mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-28 17:04:41 +00:00
* Ast no transformation * Add getImplNoTransform to the macros module * progress on delaying transf * Fix methods tranformation * Fix lazy lambdalifting * fix create thread wrapper * transform for lambda lifting * improve getImplTransformed * Fix destructor tests * try to fix nimprof for linux
731 lines
28 KiB
Nim
731 lines
28 KiB
Nim
#
|
|
#
|
|
# The Nim Compiler
|
|
# (c) Copyright 2015 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
# this module folds constants; used by semantic checking phase
|
|
# and evaluation phase
|
|
|
|
import
|
|
strutils, options, ast, astalgo, trees, treetab, nimsets,
|
|
nversion, platform, math, msgs, os, condsyms, idents, renderer, types,
|
|
commands, magicsys, modulegraphs, strtabs, lineinfos
|
|
|
|
proc newIntNodeT*(intVal: BiggestInt, n: PNode; g: ModuleGraph): PNode =
|
|
case skipTypes(n.typ, abstractVarRange).kind
|
|
of tyInt:
|
|
result = newIntNode(nkIntLit, intVal)
|
|
# See bug #6989. 'pred' et al only produce an int literal type if the
|
|
# original type was 'int', not a distinct int etc.
|
|
if n.typ.kind == tyInt:
|
|
result.typ = getIntLitType(g, result)
|
|
else:
|
|
result.typ = n.typ
|
|
# hrm, this is not correct: 1 + high(int) shouldn't produce tyInt64 ...
|
|
#setIntLitType(result)
|
|
of tyChar:
|
|
result = newIntNode(nkCharLit, intVal)
|
|
result.typ = n.typ
|
|
else:
|
|
result = newIntNode(nkIntLit, intVal)
|
|
result.typ = n.typ
|
|
result.info = n.info
|
|
|
|
proc newFloatNodeT*(floatVal: BiggestFloat, n: PNode; g: ModuleGraph): PNode =
|
|
result = newFloatNode(nkFloatLit, floatVal)
|
|
result.typ = n.typ
|
|
result.info = n.info
|
|
|
|
proc newStrNodeT*(strVal: string, n: PNode; g: ModuleGraph): PNode =
|
|
result = newStrNode(nkStrLit, strVal)
|
|
result.typ = n.typ
|
|
result.info = n.info
|
|
|
|
proc getConstExpr*(m: PSym, n: PNode; g: ModuleGraph): PNode
|
|
# evaluates the constant expression or returns nil if it is no constant
|
|
# expression
|
|
proc evalOp*(m: TMagic, n, a, b, c: PNode; g: ModuleGraph): PNode
|
|
|
|
proc checkInRange(conf: ConfigRef; n: PNode, res: BiggestInt): bool =
|
|
if res in firstOrd(conf, n.typ)..lastOrd(conf, n.typ):
|
|
result = true
|
|
|
|
proc foldAdd(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
|
|
let res = a +% b
|
|
if ((res xor a) >= 0'i64 or (res xor b) >= 0'i64) and
|
|
checkInRange(g.config, n, res):
|
|
result = newIntNodeT(res, n, g)
|
|
|
|
proc foldSub*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
|
|
let res = a -% b
|
|
if ((res xor a) >= 0'i64 or (res xor not b) >= 0'i64) and
|
|
checkInRange(g.config, n, res):
|
|
result = newIntNodeT(res, n, g)
|
|
|
|
proc foldUnarySub(a: BiggestInt, n: PNode, g: ModuleGraph): PNode =
|
|
if a != firstOrd(g.config, n.typ):
|
|
result = newIntNodeT(-a, n, g)
|
|
|
|
proc foldAbs*(a: BiggestInt, n: PNode; g: ModuleGraph): PNode =
|
|
if a != firstOrd(g.config, n.typ):
|
|
result = newIntNodeT(abs(a), n, g)
|
|
|
|
proc foldMod*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
|
|
if b != 0'i64:
|
|
result = newIntNodeT(a mod b, n, g)
|
|
|
|
proc foldModU*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
|
|
if b != 0'i64:
|
|
result = newIntNodeT(a %% b, n, g)
|
|
|
|
proc foldDiv*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
|
|
if b != 0'i64 and (a != firstOrd(g.config, n.typ) or b != -1'i64):
|
|
result = newIntNodeT(a div b, n, g)
|
|
|
|
proc foldDivU*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
|
|
if b != 0'i64:
|
|
result = newIntNodeT(a /% b, n, g)
|
|
|
|
proc foldMul*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
|
|
let res = a *% b
|
|
let floatProd = toBiggestFloat(a) * toBiggestFloat(b)
|
|
let resAsFloat = toBiggestFloat(res)
|
|
|
|
# Fast path for normal case: small multiplicands, and no info
|
|
# is lost in either method.
|
|
if resAsFloat == floatProd and checkInRange(g.config, n, res):
|
|
return newIntNodeT(res, n, g)
