Files
Nim/compiler/ccgtypes.nim
2016-12-06 15:37:09 +01:00

1147 lines
42 KiB
Nim

#
#
# The Nim Compiler
# (c) Copyright 2016 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# included from cgen.nim
# ------------------------- Name Mangling --------------------------------
import sighashes
proc isKeyword(w: PIdent): bool =
# Nim and C++ share some keywords
# it's more efficient to test the whole Nim keywords range
case w.id
of ccgKeywordsLow..ccgKeywordsHigh,
nimKeywordsLow..nimKeywordsHigh,
ord(wInline): return true
else: return false
proc mangleField(name: PIdent): string =
result = mangle(name.s)
if isKeyword(name):
result[0] = result[0].toUpperAscii
# Mangling makes everything lowercase,
# but some identifiers are C keywords
when false:
proc hashOwner(s: PSym): SigHash =
var m = s
while m.kind != skModule: m = m.owner
let p = m.owner
assert p.kind == skPackage
result = gDebugInfo.register(p.name.s, m.name.s)
proc idOrSig(m: BModule; s: PSym): Rope =
if s.kind in routineKinds and s.typ != nil and sfExported in s.flags and
s.typ.callConv != ccInline:
# signatures for exported routines are reliable enough to
# produce a unique name and this means produced C++ is more stable wrt
# Nim changes:
let sig = hashProc(s)
result = rope($sig)
let m = findPendingModule(m, s)
let counter = m.sigConflicts.getOrDefault(sig)
#if sigs == "_jckmNePK3i2MFnWwZlp6Lg" and s.name.s == "contains":
# echo "counter ", counter, " ", s.id
if counter != 0:
result.add "_" & rope(counter+1)
m.sigConflicts.inc(sig)
else:
result = "_" & rope s.id
proc mangleName(m: BModule; s: PSym): Rope =
result = s.loc.r
if result == nil:
let keepOrigName = s.kind in skLocalVars - {skForVar} and
{sfFromGeneric, sfGlobal, sfShadowed, sfGenSym} * s.flags == {} and
not isKeyword(s.name)
# Even with all these inefficient checks, the bootstrap
# time is actually improved. This is probably because so many
# rope concatenations are now eliminated.
#
# sfFromGeneric is needed in order to avoid multiple
# definitions of certain variables generated in transf with
# names such as:
# `r`, `res`
# I need to study where these come from.
#
# about sfShadowed:
# consider the following Nim code:
# var x = 10
# block:
# var x = something(x)
# The generated C code will be:
# NI x;
# x = 10;
# {
# NI x;
# x = something(x); // Oops, x is already shadowed here
# }
# Right now, we work-around by not keeping the original name
# of the shadowed variable, but we can do better - we can
# create an alternative reference to it in the outer scope and
# use that in the inner scope.
#
# about isCKeyword:
# Nim variable names can be C keywords.
# We need to avoid such names in the generated code.
#
# about sfGlobal:
# This seems to be harder - a top level extern variable from
# another modules can have the same name as a local one.
# Maybe we should just implement sfShadowed for them too.
#
# about skForVar:
# These are not properly scoped now - we need to add blocks
# around for loops in transf
result = s.name.s.mangle.rope
if keepOrigName:
result.add "0"
else:
add(result, m.idOrSig(s))
#add(result, ~"_")
#add(result, rope(hashOwner(s).BiggestInt))
s.loc.r = result
proc typeName(typ: PType): Rope =
result = if typ.sym != nil and typ.kind in {tyObject, tyEnum}:
typ.sym.name.s.mangle.rope
else:
~"TY"
proc getTypeName(m: BModule; typ: PType; sig: SigHash): Rope =
let typ = if typ.kind == tyAlias: typ.lastSon else: typ
if typ.sym != nil and {sfImportc, sfExportc} * typ.sym.flags != {}:
result = typ.sym.loc.r
else:
if typ.loc.r == nil:
typ.loc.r = typ.typeName & $sig
else:
when defined(debugSigHashes):
# check consistency:
assert($typ.loc.r == $(typ.typeName & $sig))
result = typ.loc.r
if result == nil: internalError("getTypeName: " & $typ.kind)
proc mapSetType(typ: PType): TCTypeKind =
case int(getSize(typ))
of 1: result = ctInt8
of 2: result = ctInt16
of 4: result = ctInt32
of 8: result = ctInt64
else: result = ctArray
proc mapType(typ: PType): TCTypeKind =
## Maps a Nim type to a C type
case typ.kind
of tyNone, tyStmt: result = ctVoid
of tyBool: result = ctBool
of tyChar: result = ctChar
of tySet: result = mapSetType(typ)
of tyOpenArray, tyArray, tyVarargs: result = ctArray
of tyObject, tyTuple: result = ctStruct
of tyGenericBody, tyGenericInst, tyGenericParam, tyDistinct, tyOrdinal,
tyTypeDesc, tyAlias:
result = mapType(lastSon(typ))
of tyEnum:
if firstOrd(typ) < 0:
result = ctInt32
else:
case int(getSize(typ))
of 1: result = ctUInt8
of 2: result = ctUInt16
of 4: result = ctInt32
of 8: result = ctInt64
else: internalError("mapType")
of tyRange: result = mapType(typ.sons[0])
of tyPtr, tyVar, tyRef:
var base = skipTypes(typ.lastSon, typedescInst)
case base.kind
of tyOpenArray, tyArray, tyVarargs: result = ctPtrToArray
#of tySet:
# if mapSetType(base) == ctArray: result = ctPtrToArray
# else: result = ctPtr
# XXX for some reason this breaks the pegs module
else: result = ctPtr
of tyPointer: result = ctPtr
of tySequence: result = ctNimSeq
of tyProc: result = if typ.callConv != ccClosure: ctProc else: ctStruct
of tyString: result = ctNimStr
of tyCString: result = ctCString
of tyInt..tyUInt64:
result = TCTypeKind(ord(typ.kind) - ord(tyInt) + ord(ctInt))
of tyStatic:
if typ.n != nil: result = mapType(lastSon typ)
else: internalError("mapType")
else: internalError("mapType")
proc mapReturnType(typ: PType): TCTypeKind =
#if skipTypes(typ, typedescInst).kind == tyArray: result = ctPtr
#else:
result = mapType(typ)
proc isImportedType(t: PType): bool =
result = t.sym != nil and sfImportc in t.sym.flags
proc isImportedCppType(t: PType): bool =
result = t.sym != nil and sfInfixCall in t.sym.flags
proc getTypeDescAux(m: BModule, origTyp: PType, check: var IntSet): Rope
proc needsComplexAssignment(typ: PType): bool =
result = containsGarbageCollectedRef(typ)
proc isObjLackingTypeField(typ: PType): bool {.inline.} =
result = (typ.kind == tyObject) and ((tfFinal in typ.flags) and
(typ.sons[0] == nil) or isPureObject(typ))
