mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 09:24:36 +00:00
223 lines
6.0 KiB
Nim
223 lines
6.0 KiB
Nim
#
|
|
#
|
|
# Nim's Runtime Library
|
|
# (c) Copyright 2012 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
## This module implements some common generic algorithms.
|
|
|
|
type
|
|
SortOrder* = enum ## sort order
|
|
Descending, Ascending
|
|
|
|
{.deprecated: [TSortOrder: SortOrder].}
|
|
|
|
|
|
proc `*`*(x: int, order: SortOrder): int {.inline.} =
|
|
## flips `x` if ``order == Descending``;
|
|
## if ``order == Ascending`` then `x` is returned.
|
|
## `x` is supposed to be the result of a comparator, ie ``< 0`` for
|
|
## *less than*, ``== 0`` for *equal*, ``> 0`` for *greater than*.
|
|
var y = order.ord - 1
|
|
result = (x xor y) - y
|
|
|
|
proc reverse*[T](a: var openArray[T], first, last: int) =
|
|
## reverses the array ``a[first..last]``.
|
|
var x = first
|
|
var y = last
|
|
while x < y:
|
|
swap(a[x], a[y])
|
|
dec(y)
|
|
inc(x)
|
|
|
|
proc reverse*[T](a: var openArray[T]) =
|
|
## reverses the array `a`.
|
|
reverse(a, 0, a.high)
|
|
|
|
proc reversed*[T](a: openArray[T], first, last: int): seq[T] =
|
|
## returns the reverse of the array `a[first..last]`.
|
|
result = newSeq[T](last - first + 1)
|
|
var x = first
|
|
var y = last
|
|
while x <= last:
|
|
result[x] = a[y]
|
|
dec(y)
|
|
inc(x)
|
|
|
|
proc reversed*[T](a: openArray[T]): seq[T] =
|
|
## returns the reverse of the array `a`.
|
|
reversed(a, 0, a.high)
|
|
|
|
proc binarySearch*[T](a: openArray[T], key: T): int =
|
|
## binary search for `key` in `a`. Returns -1 if not found.
|
|
var b = len(a)
|
|
while result < b:
|
|
var mid = (result + b) div 2
|
|
if a[mid] < key: result = mid + 1
|
|
else: b = mid
|
|
if result >= len(a) or a[result] != key: result = -1
|
|
|
|
proc smartBinarySearch*[T](a: openArray[T], key: T): int =
|
|
## ``a.len`` must be a power of 2 for this to work.
|
|
var step = a.len div 2
|
|
while step > 0:
|
|
if a[result or step] <= key:
|
|
result = result or step
|
|
step = step shr 1
|
|
if a[result] != key: result = -1
|
|
|
|
const
|
|
onlySafeCode = true
|
|
|
|
proc lowerBound*[T](a: openArray[T], key: T, cmp: proc(x,y: T): int {.closure.}): int =
|
|
## same as binarySearch except that if key is not in `a` then this
|
|
## returns the location where `key` would be if it were. In other
|
|
## words if you have a sorted sequence and you call insert(thing, elm, lowerBound(thing, elm))
|
|
## the sequence will still be sorted
|
|
##
|
|
## `cmp` is the comparator function to use, the expected return values are the same as
|
|
## that of system.cmp
|
|
##
|
|
## example::
|
|
##
|
|
## var arr = @[1,2,3,5,6,7,8,9]
|
|
## arr.insert(4, arr.lowerBound(4))
|
|
## `after running the above arr is `[1,2,3,4,5,6,7,8,9]`
|
|
result = a.low
|
|
var pos = result
|
|
var count, step: int
|
|
count = a.high - a.low + 1
|
|
while count != 0:
|
|
pos = result
|
|
step = count div 2
|
|
pos += step
|
|
if cmp(a[pos], key) < 0:
|
|
pos.inc
|
|
result = pos
|
|
count -= step + 1
|
|
else:
|
|
count = step
|
|
|
|
proc lowerBound*[T](a: openArray[T], key: T): int = lowerBound(a, key, cmp[T])
|
|
proc merge[T](a, b: var openArray[T], lo, m, hi: int,
|
|
cmp: proc (x, y: T): int {.closure.}, order: SortOrder) =
|
|
template `<-` (a, b: expr) =
|
|
when false:
|
|
a = b
|
|
elif onlySafeCode:
|
|
shallowCopy(a, b)
|
|
else:
|
|
copyMem(addr(a), addr(b), sizeof(T))