|
|
|
|
# Somebody somewhere lost info. Close enough, or way off? Note
|
|
# that a != 0 and b != 0 (else resAsFloat == floatProd == 0).
|
|
# The difference either is or isn't significant compared to the
|
|
# true value (of which floatProd is a good approximation).
|
|
|
|
# abs(diff)/abs(prod) <= 1/32 iff
|
|
# 32 * abs(diff) <= abs(prod) -- 5 good bits is "close enough"
|
|
if 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd) and
|
|
checkInRange(g.config, n, res):
|
|
return newIntNodeT(res, n, g)
|
|
|
|
proc ordinalValToString*(a: PNode; g: ModuleGraph): string =
|
|
# because $ has the param ordinal[T], `a` is not necessarily an enum, but an
|
|
# ordinal
|
|
var x = getInt(a)
|
|
|
|
var t = skipTypes(a.typ, abstractRange)
|
|
case t.kind
|
|
of tyChar:
|
|
result = $chr(int(x) and 0xff)
|
|
of tyEnum:
|
|
var n = t.n
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
if n.sons[i].kind != nkSym: internalError(g.config, a.info, "ordinalValToString")
|
|
var field = n.sons[i].sym
|
|
if field.position == x:
|
|
if field.ast == nil:
|
|
return field.name.s
|
|
else:
|
|
return field.ast.strVal
|
|
internalError(g.config, a.info, "no symbol for ordinal value: " & $x)
|
|
else:
|
|
result = $x
|
|
|
|
proc isFloatRange(t: PType): bool {.inline.} =
|
|
result = t.kind == tyRange and t.sons[0].kind in {tyFloat..tyFloat128}
|
|
|
|
proc isIntRange(t: PType): bool {.inline.} =
|
|
result = t.kind == tyRange and t.sons[0].kind in {
|
|
tyInt..tyInt64, tyUInt8..tyUInt32}
|
|
|
|
proc pickIntRange(a, b: PType): PType =
|
|
if isIntRange(a): result = a
|
|
elif isIntRange(b): result = b
|
|
else: result = a
|
|
|
|
proc isIntRangeOrLit(t: PType): bool =
|
|
result = isIntRange(t) or isIntLit(t)
|
|
|
|
proc makeRange(typ: PType, first, last: BiggestInt; g: ModuleGraph): PType =
|
|
let minA = min(first, last)
|
|
let maxA = max(first, last)
|
|
let lowerNode = newIntNode(nkIntLit, minA)
|
|
if typ.kind == tyInt and minA == maxA:
|
|
result = getIntLitType(g, lowerNode)
|
|
elif typ.kind in {tyUint, tyUInt64}:
|
|
# these are not ordinal types, so you get no subrange type for these:
|
|
result = typ
|
|
else:
|
|
var n = newNode(nkRange)
|
|
addSon(n, lowerNode)
|
|
addSon(n, newIntNode(nkIntLit, maxA))
|
|
result = newType(tyRange, typ.owner)
|
|
result.n = n
|
|
addSonSkipIntLit(result, skipTypes(typ, {tyRange}))
|
|
|
|
proc makeRangeF(typ: PType, first, last: BiggestFloat; g: ModuleGraph): PType =
|
|
var n = newNode(nkRange)
|
|
addSon(n, newFloatNode(nkFloatLit, min(first.float, last.float)))
|
|
addSon(n, newFloatNode(nkFloatLit, max(first.float, last.float)))
|
|
result = newType(tyRange, typ.owner)
|
|
result.n = n
|
|
addSonSkipIntLit(result, skipTypes(typ, {tyRange}))
|
|
|
|
proc fitLiteral(c: ConfigRef, n: PNode): PNode =
|
|
# Trim the literal value in order to make it fit in the destination type
|
|
if n == nil:
|
|
# `n` may be nil if the overflow check kicks in
|
|
return
|
|
|
|
doAssert n.kind in {nkIntLit, nkCharLit}
|
|
|
|
result = n
|
|
|
|
let typ = n.typ.skipTypes(abstractRange)
|
|
if typ.kind in tyUInt..tyUint32:
|
|
result.intVal = result.intVal and lastOrd(c, typ, fixedUnsigned=true)
|
|
|
|
proc evalOp(m: TMagic, n, a, b, c: PNode; g: ModuleGraph): PNode =
|
|
template doAndFit(op: untyped): untyped =
|
|
# Implements wrap-around behaviour for unsigned types
|
|
fitLiteral(g.config, op)
|
|
# b and c may be nil
|
|
result = nil
|
|
case m
|
|
of mOrd: result = newIntNodeT(getOrdValue(a), n, g)
|
|