proc isInvalidReturnType(rettype: PType): bool =
# Arrays and sets cannot be returned by a C procedure, because C is
# such a poor programming language.
# We exclude records with refs too. This enhances efficiency and
# is necessary for proper code generation of assignments.
if rettype == nil: result = true
else:
case mapType(rettype)
of ctArray:
result = not (skipTypes(rettype, typedescInst).kind in
{tyVar, tyRef, tyPtr})
of ctStruct:
let t = skipTypes(rettype, typedescInst)
if rettype.isImportedCppType or t.isImportedCppType: return false
result = needsComplexAssignment(t) or
(t.kind == tyObject and not isObjLackingTypeField(t))
else: result = false
const
CallingConvToStr: array[TCallingConvention, string] = ["N_NIMCALL",
"N_STDCALL", "N_CDECL", "N_SAFECALL",
"N_SYSCALL", # this is probably not correct for all platforms,
# but one can #define it to what one wants
"N_INLINE", "N_NOINLINE", "N_FASTCALL", "N_CLOSURE", "N_NOCONV"]
proc cacheGetType(tab: TypeCache; sig: SigHash): Rope =
# returns nil if we need to declare this type
# since types are now unique via the ``getUniqueType`` mechanism, this slow
# linear search is not necessary anymore:
result = tab.getOrDefault(sig)
proc addAbiCheck(m: BModule, t: PType, name: Rope) =
if isDefined("checkabi"):
addf(m.s[cfsTypeInfo], "NIM_CHECK_SIZE($1, $2);$n", [name, rope(getSize(t))])
proc getTempName(m: BModule): Rope =
result = m.tmpBase & rope(m.labels)
inc m.labels
proc ccgIntroducedPtr(s: PSym): bool =
var pt = skipTypes(s.typ, typedescInst)
assert skResult != s.kind
if tfByRef in pt.flags: return true
elif tfByCopy in pt.flags: return false
case pt.kind
of tyObject:
if (optByRef in s.options) or (getSize(pt) > platform.floatSize * 2):
result = true # requested anyway
elif (tfFinal in pt.flags) and (pt.sons[0] == nil):
result = false # no need, because no subtyping possible
else:
result = true # ordinary objects are always passed by reference,
# otherwise casting doesn't work
of tyTuple:
result = (getSize(pt) > platform.floatSize*2) or (optByRef in s.options)
else: result = false
proc fillResult(param: PSym) =
fillLoc(param.loc, locParam, param.typ, ~"Result",
OnStack)
if mapReturnType(param.typ) != ctArray and isInvalidReturnType(param.typ):
incl(param.loc.flags, lfIndirect)
param.loc.s = OnUnknown
proc typeNameOrLiteral(m: BModule; t: PType, literal: string): Rope =
if t.sym != nil and sfImportc in t.sym.flags and t.sym.magic == mNone:
result = t.sym.loc.r
else:
result = rope(literal)
proc getSimpleTypeDesc(m: BModule, typ: PType): Rope =
const
NumericalTypeToStr: array[tyInt..tyUInt64, string] = [
"NI", "NI8", "NI16", "NI32", "NI64",
"NF", "NF32", "NF64", "NF128",
"NU", "NU8", "NU16", "NU32", "NU64"]
case typ.kind
of tyPointer:
result = typeNameOrLiteral(m, typ, "void*")
of tyString:
discard cgsym(m, "NimStringDesc")
result = typeNameOrLiteral(m, typ, "NimStringDesc*")
of tyCString: result = typeNameOrLiteral(m, typ, "NCSTRING")
of tyBool: result = typeNameOrLiteral(m, typ, "NIM_BOOL")
of tyChar: result = typeNameOrLiteral(m, typ, "NIM_CHAR")
of tyNil: result = typeNameOrLiteral(m, typ, "0")
of tyInt..tyUInt64:
result = typeNameOrLiteral(m, typ, NumericalTypeToStr[typ.kind])
of tyDistinct, tyRange, tyOrdinal: result = getSimpleTypeDesc(m, typ.sons[0])
of tyStatic:
if typ.n != nil: result = getSimpleTypeDesc(m, lastSon typ)
else: internalError("tyStatic for getSimpleTypeDesc")
of tyGenericInst, tyAlias:
result = getSimpleTypeDesc(m, lastSon typ)
else: result = nil
if result != nil and typ.isImportedType():
let sig = hashType typ
if cacheGetType(m.typeCache, sig) == nil:
m.typeCache[sig] = result
addAbiCheck(m, typ, result)
proc pushType(m: BModule, typ: PType) =
add(m.typeStack, typ)
proc getTypePre(m: BModule, typ: PType; sig: SigHash): Rope =
if typ == nil: result = rope("void")
else:
result = getSimpleTypeDesc(m, typ)
if result == nil: result = cacheGetType(m.typeCache, sig)
proc structOrUnion(t: PType): Rope =
(if tfUnion in t.flags: rope("union") else: rope("struct"))
proc getForwardStructFormat(m: BModule): string =
if m.compileToCpp: result = "$1 $2;$n"
else: result = "typedef $1 $2 $2;$n"
proc getTypeForward(m: BModule, typ: PType; sig: SigHash): Rope =
result = cacheGetType(m.forwTypeCache, sig)
if result != nil: return
result = getTypePre(m, typ, sig)
if result != nil: return
let concrete = typ.skipTypes(abstractInst)
case concrete.kind
of tySequence, tyTuple, tyObject:
result = getTypeName(m, typ, sig)
m.forwTypeCache[sig] = result
if not isImportedType(concrete):
addf(m.s[cfsForwardTypes], "/* getTypeForward: $1 $2 $3 */", [rope typeToString typ,
rope typ.id, rope($typ.kind)])
addf(m.s[cfsForwardTypes], getForwardStructFormat(m),
[structOrUnion(typ), result])
doAssert m.forwTypeCache[sig] == result
