0: return 0
|
|
|
|
proc union(r1, r2: Box): Box =
|
|
for i in 0 .. r1.high:
|
|
result[i].a = min(r1[i].a, r2[i].a)
|
|
result[i].b = max(r1[i].b, r2[i].b)
|
|
|
|
proc intersect(r1, r2: Box): bool =
|
|
for i in 0 .. r1.high:
|
|
if r1[i].b < r2[i].a or r1[i].a > r2[i].b:
|
|
return false
|
|
return true
|
|
|
|
proc area(r: Box): auto = #typeof(r[0].a) =
|
|
result = typeof(r[0].a)(1)
|
|
for i in 0 .. r.high:
|
|
result *= r[i].b - r[i].a
|
|
|
|
proc margin(r: Box): auto = #typeof(r[0].a) =
|
|
result = typeof(r[0].a)(0)
|
|
for i in 0 .. r.high:
|
|
result += r[i].b - r[i].a
|
|
|
|
# how much enlargement does r1 need to include r2
|
|
proc enlargement(r1, r2: Box): auto =
|
|
area(union(r1, r2)) - area(r1)
|
|
|
|
proc search*[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; b: Box[D, RT]): seq[LT] =
|
|
proc s[M, D: Dim; RT, LT](n: H[M, D, RT, LT]; b: Box[D, RT]; res: var seq[LT]) =
|
|
if n of Node[M, D, RT, LT]:
|
|
let h = Node[M, D, RT, LT](n)
|
|
for i in 0 ..< n.numEntries:
|
|
if intersect(h.a[i].b, b):
|
|
s(h.a[i].n, b, res)
|
|
elif n of Leaf[M, D, RT, LT]:
|
|
let h = Leaf[M, D, RT, LT](n)
|
|
for i in 0 ..< n.numEntries:
|
|
if intersect(h.a[i].b, b):
|
|
res.add(h.a[i].l)
|
|
else: assert false
|
|
result = newSeq[LT]()
|
|
s(t.root, b, result)
|
|
|
|
# Insertion
|
|
# a R*TREE proc
|
|
proc chooseSubtree[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; b: Box[D, RT]; level: int): H[M, D, RT, LT] =
|
|
assert level >= 0
|
|
var it = t.root
|
|
while it.level > level:
|
|
let nn = Node[M, D, RT, LT](it)
|
|
var i0 = 0 # selected index
|
|
var minLoss = typeof(b[0].a).high
|
|
if it.level == 1: # childreen are leaves -- determine the minimum overlap costs
|
|
for i in 0 ..< it.numEntries:
|
|
let nx = union(nn.a[i].b, b)
|
|
var loss = 0
|
|
for j in 0 ..< it.numEntries:
|
|
if i == j: continue
|
|
loss += (overlap(nx, nn.a[j].b) - overlap(nn.a[i].b, nn.a[j].b)) # overlap (i, j) == (j, i), so maybe cache that?
|
|
var rep = loss < minLoss
|
|
if loss == minLoss:
|
|
let l2 = enlargement(nn.a[i].b, b) - enlargement(nn.a[i0].b, b)
|
|
rep = l2 < 0
|
|
if l2 == 0:
|
|
let l3 = area(nn.a[i].b) - area(nn.a[i0].b)
|
|
rep = l3 < 0
|
|
if l3 == 0:
|
|
rep = nn.a[i].n.numEntries < nn.a[i0].n.numEntries
|
|
if rep:
|
|
i0 = i
|
|
minLoss = loss
|
|
else:
|
|
for i in 0 ..< it.numEntries:
|
|
let loss = enlargement(nn.a[i].b, b)
|
|
var rep = loss < minLoss
|
|
if loss == minLoss:
|
|
let l3 = area(nn.a[i].b) - area(nn.a[i0].b)
|
|
rep = l3 < 0
|
|
if l3 == 0:
|
|
rep = nn.a[i].n.numEntries < nn.a[i0].n.numEntries
|
|
if rep:
|
|
i0 = i
|
|
minLoss = loss
|
|
it = nn.a[i0].n
|
|
return it
|
|
|
|
proc pickSeeds[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; n: Node[M, D, RT, LT] | Leaf[M, D, RT, LT]; bx: Box[D, RT]): (int, int) =
|
|
var i0, j0: int