of mChr: result = newIntNodeT(getInt(a), n, g)
|
|
of mUnaryMinusI, mUnaryMinusI64: result = foldUnarySub(getInt(a), n, g)
|
|
of mUnaryMinusF64: result = newFloatNodeT(- getFloat(a), n, g)
|
|
of mNot: result = newIntNodeT(1 - getInt(a), n, g)
|
|
of mCard: result = newIntNodeT(nimsets.cardSet(g.config, a), n, g)
|
|
of mBitnotI: result = doAndFit(newIntNodeT(not getInt(a), n, g))
|
|
of mLengthArray: result = newIntNodeT(lengthOrd(g.config, a.typ), n, g)
|
|
of mLengthSeq, mLengthOpenArray, mXLenSeq, mLengthStr, mXLenStr:
|
|
if a.kind == nkNilLit:
|
|
result = newIntNodeT(0, n, g)
|
|
elif a.kind in {nkStrLit..nkTripleStrLit}:
|
|
result = newIntNodeT(len a.strVal, n, g)
|
|
else:
|
|
result = newIntNodeT(sonsLen(a), n, g)
|
|
of mUnaryPlusI, mUnaryPlusF64: result = a # throw `+` away
|
|
of mToFloat, mToBiggestFloat:
|
|
result = newFloatNodeT(toFloat(int(getInt(a))), n, g)
|
|
# XXX: Hides overflow/underflow
|
|
of mToInt, mToBiggestInt: result = newIntNodeT(system.toInt(getFloat(a)), n, g)
|
|
of mAbsF64: result = newFloatNodeT(abs(getFloat(a)), n, g)
|
|
of mAbsI: result = foldAbs(getInt(a), n, g)
|
|
of mZe8ToI, mZe8ToI64, mZe16ToI, mZe16ToI64, mZe32ToI64, mZeIToI64:
|
|
# byte(-128) = 1...1..1000_0000'64 --> 0...0..1000_0000'64
|
|
result = newIntNodeT(getInt(a) and (`shl`(1, getSize(g.config, a.typ) * 8) - 1), n, g)
|
|
of mToU8: result = newIntNodeT(getInt(a) and 0x000000FF, n, g)
|
|
of mToU16: result = newIntNodeT(getInt(a) and 0x0000FFFF, n, g)
|
|
of mToU32: result = newIntNodeT(getInt(a) and 0x00000000FFFFFFFF'i64, n, g)
|
|
of mUnaryLt: result = doAndFit(foldSub(getOrdValue(a), 1, n, g))
|
|
of mSucc: result = doAndFit(foldAdd(getOrdValue(a), getInt(b), n, g))
|
|
of mPred: result = doAndFit(foldSub(getOrdValue(a), getInt(b), n, g))
|
|
of mAddI: result = foldAdd(getInt(a), getInt(b), n, g)
|
|
of mSubI: result = foldSub(getInt(a), getInt(b), n, g)
|
|
of mMulI: result = foldMul(getInt(a), getInt(b), n, g)
|
|
of mMinI:
|
|
if getInt(a) > getInt(b): result = newIntNodeT(getInt(b), n, g)
|
|
else: result = newIntNodeT(getInt(a), n, g)
|
|
of mMaxI:
|
|
if getInt(a) > getInt(b): result = newIntNodeT(getInt(a), n, g)
|
|
else: result = newIntNodeT(getInt(b), n, g)
|
|
of mShlI:
|
|
case skipTypes(n.typ, abstractRange).kind
|
|
of tyInt8: result = newIntNodeT(int8(getInt(a)) shl int8(getInt(b)), n, g)
|
|
of tyInt16: result = newIntNodeT(int16(getInt(a)) shl int16(getInt(b)), n, g)
|
|
of tyInt32: result = newIntNodeT(int32(getInt(a)) shl int32(getInt(b)), n, g)
|
|
of tyInt64, tyInt:
|
|
result = newIntNodeT(`shl`(getInt(a), getInt(b)), n, g)
|
|
of tyUInt..tyUInt64:
|
|
result = doAndFit(newIntNodeT(`shl`(getInt(a), getInt(b)), n, g))
|
|
else: internalError(g.config, n.info, "constant folding for shl")
|
|
of mShrI:
|
|
case skipTypes(n.typ, abstractRange).kind
|
|
of tyInt8: result = newIntNodeT(int8(getInt(a)) shr int8(getInt(b)), n, g)
|
|
of tyInt16: result = newIntNodeT(int16(getInt(a)) shr int16(getInt(b)), n, g)
|
|
of tyInt32: result = newIntNodeT(int32(getInt(a)) shr int32(getInt(b)), n, g)
|
|
of tyInt64, tyInt, tyUInt..tyUInt64:
|
|
result = newIntNodeT(`shr`(getInt(a), getInt(b)), n, g)
|
|
else: internalError(g.config, n.info, "constant folding for shr")
|
|
of mAshrI:
|
|
case skipTypes(n.typ, abstractRange).kind
|
|
of tyInt8: result = newIntNodeT(ashr(int8(getInt(a)), int8(getInt(b))), n, g)
|
|
of tyInt16: result = newIntNodeT(ashr(int16(getInt(a)), int16(getInt(b))), n, g)
|
|
of tyInt32: result = newIntNodeT(ashr(int32(getInt(a)), int32(getInt(b))), n, g)