else: internalError("getTypeForward(" & $typ.kind & ')')
proc getTypeDescWeak(m: BModule; t: PType; check: var IntSet): Rope =
## like getTypeDescAux but creates only a *weak* dependency. In other words
## we know we only need a pointer to it so we only generate a struct forward
## declaration:
let etB = t.skipTypes(abstractInst)
case etB.kind
of tyObject, tyTuple:
if isImportedCppType(etB) and t.kind == tyGenericInst:
result = getTypeDescAux(m, t, check)
else:
result = getTypeForward(m, t, hashType(t))
pushType(m, t)
of tySequence:
result = getTypeForward(m, t, hashType(t)) & "*"
pushType(m, t)
else:
result = getTypeDescAux(m, t, check)
proc paramStorageLoc(param: PSym): TStorageLoc =
if param.typ.skipTypes({tyVar, tyTypeDesc}).kind notin {
tyArray, tyOpenArray, tyVarargs}:
result = OnStack
else:
result = OnUnknown
proc genProcParams(m: BModule, t: PType, rettype, params: var Rope,
check: var IntSet, declareEnvironment=true;
weakDep=false) =
params = nil
if t.sons[0] == nil or isInvalidReturnType(t.sons[0]):
rettype = ~"void"
else:
rettype = getTypeDescAux(m, t.sons[0], check)
for i in countup(1, sonsLen(t.n) - 1):
if t.n.sons[i].kind != nkSym: internalError(t.n.info, "genProcParams")
var param = t.n.sons[i].sym
if isCompileTimeOnly(param.typ): continue
if params != nil: add(params, ~", ")
fillLoc(param.loc, locParam, param.typ, mangleName(m, param),
param.paramStorageLoc)
if ccgIntroducedPtr(param):
add(params, getTypeDescWeak(m, param.typ, check))
add(params, ~"*")
incl(param.loc.flags, lfIndirect)
param.loc.s = OnUnknown
elif weakDep:
add(params, getTypeDescWeak(m, param.typ, check))
else:
add(params, getTypeDescAux(m, param.typ, check))
add(params, ~" ")
add(params, param.loc.r)
# declare the len field for open arrays:
var arr = param.typ
if arr.kind == tyVar: arr = arr.sons[0]
var j = 0
while arr.kind in {tyOpenArray, tyVarargs}:
# this fixes the 'sort' bug:
if param.typ.kind == tyVar: param.loc.s = OnUnknown
# need to pass hidden parameter:
addf(params, ", NI $1Len$2", [param.loc.r, j.rope])
inc(j)
arr = arr.sons[0]
if t.sons[0] != nil and isInvalidReturnType(t.sons[0]):
var arr = t.sons[0]
if params != nil: add(params, ", ")
if mapReturnType(t.sons[0]) != ctArray:
add(params, getTypeDescWeak(m, arr, check))
add(params, "*")
else:
add(params, getTypeDescAux(m, arr, check))
addf(params, " Result", [])
if t.callConv == ccClosure and declareEnvironment:
if params != nil: add(params, ", ")
add(params, "void* ClEnv")
if tfVarargs in t.flags:
if params != nil: add(params, ", ")
add(params, "...")
if params == nil: add(params, "void)")
else: add(params, ")")
params = "(" & params
proc mangleRecFieldName(field: PSym, rectype: PType): Rope =
if (rectype.sym != nil) and
({sfImportc, sfExportc} * rectype.sym.flags != {}):
result = field.loc.r
else:
result = rope(mangleField(field.name))
if result == nil: internalError(field.info, "mangleRecFieldName")
proc genRecordFieldsAux(m: BModule, n: PNode,
accessExpr: Rope, rectype: PType,
check: var IntSet): Rope =
result = nil
case n.kind
of nkRecList:
for i in countup(0, sonsLen(n) - 1):
add(result, genRecordFieldsAux(m, n.sons[i], accessExpr, rectype, check))
of nkRecCase:
if n.sons[0].kind != nkSym: internalError(n.info, "genRecordFieldsAux")
add(result, genRecordFieldsAux(m, n.sons[0], accessExpr, rectype, check))
let uname = rope(mangle(n.sons[0].sym.name.s) & 'U')
let ae = if accessExpr != nil: "$1.$2" % [accessExpr, uname]
else: uname
var unionBody: Rope = nil
for i in countup(1, sonsLen(n) - 1):
case n.sons[i].kind
of nkOfBranch, nkElse:
let k = lastSon(n.sons[i])
if k.kind != nkSym:
let sname = "S" & rope(i)
let a = genRecordFieldsAux(m, k, "$1.$2" % [ae, sname], rectype,
check)
if a != nil:
add(unionBody, "struct {")
add(unionBody, a)
addf(unionBody, "} $1;$n", [sname])
else:
add(unionBody, genRecordFieldsAux(m, k, ae, rectype, check))
else: internalError("genRecordFieldsAux(record case branch)")
if unionBody != nil:
addf(result, "union{$n$1} $2;$n", [unionBody, uname])
of nkSym:
let field = n.sym
if field.typ.kind == tyVoid: return
#assert(field.ast == nil)
let sname = mangleRecFieldName(field, rectype)
let ae = if accessExpr != nil: "$1.$2" % [accessExpr, sname]
else: sname
fillLoc(field.loc, locField, field.typ, ae, OnUnknown)
# for importcpp'ed objects, we only need to set field.loc, but don't
# have to recurse via 'getTypeDescAux'. And not doing so prevents problems
# with heavily templatized C++ code:
if not isImportedCppType(rectype):
let fieldType = field.loc.t.skipTypes(abstractInst)
if fieldType.kind == tyArray and tfUncheckedArray in fieldType.flags:
addf(result, "$1 $2[SEQ_DECL_SIZE];$n",
[getTypeDescAux(m, fieldType.elemType, check), sname])
elif fieldType.kind == tySequence:
# we need to use a weak dependency here for trecursive_table.
addf(result, "$1 $2;$n", [getTypeDescWeak(m, field.loc.t, check), sname])
elif field.bitsize != 0:
addf(result, "$1 $2:$3;$n", [getTypeDescAux(m, field.loc.t, check), sname, rope($field.bitsize)])
else:
# don't use fieldType here because we need the
# tyGenericInst for C++ template support
addf(result, "$1 $2;$n", [getTypeDescAux(m, field.loc.t, check), sname])
else: internalError(n.info, "genRecordFieldsAux()")
proc getRecordFields(m: BModule, typ: PType, check: var IntSet): Rope =
result = genRecordFieldsAux(m, typ.n, nil, typ, check)
proc fillObjectFields*(m: BModule; typ: PType) =
# sometimes generic objects are not consistently merged. We patch over
# this fact here.
var check = initIntSet()
discard getRecordFields(m, typ, check)
proc getRecordDesc(m: BModule, typ: PType, name: Rope,
check: var IntSet): Rope =
# declare the record:
var hasField = false
var attribute: Rope =
if tfPacked in typ.flags: rope(CC[cCompiler].packedPragma)
else: nil
result = ropecg(m, CC[cCompiler].structStmtFmt,
[structOrUnion(typ), name, attribute])
if typ.kind == tyObject:
if typ.sons[0] == nil:
if (typ.sym != nil and sfPure in typ.sym.flags) or tfFinal in typ.flags:
appcg(m, result, " {$n", [])
else:
appcg(m, result, " {$n#TNimType* m_type;$n", [name, attribute])
hasField = true
elif m.compileToCpp:
appcg(m, result, " : public $1 {$n",
[getTypeDescAux(m, typ.sons[0].skipTypes(skipPtrs), check)])
hasField = true
else:
appcg(m, result, " {$n $1 Sup;$n",
[getTypeDescAux(m, typ.sons[0].skipTypes(skipPtrs), check)])
hasField = true
else:
addf(result, " {$n", [name])
let desc = getRecordFields(m, typ, check)
if desc == nil and not hasField:
addf(result, "char dummy;$n", [])
else:
add(result, desc)
add(result, "};" & tnl)
proc getTupleDesc(m: BModule, typ: PType, name: Rope,
check: var IntSet): Rope =
result = "$1 $2 {$n" % [structOrUnion(typ), name]
var desc: Rope = nil
for i in countup(0, sonsLen(typ) - 1):
addf(desc, "$1 Field$2;$n",
[getTypeDescAux(m, typ.sons[i], check), rope(i)])
if desc == nil: add(result, "char dummy;" & tnl)
else: add(result, desc)
add(result, "};" & tnl)
proc scanCppGenericSlot(pat: string, cursor, outIdx, outStars: var int): bool =
# A helper proc for handling cppimport patterns, involving numeric
# placeholders for generic types (e.g. '0, '**2, etc).
# pre: the cursor must be placed at the ' symbol
# post: the cursor will be placed after the final digit
# false will returned if the input is not recognized as a placeholder
inc cursor
let begin = cursor
while pat[cursor] == '*': inc cursor
if pat[cursor] in Digits:
outIdx = pat[cursor].ord - '0'.ord
outStars = cursor - begin
inc cursor
return true
else:
return false
proc resolveStarsInCppType(typ: PType, idx, stars: int): PType =
# XXX: we should catch this earlier and report it as a semantic error
if idx >= typ.len: internalError "invalid apostrophe type parameter index"
result = typ.sons[idx]
for i in 1..stars:
if result != nil and result.len > 0:
result = if result.kind == tyGenericInst: result.sons[1]
else: result.elemType
const
irrelevantForBackend = {tyGenericBody, tyGenericInst, tyGenericInvocation,
tyDistinct, tyRange, tyStatic, tyAlias}
proc getTypeDescAux(m: BModule, origTyp: PType, check: var IntSet): Rope =
# returns only the type's name
var t = origTyp.skipTypes(irrelevantForBackend)
if containsOrIncl(check, t.id):
if not (isImportedCppType(origTyp) or isImportedCppType(t)):
internalError("cannot generate C type for: " & typeToString(origTyp))