|
|
# optimization: If max(left) <= min(right) there is nothing to do!
|
|
# 1 2 3 4 ## 5 6 7 8
|
|
# -> O(n) for sorted arrays.
|
|
# On random data this safes up to 40% of merge calls
|
|
if cmp(a[m], a[m+1]) * order <= 0: return
|
|
var j = lo
|
|
# copy a[j..m] into b:
|
|
assert j <= m
|
|
when onlySafeCode:
|
|
var bb = 0
|
|
while j <= m:
|
|
b[bb] <- a[j]
|
|
inc(bb)
|
|
inc(j)
|
|
else:
|
|
copyMem(addr(b[0]), addr(a[j]), sizeof(T)*(m-j+1))
|
|
j = m+1
|
|
var i = 0
|
|
var k = lo
|
|
# copy proper element back:
|
|
while k < j and j <= hi:
|
|
if cmp(b[i], a[j]) * order <= 0:
|
|
a[k] <- b[i]
|
|
inc(i)
|
|
else:
|
|
a[k] <- a[j]
|
|
inc(j)
|
|
inc(k)
|
|
# copy rest of b:
|
|
when onlySafeCode:
|
|
while k < j:
|
|
a[k] <- b[i]
|
|
inc(k)
|
|
inc(i)
|
|
else:
|
|
if k < j: copyMem(addr(a[k]), addr(b[i]), sizeof(T)*(j-k))
|
|
|
|
proc sort*[T](a: var openArray[T],
|
|
cmp: proc (x, y: T): int {.closure.},
|
|
order = SortOrder.Ascending) =
|
|
## Default Nim sort. The sorting is guaranteed to be stable and
|
|
## the worst case is guaranteed to be O(n log n).
|
|
## The current implementation uses an iterative
|
|
## mergesort to achieve this. It uses a temporary sequence of
|
|
## length ``a.len div 2``. Currently Nim does not support a
|
|
## sensible default argument for ``cmp``, so you have to provide one
|
|
## of your own. However, the ``system.cmp`` procs can be used:
|
|
##
|
|
## .. code-block:: nim
|
|
##
|
|
## sort(myIntArray, system.cmp[int])
|
|
##
|
|
## # do not use cmp[string] here as we want to use the specialized
|
|
## # overload:
|
|
## sort(myStrArray, system.cmp)
|
|
##
|
|
## You can inline adhoc comparison procs with the `do notation
|
|
## <manual.html#do-notation>`_. Example:
|
|
##
|
|
## .. code-block:: nim
|
|
##
|
|
## people.sort do (x, y: Person) -> int:
|
|
## result = cmp(x.surname, y.surname)
|
|
## if result == 0:
|
|
## result = cmp(x.name, y.name)
|
|
var n = a.len
|
|
var b: seq[T]
|
|
newSeq(b, n div 2)
|
|
var s = 1
|
|
while s < n:
|
|
var m = n-1-s
|
|
while m >= 0:
|
|
merge(a, b, max(m-s+1, 0), m, m+s, cmp, order)
|
|
dec(m, s*2)
|
|
s = s*2
|
|
|
|
proc product*[T](x: openArray[seq[T]]): seq[seq[T]] =
|
|
## produces the Cartesian product of the array. Warning: complexity
|
|
## may explode.
|
|
result = @[]
|
|
if x.len == 0:
|
|
return
|
|
if x.len == 1:
|
|
result = @x
|
|
return
|
|
var
|
|
indexes = newSeq[int](x.len)
|
|
initial = newSeq[int](x.len)
|
|
index = 0
|
|
# replace with newSeq as soon as #853 is fixed
|
|
var next: seq[T] = @[]
|
|
next.setLen(x.len)
|
|
for i in 0..(x.len-1):
|
|
if len(x[i]) == 0: return
|
|
initial[i] = len(x[i])-1
|
|
indexes = initial
|
|
while true:
|
|
while indexes[index] == -1:
|
|
indexes[index] = initial[index]
|
|
index +=1
|
|
if index == x.len: return
|
|
indexes[index] -=1
|
|
for ni, i in indexes:
|
|
next[ni] = x[ni][i]
|
|
var res: seq[T]
|
|
shallowCopy(res, next)
|
|
result.add(res)
|
|
index = 0
|
|
indexes[index] -=1
|