|
|
var bi, bj: typeof(bx)
|
|
var largestWaste = typeof(bx[0].a).low
|
|
for i in -1 .. n.a.high:
|
|
for j in 0 .. n.a.high:
|
|
if unlikely(i == j): continue
|
|
if unlikely(i < 0):
|
|
bi = bx
|
|
else:
|
|
bi = n.a[i].b
|
|
bj = n.a[j].b
|
|
let b = union(bi, bj)
|
|
let h = area(b) - area(bi) - area(bj)
|
|
if h > largestWaste:
|
|
largestWaste = h
|
|
i0 = i
|
|
j0 = j
|
|
return (i0, j0)
|
|
|
|
proc pickNext[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; n0, n1, n2: Node[M, D, RT, LT] | Leaf[M, D, RT, LT]; b1, b2: Box[D, RT]): int =
|
|
let a1 = area(b1)
|
|
let a2 = area(b2)
|
|
var d = typeof(a1).low
|
|
for i in 0 ..< n0.numEntries:
|
|
let d1 = area(union(b1, n0.a[i].b)) - a1
|
|
let d2 = area(union(b2, n0.a[i].b)) - a2
|
|
if (d1 - d2) * (d1 - d2) > d:
|
|
result = i
|
|
d = (d1 - d2) * (d1 - d2)
|
|
|
|
from algorithm import SortOrder, sort
|
|
proc sortPlus[T](a: var openArray[T], ax: var T, cmp: proc (x, y: T): int {.closure.}, order = algorithm.SortOrder.Ascending) =
|
|
var j = 0
|
|
let sign = if order == algorithm.SortOrder.Ascending: 1 else: -1
|
|
for i in 1 .. a.high:
|
|
if cmp(a[i], a[j]) * sign < 0:
|
|
j = i
|
|
if cmp(a[j], ax) * sign < 0:
|
|
swap(ax, a[j])
|
|
a.sort(cmp, order)
|
|
|
|
# R*TREE procs
|
|
proc rstarSplit[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; n: var Node[M, D, RT, LT] | var Leaf[M, D, RT, LT]; lx: L[D, RT, LT] | N[M, D, RT, LT]): typeof(n) =
|
|
type NL = typeof(lx)
|
|
var nBest: typeof(n)
|
|
new nBest
|
|
var lx = lx
|
|
when n is Node[M, D, RT, LT]:
|
|
lx.n.parent = n
|
|
var lxbest: typeof(lx)
|
|
var m0 = lx.b[0].a.typeof.high
|
|
for d2 in 0 ..< 2 * D:
|
|
let d = d2 div 2
|
|
if d2 mod 2 == 0:
|
|
sortPlus(n.a, lx, proc (x, y: NL): int = cmp(x.b[d].a, y.b[d].a))
|
|
else:
|
|
sortPlus(n.a, lx, proc (x, y: NL): int = cmp(x.b[d].b, y.b[d].b))
|
|
for i in t.m - 1 .. n.a.high - t.m + 1:
|
|
var b = lx.b
|
|
for j in 0 ..< i: # we can precalculate union() for range 0 .. t.m - 1, but that seems to give no real benefit.Maybe for very large M?
|
|
#echo "x",j
|
|
b = union(n.a[j].b, b)
|
|
var m = margin(b)
|
|
b = n.a[^1].b
|
|
for j in i ..< n.a.high: # again, precalculation of tail would be possible
|
|
#echo "y",j
|
|
b = union(n.a[j].b, b)
|
|
m += margin(b)
|
|
if m < m0:
|
|
nbest[] = n[]
|
|
lxbest = lx
|
|
m0 = m
|
|
var i0 = -1
|
|
var o0 = lx.b[0].a.typeof.high
|
|
for i in t.m - 1 .. n.a.typeof.high - t.m + 1:
|
|
var b1 = lxbest.b
|
|
for j in 0 ..< i:
|
|
b1 = union(nbest.a[j].b, b1)
|
|
var b2 = nbest.a[^1].b
|
|
for j in i ..< n.a.high:
|
|
b2 = union(nbest.a[j].b, b2)
|
|
let o = overlap(b1, b2)
|
|
if o < o0:
|
|
i0 = i
|
|
o0 = o
|
|
n.a[0] = lxbest
|
|
for i in 0 ..< i0:
|
|
n.a[i + 1] = nbest.a[i]
|
|
new result
|
|
result.level = n.level
|
|
result.parent = n.parent
|
|
for i in i0 .. n.a.high:
|
|
result.a[i - i0] = nbest.a[i]
|
|
n.numEntries = i0 + 1
|
|
result.numEntries = M - i0
|
|
when n is Node[M, D, RT, LT]:
|
|
for i in 0 ..< result.numEntries:
|
|
result.a[i].n.parent = result
|
|
|
|
proc quadraticSplit[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; n: var Node[M, D, RT, LT] | var Leaf[M, D, RT, LT]; lx: L[D, RT, LT] | N[M, D, RT, LT]): typeof(n) =
|
|
var n1, n2: typeof(n)
|
|
var s1, s2: int
|
|
new n1
|
|
new n2
|
|
n1.parent = n.parent
|
|
n2.parent = n.parent
|
|
n1.level = n.level
|
|
n2.level = n.level
|
|
var lx = lx
|
|
when n is Node[M, D, RT, LT]:
|
|
lx.n.parent = n
|
|
(s1, s2) = pickSeeds(t, n, lx.b)
|
|
assert s1 >= -1 and s2 >= 0
|
|
if unlikely(s1 < 0):
|
|
n1.a[0] = lx
|
|
else:
|
|
n1.a[0] = n.a[s1]
|
|
dec(n.numEntries)
|
|
if s2 == n.numEntries: # important fix
|
|
s2 = s1
|
|
n.a[s1] = n.a[n.numEntries]
|
|
inc(n1.numEntries)
|
|
var b1 = n1.a[0].b
|
|
n2.a[0] = n.a[s2]
|
|
dec(n.numEntries)
|
|
n.a[s2] = n.a[n.numEntries]
|
|
inc(n2.numEntries)
|
|
var b2 = n2.a[0].b
|
|
if s1 >= 0:
|
|
n.a[n.numEntries] = lx
|
|
inc(n.numEntries)
|
|
while n.numEntries > 0 and n1.numEntries < (t.bigM + 1 - t.m) and n2.numEntries < (t.bigM + 1 - t.m):
|
|
let next = pickNext(t, n, n1, n2, b1, b2)
|
|
let d1 = area(union(b1, n.a[next].b)) - area(b1)
|
|
let d2 = area(union(b2, n.a[next].b)) - area(b2)
|
|
if (d1 < d2) or (d1 == d2 and ((area(b1) < area(b2)) or (area(b1) == area(b2) and n1.numEntries < n2.numEntries))):
|
|
n1.a[n1.numEntries] = n.a[next]
|
|
b1 = union(b1, n.a[next].b)
|
|
inc(n1.numEntries)
|
|
else:
|
|
n2.a[n2.numEntries] = n.a[next]
|
|
b2 = union(b2, n.a[next].b)
|
|
inc(n2.numEntries)
|
|
dec(n.numEntries)
|
|
n.a[next] = n.a[n.numEntries]
|
|
if n.numEntries == 0:
|
|
discard
|
|
elif n1.numEntries == (t.bigM + 1 - t.m):
|
|
while n.numEntries > 0:
|
|
dec(n.numEntries)
|
|
n2.a[n2.numEntries] = n.a[n.numEntries]
|
|
inc(n2.numEntries)
|
|
elif n2.numEntries == (t.bigM + 1 - t.m):
|
|
while n.numEntries > 0:
|
|
dec(n.numEntries)
|
|
n1.a[n1.numEntries] = n.a[n.numEntries]
|
|
inc(n1.numEntries)
|
|
when n is Node[M, D, RT, LT]:
|
|
for i in 0 ..< n2.numEntries:
|
|
n2.a[i].n.parent = n2
|
|
n[] = n1[]
|
|
return n2
|
|
|
|
proc overflowTreatment[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; n: var Node[M, D, RT, LT] | var Leaf[M, D, RT, LT]; lx: L[D, RT, LT] | N[M, D, RT, LT]): typeof(n)
|
|
|
|
proc adjustTree[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; l, ll: H[M, D, RT, LT]; hb: Box[D, RT]) =
|
|
var n = l
|
|
var nn = ll
|
|
assert n != nil
|
|
while true:
|
|
if n == t.root:
|
|
if nn == nil:
|
|
break
|
|
t.root = newNode[M, D, RT, LT]()
|
|
t.root.level = n.level + 1
|
|
Node[M, D, RT, LT](t.root).a[0].n = n
|
|
n.parent = t.root
|
|
nn.parent = t.root
|
|
t.root.numEntries = 1
|
|