# XXX: this BUG is hard to fix -> we need to introduce helper structs,
# but determining when this needs to be done is hard. We should split
# C type generation into an analysis and a code generation phase somehow.
if t.sym != nil: useHeader(m, t.sym)
if t != origTyp and origTyp.sym != nil: useHeader(m, origTyp.sym)
let sig = hashType(origTyp)
result = getTypePre(m, t, sig)
if result != nil:
excl(check, t.id)
return
case t.kind
of tyRef, tyPtr, tyVar:
var star = if t.kind == tyVar and tfVarIsPtr notin origTyp.flags and
compileToCpp(m): "&" else: "*"
var et = origTyp.skipTypes(abstractInst).lastSon
var etB = et.skipTypes(abstractInst)
if etB.kind in {tyArray, tyOpenArray, tyVarargs}:
# this is correct! sets have no proper base type, so we treat
# ``var set[char]`` in `getParamTypeDesc`
et = elemType(etB)
etB = et.skipTypes(abstractInst)
star[0] = '*'
case etB.kind
of tyObject, tyTuple:
if isImportedCppType(etB) and et.kind == tyGenericInst:
result = getTypeDescAux(m, et, check) & star
else:
# no restriction! We have a forward declaration for structs
let name = getTypeForward(m, et, hashType et)
result = name & star
m.typeCache[sig] = result
pushType(m, et)
of tySequence:
# no restriction! We have a forward declaration for structs
let name = getTypeForward(m, et, hashType et)
result = name & "*" & star
m.typeCache[sig] = result
pushType(m, et)
else:
# else we have a strong dependency :-(
result = getTypeDescAux(m, et, check) & star
m.typeCache[sig] = result
of tyOpenArray, tyVarargs:
result = getTypeDescWeak(m, t.sons[0], check) & "*"
m.typeCache[sig] = result
of tyEnum:
result = cacheGetType(m.typeCache, sig)
if result == nil:
result = getTypeName(m, origTyp, sig)
if not (isImportedCppType(t) or
(sfImportc in t.sym.flags and t.sym.magic == mNone)):
m.typeCache[sig] = result
var size: int
if firstOrd(t) < 0:
addf(m.s[cfsTypes], "typedef NI32 $1;$n", [result])
size = 4
else:
size = int(getSize(t))
case size
of 1: addf(m.s[cfsTypes], "typedef NU8 $1;$n", [result])
of 2: addf(m.s[cfsTypes], "typedef NU16 $1;$n", [result])
of 4: addf(m.s[cfsTypes], "typedef NI32 $1;$n", [result])
of 8: addf(m.s[cfsTypes], "typedef NI64 $1;$n", [result])
else: internalError(t.sym.info, "getTypeDescAux: enum")
when false:
let owner = hashOwner(t.sym)
if not gDebugInfo.hasEnum(t.sym.name.s, t.sym.info.line, owner):
var vals: seq[(string, int)] = @[]
for i in countup(0, t.n.len - 1):
assert(t.n.sons[i].kind == nkSym)
let field = t.n.sons[i].sym
vals.add((field.name.s, field.position.int))
gDebugInfo.registerEnum(EnumDesc(size: size, owner: owner, id: t.sym.id,
name: t.sym.name.s, values: vals))
of tyProc:
result = getTypeName(m, origTyp, sig)
m.typeCache[sig] = result
var rettype, desc: Rope
genProcParams(m, t, rettype, desc, check, true, true)
if not isImportedType(t):
if t.callConv != ccClosure: # procedure vars may need a closure!
addf(m.s[cfsTypes], "typedef $1_PTR($2, $3) $4;$n",
[rope(CallingConvToStr[t.callConv]), rettype, result, desc])
else:
addf(m.s[cfsTypes], "typedef struct {$n" &
"N_NIMCALL_PTR($2, ClPrc) $3;$n" &
"void* ClEnv;$n} $1;$n",
[result, rettype, desc])
of tySequence:
# we cannot use getTypeForward here because then t would be associated
# with the name of the struct, not with the pointer to the struct:
result = cacheGetType(m.forwTypeCache, sig)
if result == nil:
result = getTypeName(m, origTyp, sig)
if not isImportedType(t):
addf(m.s[cfsForwardTypes], getForwardStructFormat(m),
[structOrUnion(t), result])
m.forwTypeCache[sig] = result
assert(cacheGetType(m.typeCache, sig) == nil)
m.typeCache[sig] = result & "*"
if not isImportedType(t):
if skipTypes(t.sons[0], typedescInst).kind != tyEmpty:
const
cppSeq = "struct $2 : #TGenericSeq {$n"
cSeq = "struct $2 {$n" &
" #TGenericSeq Sup;$n"
appcg(m, m.s[cfsSeqTypes],
(if m.compileToCpp: cppSeq else: cSeq) &
" $1 data[SEQ_DECL_SIZE];$n" &
"};$n", [getTypeDescAux(m, t.sons[0], check), result])
else:
result = rope("TGenericSeq")
add(result, "*")
of tyArray:
var n: BiggestInt = lengthOrd(t)
if n <= 0: n = 1 # make an array of at least one element
result = getTypeName(m, origTyp, sig)
m.typeCache[sig] = result
if not isImportedType(t):
let foo = getTypeDescAux(m, t.sons[1], check)
addf(m.s[cfsTypes], "typedef $1 $2[$3];$n",
[foo, result, rope(n)])
else: addAbiCheck(m, t, result)
of tyObject, tyTuple:
if isImportedCppType(t) and origTyp.kind == tyGenericInst:
# for instantiated templates we do not go through the type cache as the
# the type cache is not aware of 'tyGenericInst'.
let cppName = getTypeName(m, t, sig)
var i = 0
var chunkStart = 0
while i < cppName.data.len:
if cppName.data[i] == '\'':
var chunkEnd = <i
var idx, stars: int
if scanCppGenericSlot(cppName.data, i, idx, stars):
result.add cppName.data.substr(chunkStart, chunkEnd)
chunkStart = i