|
|
of tyInt64, tyInt:
|
|
result = newIntNodeT(ashr(getInt(a), getInt(b)), n, g)
|
|
else: internalError(g.config, n.info, "constant folding for ashr")
|
|
of mDivI: result = foldDiv(getInt(a), getInt(b), n, g)
|
|
of mModI: result = foldMod(getInt(a), getInt(b), n, g)
|
|
of mAddF64: result = newFloatNodeT(getFloat(a) + getFloat(b), n, g)
|
|
of mSubF64: result = newFloatNodeT(getFloat(a) - getFloat(b), n, g)
|
|
of mMulF64: result = newFloatNodeT(getFloat(a) * getFloat(b), n, g)
|
|
of mDivF64:
|
|
if getFloat(b) == 0.0:
|
|
if getFloat(a) == 0.0: result = newFloatNodeT(NaN, n, g)
|
|
elif getFloat(b).classify == fcNegZero: result = newFloatNodeT(-Inf, n, g)
|
|
else: result = newFloatNodeT(Inf, n, g)
|
|
else:
|
|
result = newFloatNodeT(getFloat(a) / getFloat(b), n, g)
|
|
of mMaxF64:
|
|
if getFloat(a) > getFloat(b): result = newFloatNodeT(getFloat(a), n, g)
|
|
else: result = newFloatNodeT(getFloat(b), n, g)
|
|
of mMinF64:
|
|
if getFloat(a) > getFloat(b): result = newFloatNodeT(getFloat(b), n, g)
|
|
else: result = newFloatNodeT(getFloat(a), n, g)
|
|
of mIsNil: result = newIntNodeT(ord(a.kind == nkNilLit), n, g)
|
|
of mLtI, mLtB, mLtEnum, mLtCh:
|
|
result = newIntNodeT(ord(getOrdValue(a) < getOrdValue(b)), n, g)
|
|
of mLeI, mLeB, mLeEnum, mLeCh:
|
|
result = newIntNodeT(ord(getOrdValue(a) <= getOrdValue(b)), n, g)
|
|
of mEqI, mEqB, mEqEnum, mEqCh:
|
|
result = newIntNodeT(ord(getOrdValue(a) == getOrdValue(b)), n, g)
|
|
of mLtF64: result = newIntNodeT(ord(getFloat(a) < getFloat(b)), n, g)
|
|
of mLeF64: result = newIntNodeT(ord(getFloat(a) <= getFloat(b)), n, g)
|
|
of mEqF64: result = newIntNodeT(ord(getFloat(a) == getFloat(b)), n, g)
|
|
of mLtStr: result = newIntNodeT(ord(getStr(a) < getStr(b)), n, g)
|
|
of mLeStr: result = newIntNodeT(ord(getStr(a) <= getStr(b)), n, g)
|
|
of mEqStr: result = newIntNodeT(ord(getStr(a) == getStr(b)), n, g)
|
|
of mLtU, mLtU64:
|
|
result = newIntNodeT(ord(`<%`(getOrdValue(a), getOrdValue(b))), n, g)
|
|
of mLeU, mLeU64:
|
|
result = newIntNodeT(ord(`<=%`(getOrdValue(a), getOrdValue(b))), n, g)
|
|
of mBitandI, mAnd: result = doAndFit(newIntNodeT(a.getInt and b.getInt, n, g))
|
|
of mBitorI, mOr: result = doAndFit(newIntNodeT(getInt(a) or getInt(b), n, g))
|
|
of mBitxorI, mXor: result = doAndFit(newIntNodeT(a.getInt xor b.getInt, n, g))
|
|
of mAddU: result = doAndFit(newIntNodeT(`+%`(getInt(a), getInt(b)), n, g))
|
|
of mSubU: result = doAndFit(newIntNodeT(`-%`(getInt(a), getInt(b)), n, g))
|
|
of mMulU: result = doAndFit(newIntNodeT(`*%`(getInt(a), getInt(b)), n, g))
|
|
of mModU: result = doAndFit(foldModU(getInt(a), getInt(b), n, g))
|
|
of mDivU: result = doAndFit(foldDivU(getInt(a), getInt(b), n, g))
|
|
of mLeSet: result = newIntNodeT(ord(containsSets(g.config, a, b)), n, g)
|
|
of mEqSet: result = newIntNodeT(ord(equalSets(g.config, a, b)), n, g)
|
|
of mLtSet:
|
|
result = newIntNodeT(ord(containsSets(g.config, a, b) and not equalSets(g.config, a, b)), n, g)
|
|
of mMulSet:
|
|
result = nimsets.intersectSets(g.config, a, b)
|
|
result.info = n.info
|
|
of mPlusSet:
|
|
result = nimsets.unionSets(g.config, a, b)
|
|
result.info = n.info
|
|
of mMinusSet:
|
|
result = nimsets.diffSets(g.config, a, b)
|
|
result.info = n.info
|
|
of mSymDiffSet:
|
|
result = nimsets.symdiffSets(g.config, a, b)
|
|
result.info = n.info
|
|
of mConStrStr: result = newStrNodeT(getStrOrChar(a) & getStrOrChar(b), n, g)
|
|
of mInSet: result = newIntNodeT(ord(inSet(a, b)), n, g)
|
|
of mRepr:
|
|
# BUGFIX: we cannot eval mRepr here for reasons that I forgot.
|
|
discard
|
|
of mIntToStr, mInt64ToStr: result = newStrNodeT($(getOrdValue(a)), n, g)
|
|
of mBoolToStr:
|
|
if getOrdValue(a) == 0: result = newStrNodeT("false", n, g)
|
|
else: result = newStrNodeT("true", n, g)
|
|
of mCopyStr: result = newStrNodeT(substr(getStr(a), int(getOrdValue(b))), n, g)
|
|
of mCopyStrLast:
|
|
result = newStrNodeT(substr(getStr(a), int(getOrdValue(b)),
|
|
int(getOrdValue(c))), n, g)
|
|
of mFloatToStr: result = newStrNodeT($getFloat(a), n, g)
|
|
of mCStrToStr, mCharToStr:
|
|
if a.kind == nkBracket:
|
|
var s = ""
|
|
for b in a.sons:
|
|
s.add b.getStrOrChar
|
|
result = newStrNodeT(s, n, g)
|
|
else:
|
|
result = newStrNodeT(getStrOrChar(a), n, g)
|
|
of mStrToStr: result = newStrNodeT(getStrOrChar(a), n, g)
|
|
of mEnumToStr: result = newStrNodeT(ordinalValToString(a, g), n, g)
|
|
of mArrToSeq:
|
|
result = copyTree(a)
|
|
result.typ = n.typ
|
|
of mCompileOption:
|
|
result = newIntNodeT(ord(commands.testCompileOption(g.config, a.getStr, n.info)), n, g)
|
|
of mCompileOptionArg:
|
|
result = newIntNodeT(ord(
|
|
testCompileOptionArg(g.config, getStr(a), getStr(b), n.info)), n, g)
|
|
of mEqProc:
|
|
result = newIntNodeT(ord(
|
|
exprStructuralEquivalent(a, b, strictSymEquality=true)), n, g)
|
|
else: discard
|
|
|
|
proc getConstIfExpr(c: PSym, n: PNode; g: ModuleGraph): PNode =
|
|
result = nil
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
var it = n.sons[i]
|
|
if it.len == 2:
|
|
var e = getConstExpr(c, it.sons[0], g)
|
|
if e == nil: return nil
|
|
if getOrdValue(e) != 0:
|
|
if result == nil:
|
|
result = getConstExpr(c, it.sons[1], g)
|
|
if result == nil: return
|
|
elif it.len == 1:
|
|
if result == nil: result = getConstExpr(c, it.sons[0], g)
|
|
else: internalError(g.config, it.info, "getConstIfExpr()")
|
|
|
|
proc leValueConv*(a, b: PNode): bool =
|
|
result = false
|
|
case a.kind
|
|
of nkCharLit..nkUInt64Lit:
|
|
case b.kind
|
|
of nkCharLit..nkUInt64Lit: result = a.intVal <= b.intVal
|
|
of nkFloatLit..nkFloat128Lit: result = a.intVal <= round(b.floatVal).int
|
|
else: result = false #internalError(a.info, "leValueConv")
|
|
of nkFloatLit..nkFloat128Lit:
|
|
case b.kind
|
|
of nkFloatLit..nkFloat128Lit: result = a.floatVal <= b.floatVal
|
|
of nkCharLit..nkUInt64Lit: result = a.floatVal <= toFloat(int(b.intVal))
|
|
else: result = false # internalError(a.info, "leValueConv")
|
|
else: result = false # internalError(a.info, "leValueConv")
|
|
|
|
proc magicCall(m: PSym, n: PNode; g: ModuleGraph): PNode =
|
|
if sonsLen(n) <= 1: return
|
|
|
|
var s = n.sons[0].sym
|
|
var a = getConstExpr(m, n.sons[1], g)
|
|
var b, c: PNode
|
|
if a == nil: return
|
|
if sonsLen(n) > 2:
|
|
b = getConstExpr(m, n.sons[2], g)
|
|
if b == nil: return
|
|
if sonsLen(n) > 3:
|
|
c = getConstExpr(m, n.sons[3], g)
|
|
if c == nil: return
|
|
result = evalOp(s.magic, n, a, b, c, g)
|
|
|
|
proc getAppType(n: PNode; g: ModuleGraph): PNode =
|
|
if g.config.globalOptions.contains(optGenDynLib):
|
|
result = newStrNodeT("lib", n, g)
|
|
elif g.config.globalOptions.contains(optGenStaticLib):
|
|
result = newStrNodeT("staticlib", n, g)
|
|
elif g.config.globalOptions.contains(optGenGuiApp):
|
|
result = newStrNodeT("gui", n, g)
|
|
else:
|
|
result = newStrNodeT("console", n, g)
|
|
|
|
proc rangeCheck(n: PNode, value: BiggestInt; g: ModuleGraph) =
|
|
if tfUncheckedArray notin n.typ.flags:
|
|
var err = false
|
|
if n.typ.skipTypes({tyRange}).kind in {tyUInt..tyUInt64}:
|
|
err = value <% firstOrd(g.config, n.typ) or value >% lastOrd(g.config, n.typ, fixedUnsigned=true)
|
|
else:
|
|
err = value < firstOrd(g.config, n.typ) or value > lastOrd(g.config, n.typ)
|
|
if err:
|
|
localError(g.config, n.info, "cannot convert " & $value &
|
|
" to " & typeToString(n.typ))
|
|
|
|
proc foldConv(n, a: PNode; g: ModuleGraph; check = false): PNode =
|
|
let dstTyp = skipTypes(n.typ, abstractRange)
|
|
let srcTyp = skipTypes(a.typ, abstractRange)