let p = Node[M, D, RT, LT](n.parent)
|
|
var i = 0
|
|
while p.a[i].n != n:
|
|
inc(i)
|
|
var b: typeof(p.a[0].b)
|
|
if n of Leaf[M, D, RT, LT]:
|
|
when false:#if likely(nn.isNil): # no performance gain
|
|
b = union(p.a[i].b, Leaf[M, D, RT, LT](n).a[n.numEntries - 1].b)
|
|
else:
|
|
b = Leaf[M, D, RT, LT](n).a[0].b
|
|
for j in 1 ..< n.numEntries:
|
|
b = trtree.union(b, Leaf[M, D, RT, LT](n).a[j].b)
|
|
elif n of Node[M, D, RT, LT]:
|
|
b = Node[M, D, RT, LT](n).a[0].b
|
|
for j in 1 ..< n.numEntries:
|
|
b = union(b, Node[M, D, RT, LT](n).a[j].b)
|
|
else:
|
|
assert false
|
|
#if nn.isNil and p.a[i].b == b: break # no performance gain
|
|
p.a[i].b = b
|
|
n = H[M, D, RT, LT](p)
|
|
if unlikely(nn != nil):
|
|
if nn of Leaf[M, D, RT, LT]:
|
|
b = Leaf[M, D, RT, LT](nn).a[0].b
|
|
for j in 1 ..< nn.numEntries:
|
|
b = union(b, Leaf[M, D, RT, LT](nn).a[j].b)
|
|
elif nn of Node[M, D, RT, LT]:
|
|
b = Node[M, D, RT, LT](nn).a[0].b
|
|
for j in 1 ..< nn.numEntries:
|
|
b = union(b, Node[M, D, RT, LT](nn).a[j].b)
|
|
else:
|
|
assert false
|
|
if p.numEntries < p.a.len:
|
|
p.a[p.numEntries].b = b
|
|
p.a[p.numEntries].n = nn
|
|
inc(p.numEntries)
|
|
assert n != nil
|
|
nn = nil
|
|
else:
|
|
let h: N[M, D, RT, LT] = (b, nn)
|
|
nn = quadraticSplit(t, p, h)
|
|
assert n == H[M, D, RT, LT](p)
|
|
assert n != nil
|
|
assert t.root != nil
|
|
|
|
proc insert*[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; leaf: N[M, D, RT, LT] | L[D, RT, LT]; level: int = 0) =
|
|
when leaf is N[M, D, RT, LT]:
|
|
assert level > 0
|
|
type NodeLeaf = Node[M, D, RT, LT]
|
|
else:
|
|
assert level == 0
|
|
type NodeLeaf = Leaf[M, D, RT, LT]
|
|
for d in leaf.b:
|
|
assert d.a <= d.b
|
|
let l = NodeLeaf(chooseSubtree(t, leaf.b, level))
|
|
if l.numEntries < l.a.len:
|
|
l.a[l.numEntries] = leaf
|
|
inc(l.numEntries)
|
|
when leaf is N[M, D, RT, LT]:
|
|
leaf.n.parent = l
|
|
adjustTree(t, l, nil, leaf.b)
|
|
else:
|
|
let l2 = quadraticSplit(t, l, leaf)
|
|
assert l2.level == l.level
|
|
adjustTree(t, l, l2, leaf.b)
|
|
|
|
# R*Tree insert procs
|
|
proc rsinsert[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; leaf: N[M, D, RT, LT] | L[D, RT, LT]; level: int)
|
|
|
|
proc reInsert[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; n: var Node[M, D, RT, LT] | var Leaf[M, D, RT, LT]; lx: L[D, RT, LT] | N[M, D, RT, LT]) =
|
|
type NL = typeof(lx)
|
|
var lx = lx
|
|
var buf: typeof(n.a)
|
|
let p = Node[M, D, RT, LT](n.parent)
|
|
var i = 0
|
|
while p.a[i].n != n:
|
|
inc(i)
|
|
let c = center(p.a[i].b)
|
|
sortPlus(n.a, lx, proc (x, y: NL): int = cmp(distance(center(x.b), c), distance(center(y.b), c)))
|
|
n.numEntries = M - t.p
|
|
swap(n.a[n.numEntries], lx)
|
|
inc n.numEntries
|
|
var b = n.a[0].b
|
|
for i in 1 ..< n.numEntries:
|
|
b = union(b, n.a[i].b)
|
|
p.a[i].b = b
|
|