let typeInSlot = resolveStarsInCppType(origTyp, idx + 1, stars)
if typeInSlot == nil or typeInSlot.kind == tyVoid:
result.add(~"void")
else:
result.add getTypeDescAux(m, typeInSlot, check)
else:
inc i
if chunkStart != 0:
result.add cppName.data.substr(chunkStart)
else:
result = cppName & "<"
for i in 1 .. origTyp.len-2:
if i > 1: result.add(" COMMA ")
result.add(getTypeDescAux(m, origTyp.sons[i], check))
result.add("> ")
# always call for sideeffects:
assert t.kind != tyTuple
discard getRecordDesc(m, t, result, check)
else:
when false:
if t.sym != nil and t.sym.name.s == "KeyValuePair":
if t == origTyp:
echo "wtf: came here"
writeStackTrace()
quit 1
result = cacheGetType(m.forwTypeCache, sig)
if result == nil:
when false:
if t.sym != nil and t.sym.name.s == "KeyValuePair":
# or {sfImportc, sfExportc} * t.sym.flags == {}:
if t.loc.r != nil:
echo t.kind, " ", hashType t
echo origTyp.kind, " ", sig
assert t.loc.r == nil
result = getTypeName(m, origTyp, sig)
m.forwTypeCache[sig] = result
if not isImportedType(t):
addf(m.s[cfsForwardTypes], "/* tyObject: $1 $2 $3 */", [rope typeToString origTyp,
rope t.id, rope m.module.id])
addf(m.s[cfsForwardTypes], getForwardStructFormat(m),
[structOrUnion(t), result])
assert m.forwTypeCache[sig] == result
m.typeCache[sig] = result # always call for sideeffects:
let recdesc = if t.kind != tyTuple: getRecordDesc(m, t, result, check)
else: getTupleDesc(m, t, result, check)
if not isImportedType(t):
add(m.s[cfsTypes], recdesc)
elif tfIncompleteStruct notin t.flags: addAbiCheck(m, t, result)
of tySet:
result = getTypeName(m, t.lastSon, hashType t.lastSon) & "_Set"
m.typeCache[sig] = result
if not isImportedType(t):
let s = int(getSize(t))
case s
of 1, 2, 4, 8: addf(m.s[cfsTypes], "typedef NU$2 $1;$n", [result, rope(s*8)])
else: addf(m.s[cfsTypes], "typedef NU8 $1[$2];$n",
[result, rope(getSize(t))])
of tyGenericInst, tyDistinct, tyOrdinal, tyTypeDesc, tyAlias:
result = getTypeDescAux(m, lastSon(t), check)
else:
internalError("getTypeDescAux(" & $t.kind & ')')
result = nil
# fixes bug #145:
excl(check, t.id)
proc getTypeDesc(m: BModule, typ: PType): Rope =
var check = initIntSet()
result = getTypeDescAux(m, typ, check)
type
TClosureTypeKind = enum
clHalf, clHalfWithEnv, clFull
proc getClosureType(m: BModule, t: PType, kind: TClosureTypeKind): Rope =
assert t.kind == tyProc
var check = initIntSet()
result = getTempName(m)
var rettype, desc: Rope
genProcParams(m, t, rettype, desc, check, declareEnvironment=kind != clHalf)
if not isImportedType(t):
if t.callConv != ccClosure or kind != clFull:
addf(m.s[cfsTypes], "typedef $1_PTR($2, $3) $4;$n",
[rope(CallingConvToStr[t.callConv]), rettype, result, desc])
else:
addf(m.s[cfsTypes], "typedef struct {$n" &
"N_NIMCALL_PTR($2, ClPrc) $3;$n" &
"void* ClEnv;$n} $1;$n",
[result, rettype, desc])
proc finishTypeDescriptions(m: BModule) =
var i = 0
while i < len(m.typeStack):
discard getTypeDesc(m, m.typeStack[i])
inc(i)
template cgDeclFrmt*(s: PSym): string = s.constraint.strVal
proc genProcHeader(m: BModule, prc: PSym): Rope =
var
rettype, params: Rope
genCLineDir(result, prc.info)
# using static is needed for inline procs
if lfExportLib in prc.loc.flags:
if isHeaderFile in m.flags:
result.add "N_LIB_IMPORT "
else:
result.add "N_LIB_EXPORT "
elif prc.typ.callConv == ccInline:
result.add "static "
var check = initIntSet()
fillLoc(prc.loc, locProc, prc.typ, mangleName(m, prc), OnUnknown)
genProcParams(m, prc.typ, rettype, params, check)
# careful here! don't access ``prc.ast`` as that could reload large parts of
# the object graph!
if prc.constraint.isNil:
addf(result, "$1($2, $3)$4",
[rope(CallingConvToStr[prc.typ.callConv]), rettype, prc.loc.r,
params])
else:
result = prc.cgDeclFrmt % [rettype, prc.loc.r, params]
# ------------------ type info generation -------------------------------------
proc genTypeInfo(m: BModule, t: PType): Rope
proc getNimNode(m: BModule): Rope =
result = "$1[$2]" % [m.typeNodesName, rope(m.typeNodes)]
inc(m.typeNodes)
proc genTypeInfoAuxBase(m: BModule; typ, origType: PType; name, base: Rope) =
var nimtypeKind: int
#allocMemTI(m, typ, name)
if isObjLackingTypeField(typ):
nimtypeKind = ord(tyPureObject)
else:
nimtypeKind = ord(typ.kind)
var size: Rope
if tfIncompleteStruct in typ.flags: size = rope"void*"
else: size = getTypeDesc(m, origType)
addf(m.s[cfsTypeInit3],
"$1.size = sizeof($2);$n" & "$1.kind = $3;$n" & "$1.base = $4;$n",
[name, size, rope(nimtypeKind), base])
# compute type flags for GC optimization
var flags = 0
if not containsGarbageCollectedRef(typ): flags = flags or 1
if not canFormAcycle(typ): flags = flags or 2
#else MessageOut("can contain a cycle: " & typeToString(typ))
if flags != 0:
addf(m.s[cfsTypeInit3], "$1.flags = $2;$n", [name, rope(flags)])
if isDefined("nimTypeNames"):