|
|
|
|
# XXX range checks?
|
|
case dstTyp.kind
|
|
of tyInt..tyInt64, tyUint..tyUInt64:
|
|
case srcTyp.kind
|
|
of tyFloat..tyFloat64:
|
|
result = newIntNodeT(int(getFloat(a)), n, g)
|
|
of tyChar:
|
|
result = newIntNodeT(getOrdValue(a), n, g)
|
|
of tyUInt..tyUInt64, tyInt..tyInt64:
|
|
let toSigned = dstTyp.kind in tyInt..tyInt64
|
|
var val = a.getOrdValue
|
|
|
|
if dstTyp.kind in {tyInt, tyInt64, tyUint, tyUInt64}:
|
|
# No narrowing needed
|
|
discard
|
|
elif dstTyp.kind in {tyInt..tyInt64}:
|
|
# Signed type: Overflow check (if requested) and conversion
|
|
if check: rangeCheck(n, val, g)
|
|
let mask = (`shl`(1, getSize(g.config, dstTyp) * 8) - 1)
|
|
let valSign = val < 0
|
|
val = abs(val) and mask
|
|
if valSign: val = -val
|
|
else:
|
|
# Unsigned type: Conversion
|
|
let mask = (`shl`(1, getSize(g.config, dstTyp) * 8) - 1)
|
|
val = val and mask
|
|
|
|
result = newIntNodeT(val, n, g)
|
|
else:
|
|
result = a
|
|
result.typ = n.typ
|
|
if check and result.kind in {nkCharLit..nkUInt64Lit}:
|
|
rangeCheck(n, result.intVal, g)
|
|
of tyFloat..tyFloat64:
|
|
case srcTyp.kind
|
|
of tyInt..tyInt64, tyEnum, tyBool, tyChar:
|
|
result = newFloatNodeT(toBiggestFloat(getOrdValue(a)), n, g)
|
|
else:
|
|
result = a
|
|
result.typ = n.typ
|
|
of tyOpenArray, tyVarargs, tyProc:
|
|
discard
|
|
else:
|
|
result = a
|
|
result.typ = n.typ
|
|
|
|
proc getArrayConstr(m: PSym, n: PNode; g: ModuleGraph): PNode =
|
|
if n.kind == nkBracket:
|
|
result = n
|
|
else:
|
|
result = getConstExpr(m, n, g)
|
|
if result == nil: result = n
|
|
|
|
proc foldArrayAccess(m: PSym, n: PNode; g: ModuleGraph): PNode =
|
|
var x = getConstExpr(m, n.sons[0], g)
|
|
if x == nil or x.typ.skipTypes({tyGenericInst, tyAlias, tySink}).kind == tyTypeDesc:
|
|
return
|
|
|
|
var y = getConstExpr(m, n.sons[1], g)
|
|
if y == nil: return
|
|
|
|
var idx = getOrdValue(y)
|
|
case x.kind
|
|
of nkPar, nkTupleConstr:
|
|
if idx >= 0 and idx < sonsLen(x):
|
|
result = x.sons[int(idx)]
|
|
if result.kind == nkExprColonExpr: result = result.sons[1]
|
|
else:
|
|
localError(g.config, n.info, "index out of bounds: " & $n)
|
|
of nkBracket:
|
|
idx = idx - firstOrd(g.config, x.typ)
|
|
if idx >= 0 and idx < x.len: result = x.sons[int(idx)]
|
|
else: localError(g.config, n.info, "index out of bounds: " & $n)
|
|
of nkStrLit..nkTripleStrLit:
|
|
result = newNodeIT(nkCharLit, x.info, n.typ)
|
|
if idx >= 0 and idx < len(x.strVal):
|
|
result.intVal = ord(x.strVal[int(idx)])
|
|
elif idx == len(x.strVal) and optLaxStrings in g.config.options:
|
|
discard
|
|
else:
|
|
localError(g.config, n.info, "index out of bounds: " & $n)
|
|
else: discard
|
|
|
|
proc foldFieldAccess(m: PSym, n: PNode; g: ModuleGraph): PNode =
|
|
# a real field access; proc calls have already been transformed
|
|
var x = getConstExpr(m, n.sons[0], g)
|
|
if x == nil or x.kind notin {nkObjConstr, nkPar, nkTupleConstr}: return
|
|
|
|
var field = n.sons[1].sym
|
|
for i in countup(ord(x.kind == nkObjConstr), sonsLen(x) - 1):
|
|
var it = x.sons[i]
|
|
if it.kind != nkExprColonExpr:
|
|
# lookup per index:
|
|
result = x.sons[field.position]
|
|
if result.kind == nkExprColonExpr: result = result.sons[1]