for i in M - t.p + 1 .. n.a.high:
|
|
buf[i] = n.a[i]
|
|
rsinsert(t, lx, n.level)
|
|
for i in M - t.p + 1 .. n.a.high:
|
|
rsinsert(t, buf[i], n.level)
|
|
|
|
proc overflowTreatment[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; n: var Node[M, D, RT, LT] | var Leaf[M, D, RT, LT]; lx: L[D, RT, LT] | N[M, D, RT, LT]): typeof(n) =
|
|
if n.level != t.root.level and t.firstOverflow[n.level]:
|
|
t.firstOverflow[n.level] = false
|
|
reInsert(t, n, lx)
|
|
return nil
|
|
else:
|
|
let l2 = rstarSplit(t, n, lx)
|
|
assert l2.level == n.level
|
|
return l2
|
|
|
|
proc rsinsert[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; leaf: N[M, D, RT, LT] | L[D, RT, LT]; level: int) =
|
|
when leaf is N[M, D, RT, LT]:
|
|
assert level > 0
|
|
type NodeLeaf = Node[M, D, RT, LT]
|
|
else:
|
|
assert level == 0
|
|
type NodeLeaf = Leaf[M, D, RT, LT]
|
|
let l = NodeLeaf(chooseSubtree(t, leaf.b, level))
|
|
if l.numEntries < l.a.len:
|
|
l.a[l.numEntries] = leaf
|
|
inc(l.numEntries)
|
|
when leaf is N[M, D, RT, LT]:
|
|
leaf.n.parent = l
|
|
adjustTree(t, l, nil, leaf.b)
|
|
else:
|
|
when leaf is N[M, D, RT, LT]: # TODO do we need this?
|
|
leaf.n.parent = l
|
|
let l2 = overflowTreatment(t, l, leaf)
|
|
if l2 != nil:
|
|
assert l2.level == l.level
|
|
adjustTree(t, l, l2, leaf.b)
|
|
|
|
proc insert*[M, D: Dim; RT, LT](t: RStarTree[M, D, RT, LT]; leaf: L[D, RT, LT]) =
|
|
for d in leaf.b:
|
|
assert d.a <= d.b
|
|
for i in mitems(t.firstOverflow):
|
|
i = true
|
|
rsinsert(t, leaf, 0)
|
|
|
|
# delete
|
|
proc findLeaf[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; leaf: L[D, RT, LT]): Leaf[M, D, RT, LT] =
|
|
proc fl[M, D: Dim; RT, LT](h: H[M, D, RT, LT]; leaf: L[D, RT, LT]): Leaf[M, D, RT, LT] =
|
|
var n = h
|
|
if n of Node[M, D, RT, LT]:
|
|
for i in 0 ..< n.numEntries:
|
|
if intersect(Node[M, D, RT, LT](n).a[i].b, leaf.b):
|
|
let l = fl(Node[M, D, RT, LT](n).a[i].n, leaf)
|
|
if l != nil:
|
|
return l
|
|
elif n of Leaf[M, D, RT, LT]:
|
|
for i in 0 ..< n.numEntries:
|
|
if Leaf[M, D, RT, LT](n).a[i] == leaf:
|
|
return Leaf[M, D, RT, LT](n)
|
|
else:
|
|
assert false
|
|
return nil
|
|
fl(t.root, leaf)
|
|
|
|
proc condenseTree[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; leaf: Leaf[M, D, RT, LT]) =
|
|
var n: H[M, D, RT, LT] = leaf
|
|
var q = newSeq[H[M, D, RT, LT]]()
|
|
var b: typeof(leaf.a[0].b)
|
|
while n != t.root:
|
|
let p = Node[M, D, RT, LT](n.parent)
|
|
var i = 0
|
|
while p.a[i].n != n:
|
|
inc(i)
|
|
if n.numEntries < t.m:
|
|
dec(p.numEntries)
|
|
p.a[i] = p.a[p.numEntries]
|
|
q.add(n)
|
|
else:
|
|
if n of Leaf[M, D, RT, LT]:
|
|
b = Leaf[M, D, RT, LT](n).a[0].b
|
|
for j in 1 ..< n.numEntries:
|
|
b = union(b, Leaf[M, D, RT, LT](n).a[j].b)
|
|
elif n of Node[M, D, RT, LT]:
|
|
b = Node[M, D, RT, LT](n).a[0].b
|
|
for j in 1 ..< n.numEntries:
|
|
b = union(b, Node[M, D, RT, LT](n).a[j].b)
|
|
else:
|
|
assert false
|
|
p.a[i].b = b
|
|
n = n.parent
|
|
if t of RStarTree[M, D, RT, LT]:
|
|
for n in q:
|
|
if n of Leaf[M, D, RT, LT]:
|
|
for i in 0 ..< n.numEntries:
|
|
for i in mitems(RStarTree[M, D, RT, LT](t).firstOverflow):
|
|
i = true
|
|
rsinsert(RStarTree[M, D, RT, LT](t), Leaf[M, D, RT, LT](n).a[i], 0)
|
|
elif n of Node[M, D, RT, LT]:
|
|
for i in 0 ..< n.numEntries:
|
|
for i in mitems(RStarTree[M, D, RT, LT](t).firstOverflow):
|
|
i = true
|
|
rsinsert(RStarTree[M, D, RT, LT](t), Node[M, D, RT, LT](n).a[i], n.level)
|
|
else:
|
|
assert false
|
|
else:
|
|
for n in q:
|
|
if n of Leaf[M, D, RT, LT]:
|
|
for i in 0 ..< n.numEntries:
|
|
insert(t, Leaf[M, D, RT, LT](n).a[i])
|
|
elif n of Node[M, D, RT, LT]:
|
|
for i in 0 ..< n.numEntries:
|
|
insert(t, Node[M, D, RT, LT](n).a[i], n.level)
|
|
else:
|
|
assert false
|
|
|
|
proc delete*[M, D: Dim; RT, LT](t: RTree[M, D, RT, LT]; leaf: L[D, RT, LT]): bool {.discardable.} =
|
|
let l = findLeaf(t, leaf)
|
|
if l.isNil:
|
|
return false
|
|
else:
|
|
var i = 0
|
|
while l.a[i] != leaf:
|
|
inc(i)
|
|
dec(l.numEntries)
|
|
l.a[i] = l.a[l.numEntries]
|
|
condenseTree(t, l)
|
|
if t.root.numEntries == 1:
|
|
if t.root of Node[M, D, RT, LT]:
|
|
t.root = Node[M, D, RT, LT](t.root).a[0].n
|
|
t.root.parent = nil
|
|
return true
|
|
|
|
|
|
var t = [4, 1, 3, 2]
|
|
var xt = 7
|
|
sortPlus(t, xt, system.cmp, SortOrder.Ascending)
|
|
echo xt, " ", t
|
|
|
|
type
|
|
RSE = L[2, int, int]
|
|
RSeq = seq[RSE]
|
|
|
|
proc rseq_search(rs: RSeq; rse: RSE): seq[int] =
|
|
result = newSeq[int]()
|
|
for i in rs:
|
|
if intersect(i.b, rse.b):
|
|
result.add(i.l)
|
|
|
|
proc rseq_delete(rs: var RSeq; rse: RSE): bool =
|
|
for i in 0 .. rs.high:
|
|
if rs[i] == rse:
|
|
#rs.delete(i)
|
|
rs[i] = rs[rs.high]
|
|
rs.setLen(rs.len - 1)
|
|
return true
|
|
|
|
import random, algorithm
|
|
|
|
proc test(n: int) =
|
|
var b: Box[2, int]
|
|
echo center(b)
|
|
var x1, x2, y1, y2: int
|
|
var t = newRStarTree[8, 2, int, int]()
|
|
#var t = newRTree[8, 2, int, int]()
|
|
var rs = newSeq[RSE]()
|
|
for i in 0 .. 5:
|
|
for i in 0 .. n - 1:
|
|
x1 = rand(1000)
|
|
y1 = rand(1000)
|
|
x2 = x1 + rand(25)
|
|
y2 = y1 + rand(25)
|
|
b = [(x1, x2), (y1, y2)]
|
|
let el: L[2, int, int] = (b, i + 7)
|
|
t.insert(el)
|
|
rs.add(el)
|
|
|
|
for i in 0 .. (n div 4):
|
|
let j = rand(rs.high)
|
|
var el = rs[j]
|
|
assert t.delete(el)
|
|
assert rs.rseq_delete(el)
|
|
|
|
for i in 0 .. n - 1:
|
|
x1 = rand(1000)
|
|
y1 = rand(1000)
|
|
x2 = x1 + rand(100)
|
|
y2 = y1 + rand(100)
|
|
b = [(x1, x2), (y1, y2)]
|
|
let el: L[2, int, int] = (b, i)
|
|
let r = search(t, b)
|
|
let r2 = rseq_search(rs, el)
|
|
assert r.len == r2.len
|
|
assert r.sorted(system.cmp) == r2.sorted(system.cmp)
|
|
|
|
test(500)
|