addf(m.s[cfsTypeInit3], "$1.name = $2;$n",
[name, makeCstring typeToString(origType, preferName)])
discard cgsym(m, "TNimType")
addf(m.s[cfsVars], "TNimType $1; /* $2 */$n",
[name, rope(typeToString(typ))])
proc genTypeInfoAux(m: BModule, typ, origType: PType, name: Rope) =
var base: Rope
if sonsLen(typ) > 0 and typ.lastSon != nil:
var x = typ.lastSon
if typ.kind == tyObject: x = x.skipTypes(skipPtrs)
base = genTypeInfo(m, x)
else:
base = rope("0")
genTypeInfoAuxBase(m, typ, origType, name, base)
proc discriminatorTableName(m: BModule, objtype: PType, d: PSym): Rope =
# bugfix: we need to search the type that contains the discriminator:
var objtype = objtype
while lookupInRecord(objtype.n, d.name) == nil:
objtype = objtype.sons[0]
if objtype.sym == nil:
internalError(d.info, "anonymous obj with discriminator")
result = "NimDT_$1_$2" % [rope($hashType(objtype)), rope(d.name.s.mangle)]
proc discriminatorTableDecl(m: BModule, objtype: PType, d: PSym): Rope =
discard cgsym(m, "TNimNode")
var tmp = discriminatorTableName(m, objtype, d)
result = "TNimNode* $1[$2];$n" % [tmp, rope(lengthOrd(d.typ)+1)]
proc genObjectFields(m: BModule, typ, origType: PType, n: PNode, expr: Rope) =
case n.kind
of nkRecList:
var L = sonsLen(n)
if L == 1:
genObjectFields(m, typ, origType, n.sons[0], expr)
elif L > 0:
var tmp = getTempName(m)
addf(m.s[cfsTypeInit1], "static TNimNode* $1[$2];$n", [tmp, rope(L)])
for i in countup(0, L-1):
var tmp2 = getNimNode(m)
addf(m.s[cfsTypeInit3], "$1[$2] = &$3;$n", [tmp, rope(i), tmp2])
genObjectFields(m, typ, origType, n.sons[i], tmp2)
addf(m.s[cfsTypeInit3], "$1.len = $2; $1.kind = 2; $1.sons = &$3[0];$n",
[expr, rope(L), tmp])
else:
addf(m.s[cfsTypeInit3], "$1.len = $2; $1.kind = 2;$n", [expr, rope(L)])
of nkRecCase:
assert(n.sons[0].kind == nkSym)
var field = n.sons[0].sym
var tmp = discriminatorTableName(m, typ, field)
var L = lengthOrd(field.typ)
assert L > 0
if field.loc.r == nil: fillObjectFields(m, typ)
if field.loc.t == nil:
internalError(n.info, "genObjectFields")
addf(m.s[cfsTypeInit3], "$1.kind = 3;$n" &
"$1.offset = offsetof($2, $3);$n" & "$1.typ = $4;$n" &
"$1.name = $5;$n" & "$1.sons = &$6[0];$n" &
"$1.len = $7;$n", [expr, getTypeDesc(m, origType), field.loc.r,
genTypeInfo(m, field.typ),
makeCString(field.name.s),
tmp, rope(L)])
addf(m.s[cfsData], "TNimNode* $1[$2];$n", [tmp, rope(L+1)])
for i in countup(1, sonsLen(n)-1):
var b = n.sons[i] # branch
var tmp2 = getNimNode(m)
genObjectFields(m, typ, origType, lastSon(b), tmp2)
case b.kind
of nkOfBranch:
if sonsLen(b) < 2:
internalError(b.info, "genObjectFields; nkOfBranch broken")
for j in countup(0, sonsLen(b) - 2):
if b.sons[j].kind == nkRange:
var x = int(getOrdValue(b.sons[j].sons[0]))
var y = int(getOrdValue(b.sons[j].sons[1]))
while x <= y:
addf(m.s[cfsTypeInit3], "$1[$2] = &$3;$n", [tmp, rope(x), tmp2])
inc(x)
else:
addf(m.s[cfsTypeInit3], "$1[$2] = &$3;$n",
[tmp, rope(getOrdValue(b.sons[j])), tmp2])
of nkElse:
addf(m.s[cfsTypeInit3], "$1[$2] = &$3;$n",
[tmp, rope(L), tmp2])
else: internalError(n.info, "genObjectFields(nkRecCase)")
of nkSym:
var field = n.sym
if field.bitsize == 0:
if field.loc.r == nil: fillObjectFields(m, typ)
if field.loc.t == nil:
internalError(n.info, "genObjectFields")
addf(m.s[cfsTypeInit3], "$1.kind = 1;$n" &
"$1.offset = offsetof($2, $3);$n" & "$1.typ = $4;$n" &
"$1.name = $5;$n", [expr, getTypeDesc(m, origType),
field.loc.r, genTypeInfo(m, field.typ), makeCString(field.name.s)])
else: internalError(n.info, "genObjectFields")
proc genObjectInfo(m: BModule, typ, origType: PType, name: Rope) =
if typ.kind == tyObject: genTypeInfoAux(m, typ, origType, name)
else: genTypeInfoAuxBase(m, typ, origType, name, rope("0"))
var tmp = getNimNode(m)
if not isImportedCppType(typ):
genObjectFields(m, typ, origType, typ.n, tmp)
addf(m.s[cfsTypeInit3], "$1.node = &$2;$n", [name, tmp])
var t = typ.sons[0]
while t != nil:
t = t.skipTypes(skipPtrs)
t.flags.incl tfObjHasKids
t = t.sons[0]
proc genTupleInfo(m: BModule, typ, origType: PType, name: Rope) =
genTypeInfoAuxBase(m, typ, typ, name, rope("0"))
var expr = getNimNode(m)
var length = sonsLen(typ)
if length > 0:
var tmp = getTempName(m)
addf(m.s[cfsTypeInit1], "static TNimNode* $1[$2];$n", [tmp, rope(length)])
for i in countup(0, length - 1):
var a = typ.sons[i]
var tmp2 = getNimNode(m)
addf(m.s[cfsTypeInit3], "$1[$2] = &$3;$n", [tmp, rope(i), tmp2])
addf(m.s[cfsTypeInit3], "$1.kind = 1;$n" &
"$1.offset = offsetof($2, Field$3);$n" &
"$1.typ = $4;$n" &
"$1.name = \"Field$3\";$n",
[tmp2, getTypeDesc(m, origType), rope(i), genTypeInfo(m, a)])
addf(m.s[cfsTypeInit3], "$1.len = $2; $1.kind = 2; $1.sons = &$3[0];$n",
[expr, rope(length), tmp])
else:
addf(m.s[cfsTypeInit3], "$1.len = $2; $1.kind = 2;$n",
[expr, rope(length)])
addf(m.s[cfsTypeInit3], "$1.node = &$2;$n", [name, expr])