|
|
return
|
|
if it.sons[0].sym.name.id == field.name.id:
|
|
result = x.sons[i].sons[1]
|
|
return
|
|
localError(g.config, n.info, "field not found: " & field.name.s)
|
|
|
|
proc foldConStrStr(m: PSym, n: PNode; g: ModuleGraph): PNode =
|
|
result = newNodeIT(nkStrLit, n.info, n.typ)
|
|
result.strVal = ""
|
|
for i in countup(1, sonsLen(n) - 1):
|
|
let a = getConstExpr(m, n.sons[i], g)
|
|
if a == nil: return nil
|
|
result.strVal.add(getStrOrChar(a))
|
|
|
|
proc newSymNodeTypeDesc*(s: PSym; info: TLineInfo): PNode =
|
|
result = newSymNode(s, info)
|
|
if s.typ.kind != tyTypeDesc:
|
|
result.typ = newType(tyTypeDesc, s.owner)
|
|
result.typ.addSonSkipIntLit(s.typ)
|
|
else:
|
|
result.typ = s.typ
|
|
|
|
proc getConstExpr(m: PSym, n: PNode; g: ModuleGraph): PNode =
|
|
result = nil
|
|
case n.kind
|
|
of nkSym:
|
|
var s = n.sym
|
|
case s.kind
|
|
of skEnumField:
|
|
result = newIntNodeT(s.position, n, g)
|
|
of skConst:
|
|
case s.magic
|
|
of mIsMainModule: result = newIntNodeT(ord(sfMainModule in m.flags), n, g)
|
|
of mCompileDate: result = newStrNodeT(getDateStr(), n, g)
|
|
of mCompileTime: result = newStrNodeT(getClockStr(), n, g)
|
|
of mCpuEndian: result = newIntNodeT(ord(CPU[g.config.target.targetCPU].endian), n, g)
|
|
of mHostOS: result = newStrNodeT(toLowerAscii(platform.OS[g.config.target.targetOS].name), n, g)
|
|
of mHostCPU: result = newStrNodeT(platform.CPU[g.config.target.targetCPU].name.toLowerAscii, n, g)
|
|
of mBuildOS: result = newStrNodeT(toLowerAscii(platform.OS[g.config.target.hostOS].name), n, g)
|
|
of mBuildCPU: result = newStrNodeT(platform.CPU[g.config.target.hostCPU].name.toLowerAscii, n, g)
|
|
of mAppType: result = getAppType(n, g)
|
|
of mNaN: result = newFloatNodeT(NaN, n, g)
|
|
of mInf: result = newFloatNodeT(Inf, n, g)
|
|
of mNegInf: result = newFloatNodeT(NegInf, n, g)
|
|
of mIntDefine:
|
|
if isDefined(g.config, s.name.s):
|
|
try:
|
|
result = newIntNodeT(g.config.symbols[s.name.s].parseInt, n, g)
|
|
except ValueError:
|
|
localError(g.config, n.info, "expression is not an integer literal")
|
|
of mStrDefine:
|
|
if isDefined(g.config, s.name.s):
|
|
result = newStrNodeT(g.config.symbols[s.name.s], n, g)
|
|
else:
|
|
result = copyTree(s.ast)
|
|
of skProc, skFunc, skMethod:
|
|
result = n
|
|
of skParam:
|
|
if s.typ != nil and s.typ.kind == tyTypeDesc:
|
|
result = newSymNodeTypeDesc(s, n.info)
|
|
of skType:
|
|
# XXX gensym'ed symbols can come here and cannot be resolved. This is
|
|
# dirty, but correct.
|
|
if s.typ != nil:
|
|
result = newSymNodeTypeDesc(s, n.info)
|
|
of skGenericParam:
|
|
if s.typ.kind == tyStatic:
|
|
if s.typ.n != nil and tfUnresolved notin s.typ.flags:
|
|
result = s.typ.n
|
|
result.typ = s.typ.base
|
|
elif s.typ.isIntLit:
|
|
result = s.typ.n
|
|
else:
|
|
result = newSymNodeTypeDesc(s, n.info)
|
|
else: discard
|
|
of nkCharLit..nkNilLit:
|
|
result = copyNode(n)
|
|
of nkIfExpr:
|
|
result = getConstIfExpr(m, n, g)
|
|
of nkCallKinds:
|
|
if n.sons[0].kind != nkSym: return
|
|
var s = n.sons[0].sym
|
|
if s.kind != skProc and s.kind != skFunc: return
|
|
try:
|
|
case s.magic
|
|
of mNone:
|
|
# If it has no sideEffect, it should be evaluated. But not here.
|
|
return
|
|
of mLow:
|
|
result = newIntNodeT(firstOrd(g.config, n.sons[1].typ), n, g)
|
|
of mHigh:
|
|
if skipTypes(n.sons[1].typ, abstractVar+{tyUserTypeClassInst}).kind notin
|
|
{tySequence, tyString, tyCString, tyOpenArray, tyVarargs}:
|
|
result = newIntNodeT(lastOrd(g.config, skipTypes(n[1].typ, abstractVar)), n, g)
|
|
else:
|
|
var a = getArrayConstr(m, n.sons[1], g)
|
|
if a.kind == nkBracket:
|
|
# we can optimize it away:
|
|
result = newIntNodeT(sonsLen(a)-1, n, g)
|
|
of mLengthOpenArray:
|
|
var a = getArrayConstr(m, n.sons[1], g)
|
|
if a.kind == nkBracket:
|
|
# we can optimize it away! This fixes the bug ``len(134)``.
|
|
result = newIntNodeT(sonsLen(a), n, g)
|
|
else:
|
|
result = magicCall(m, n, g)
|
|
of mLengthArray:
|
|
# It doesn't matter if the argument is const or not for mLengthArray.
|
|
# This fixes bug #544.
|
|
result = newIntNodeT(lengthOrd(g.config, n.sons[1].typ), n, g)
|
|
of mAstToStr:
|
|
result = newStrNodeT(renderTree(n[1], {renderNoComments}), n, g)
|
|
of mConStrStr:
|
|
result = foldConStrStr(m, n, g)
|
|
of mIs:
|
|
# The only kind of mIs node that comes here is one depending on some
|
|
# generic parameter and that's (hopefully) handled at instantiation time
|
|
discard
|
|
else:
|
|
result = magicCall(m, n, g)
|
|
except OverflowError:
|
|
localError(g.config, n.info, "over- or underflow")
|
|
except DivByZeroError:
|
|
localError(g.config, n.info, "division by zero")
|
|
of nkAddr:
|
|
var a = getConstExpr(m, n.sons[0], g)
|
|
if a != nil:
|
|
result = n
|
|
n.sons[0] = a
|
|
of nkBracket:
|
|
result = copyTree(n)
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
var a = getConstExpr(m, n.sons[i], g)
|
|
if a == nil: return nil
|
|
result.sons[i] = a
|
|
incl(result.flags, nfAllConst)
|
|
of nkRange:
|
|
var a = getConstExpr(m, n.sons[0], g)
|
|
if a == nil: return
|
|
var b = getConstExpr(m, n.sons[1], g)
|
|
if b == nil: return
|
|
result = copyNode(n)
|
|
addSon(result, a)
|
|
addSon(result, b)
|
|
of nkCurly:
|
|
result = copyTree(n)
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
var a = getConstExpr(m, n.sons[i], g)
|
|
if a == nil: return nil
|
|
result.sons[i] = a
|
|
incl(result.flags, nfAllConst)
|
|
#of nkObjConstr:
|
|
# result = copyTree(n)
|
|
# for i in countup(1, sonsLen(n) - 1):
|
|
# var a = getConstExpr(m, n.sons[i].sons[1])
|
|
# if a == nil: return nil
|
|
# result.sons[i].sons[1] = a
|
|
# incl(result.flags, nfAllConst)
|
|
of nkPar, nkTupleConstr:
|
|
# tuple constructor
|
|
result = copyTree(n)
|
|
if (sonsLen(n) > 0) and (n.sons[0].kind == nkExprColonExpr):
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
var a = getConstExpr(m, n.sons[i].sons[1], g)
|
|
if a == nil: return nil
|
|
result.sons[i].sons[1] = a
|
|
else:
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
var a = getConstExpr(m, n.sons[i], g)
|
|
if a == nil: return nil
|
|
result.sons[i] = a
|
|
incl(result.flags, nfAllConst)
|
|
of nkChckRangeF, nkChckRange64, nkChckRange:
|
|
var a = getConstExpr(m, n.sons[0], g)
|
|
if a == nil: return
|
|
if leValueConv(n.sons[1], a) and leValueConv(a, n.sons[2]):
|
|
result = a # a <= x and x <= b
|
|
result.typ = n.typ
|
|
else:
|
|
localError(g.config, n.info,
|
|
"conversion from $1 to $2 is invalid" %
|
|
[typeToString(n.sons[0].typ), typeToString(n.typ)])
|
|
of nkStringToCString, nkCStringToString:
|
|
var a = getConstExpr(m, n.sons[0], g)
|
|
if a == nil: return
|
|
result = a
|
|
result.typ = n.typ
|
|
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
|
|
var a = getConstExpr(m, n.sons[1], g)
|
|
if a == nil: return
|
|
# XXX: we should enable `check` for other conversion types too
|
|
result = foldConv(n, a, g, check=n.kind == nkHiddenSubConv)
|
|
of nkCast:
|
|
var a = getConstExpr(m, n.sons[1], g)
|
|
if a == nil: return
|
|
if n.typ != nil and n.typ.kind in NilableTypes:
|
|
# we allow compile-time 'cast' for pointer types:
|
|
result = a
|
|
result.typ = n.typ
|
|
of nkBracketExpr: result = foldArrayAccess(m, n, g)
|
|
of nkDotExpr: result = foldFieldAccess(m, n, g)
|
|
of nkStmtListExpr:
|
|
if n.len == 2 and n[0].kind == nkComesFrom:
|
|
result = getConstExpr(m, n[1], g)
|
|
else:
|
|
discard
|