proc genEnumInfo(m: BModule, typ: PType, name: Rope) =
# Type information for enumerations is quite heavy, so we do some
# optimizations here: The ``typ`` field is never set, as it is redundant
# anyway. We generate a cstring array and a loop over it. Exceptional
# positions will be reset after the loop.
genTypeInfoAux(m, typ, typ, name)
var nodePtrs = getTempName(m)
var length = sonsLen(typ.n)
addf(m.s[cfsTypeInit1], "static TNimNode* $1[$2];$n",
[nodePtrs, rope(length)])
var enumNames, specialCases: Rope
var firstNimNode = m.typeNodes
var hasHoles = false
for i in countup(0, length - 1):
assert(typ.n.sons[i].kind == nkSym)
var field = typ.n.sons[i].sym
var elemNode = getNimNode(m)
if field.ast == nil:
# no explicit string literal for the enum field, so use field.name:
add(enumNames, makeCString(field.name.s))
else:
add(enumNames, makeCString(field.ast.strVal))
if i < length - 1: add(enumNames, ", " & tnl)
if field.position != i or tfEnumHasHoles in typ.flags:
addf(specialCases, "$1.offset = $2;$n", [elemNode, rope(field.position)])
hasHoles = true
var enumArray = getTempName(m)
var counter = getTempName(m)
addf(m.s[cfsTypeInit1], "NI $1;$n", [counter])
addf(m.s[cfsTypeInit1], "static char* NIM_CONST $1[$2] = {$n$3};$n",
[enumArray, rope(length), enumNames])
addf(m.s[cfsTypeInit3], "for ($1 = 0; $1 < $2; $1++) {$n" &
"$3[$1+$4].kind = 1;$n" & "$3[$1+$4].offset = $1;$n" &
"$3[$1+$4].name = $5[$1];$n" & "$6[$1] = &$3[$1+$4];$n" & "}$n", [counter,
rope(length), m.typeNodesName, rope(firstNimNode), enumArray, nodePtrs])
add(m.s[cfsTypeInit3], specialCases)
addf(m.s[cfsTypeInit3],
"$1.len = $2; $1.kind = 2; $1.sons = &$3[0];$n$4.node = &$1;$n",
[getNimNode(m), rope(length), nodePtrs, name])
if hasHoles:
# 1 << 2 is {ntfEnumHole}
addf(m.s[cfsTypeInit3], "$1.flags = 1<<2;$n", [name])
proc genSetInfo(m: BModule, typ: PType, name: Rope) =
assert(typ.sons[0] != nil)
genTypeInfoAux(m, typ, typ, name)
var tmp = getNimNode(m)
addf(m.s[cfsTypeInit3], "$1.len = $2; $1.kind = 0;$n" & "$3.node = &$1;$n",
[tmp, rope(firstOrd(typ)), name])
proc genArrayInfo(m: BModule, typ: PType, name: Rope) =
genTypeInfoAuxBase(m, typ, typ, name, genTypeInfo(m, typ.sons[1]))
proc fakeClosureType(owner: PSym): PType =
# we generate the same RTTI as for a tuple[pointer, ref tuple[]]
result = newType(tyTuple, owner)
result.rawAddSon(newType(tyPointer, owner))
var r = newType(tyRef, owner)
r.rawAddSon(newType(tyTuple, owner))
result.rawAddSon(r)
type
TTypeInfoReason = enum ## for what do we need the type info?
tiNew, ## for 'new'
include ccgtrav
proc genDeepCopyProc(m: BModule; s: PSym; result: Rope) =
genProc(m, s)
addf(m.s[cfsTypeInit3], "$1.deepcopy =(void* (N_RAW_NIMCALL*)(void*))$2;$n",
[result, s.loc.r])
proc genTypeInfo(m: BModule, t: PType): Rope =
let origType = t
var t = skipTypes(origType, irrelevantForBackend)
let sig = hashType(origType)
result = m.typeInfoMarker.getOrDefault(sig)
if result != nil:
return "(&".rope & result & ")".rope
result = m.g.typeInfoMarker.getOrDefault(sig)
if result != nil:
discard cgsym(m, "TNimType")
discard cgsym(m, "TNimNode")
addf(m.s[cfsVars], "extern TNimType $1; /* $2 */$n",
[result, rope(typeToString(t))])
return "(&".rope & result & ")".rope
result = "NTI$1" % [rope($sig)]
m.typeInfoMarker[sig] = result
let owner = t.skipTypes(typedescPtrs).owner.getModule
if owner != m.module:
# make sure the type info is created in the owner module
discard genTypeInfo(m.g.modules[owner.position], origType)
# reference the type info as extern here
discard cgsym(m, "TNimType")
discard cgsym(m, "TNimNode")
addf(m.s[cfsVars], "extern TNimType $1; /* $2 */$n",
[result, rope(typeToString(t))])
return "(&".rope & result & ")".rope
m.g.typeInfoMarker[sig] = result
case t.kind
of tyEmpty, tyVoid: result = rope"0"
of tyPointer, tyBool, tyChar, tyCString, tyString, tyInt..tyUInt64, tyVar:
genTypeInfoAuxBase(m, t, t, result, rope"0")
of tyStatic:
if t.n != nil: result = genTypeInfo(m, lastSon t)
else: internalError("genTypeInfo(" & $t.kind & ')')
of tyProc:
if t.callConv != ccClosure:
genTypeInfoAuxBase(m, t, t, result, rope"0")
else:
let x = fakeClosureType(t.owner)
genTupleInfo(m, x, x, result)
of tySequence, tyRef:
genTypeInfoAux(m, t, t, result)
if gSelectedGC >= gcMarkAndSweep:
let markerProc = genTraverseProc(m, origType, sig, tiNew)
addf(m.s[cfsTypeInit3], "$1.marker = $2;$n", [result, markerProc])
of tyPtr, tyRange: genTypeInfoAux(m, t, t, result)
of tyArray: genArrayInfo(m, t, result)
of tySet: genSetInfo(m, t, result)
of tyEnum: genEnumInfo(m, t, result)
of tyObject: genObjectInfo(m, t, origType, result)
of tyTuple:
# if t.n != nil: genObjectInfo(m, t, result)
# else:
# BUGFIX: use consistently RTTI without proper field names; otherwise
# results are not deterministic!
genTupleInfo(m, t, origType, result)
else: internalError("genTypeInfo(" & $t.kind & ')')
if t.deepCopy != nil:
genDeepCopyProc(m, t.deepCopy, result)
elif origType.deepCopy != nil:
genDeepCopyProc(m, origType.deepCopy, result)
result = "(&".rope & result & ")".rope
proc genTypeSection(m: BModule, n: PNode) =
discard