mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 09:24:36 +00:00
1041 lines
30 KiB
Nim
1041 lines
30 KiB
Nim
#
|
|
#
|
|
# Nim's Runtime Library
|
|
# (c) Copyright 2013 Robert Persson
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
import math
|
|
import strutils
|
|
import times
|
|
|
|
|
|
## Basic 3d support with vectors, points, matrices and some basic utilities.
|
|
## Vectors are implemented as direction vectors, ie. when transformed with a matrix
|
|
## the translation part of matrix is ignored. The coordinate system used is
|
|
## right handed, because its compatible with 2d coordinate system (rotation around
|
|
## zaxis equals 2d rotation).
|
|
## Operators `+` , `-` , `*` , `/` , `+=` , `-=` , `*=` and `/=` are implemented
|
|
## for vectors and scalars.
|
|
##
|
|
##
|
|
## Quick start example:
|
|
##
|
|
## # Create a matrix which first rotates, then scales and at last translates
|
|
##
|
|
## var m:Matrix3d=rotate(PI,vector3d(1,1,2.5)) & scale(2.0) & move(100.0,200.0,300.0)
|
|
##
|
|
## # Create a 3d point at (100,150,200) and a vector (5,2,3)
|
|
##
|
|
## var pt:Point3d=point3d(100.0,150.0,200.0)
|
|
##
|
|
## var vec:Vector3d=vector3d(5.0,2.0,3.0)
|
|
##
|
|
##
|
|
## pt &= m # transforms pt in place
|
|
##
|
|
## var pt2:Point3d=pt & m #concatenates pt with m and returns a new point
|
|
##
|
|
## var vec2:Vector3d=vec & m #concatenates vec with m and returns a new vector
|
|
|
|
|
|
|
|
type
|
|
Matrix3d* =object
|
|
## Implements a row major 3d matrix, which means
|
|
## transformations are applied the order they are concatenated.
|
|
## This matrix is stored as an 4x4 matrix:
|
|
## [ ax ay az aw ]
|
|
## [ bx by bz bw ]
|
|
## [ cx cy cz cw ]
|
|
## [ tx ty tz tw ]
|
|
ax*,ay*,az*,aw*, bx*,by*,bz*,bw*, cx*,cy*,cz*,cw*, tx*,ty*,tz*,tw*:float
|
|
Point3d* = object
|
|
## Implements a non-homogeneous 3d point stored as
|
|
## an `x` , `y` and `z` coordinate.
|
|
x*,y*,z*:float
|
|
Vector3d* = object
|
|
## Implements a 3d **direction vector** stored as
|
|
## an `x` , `y` and `z` coordinate. Direction vector means,
|
|
## that when transforming a vector with a matrix, the translational
|
|
## part of the matrix is ignored.
|
|
x*,y*,z*:float
|
|
{.deprecated: [TMatrix3d: Matrix3d, TPoint3d: Point3d, TVector3d: Vector3d].}
|
|
|
|
|
|
# Some forward declarations
|
|
proc matrix3d*(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float):Matrix3d {.noInit.}
|
|
## Creates a new 4x4 3d transformation matrix.
|
|
## `ax` , `ay` , `az` is the local x axis.
|
|
## `bx` , `by` , `bz` is the local y axis.
|
|
## `cx` , `cy` , `cz` is the local z axis.
|
|
## `tx` , `ty` , `tz` is the translation.
|
|
proc vector3d*(x,y,z:float):Vector3d {.noInit,inline.}
|
|
## Returns a new 3d vector (`x`,`y`,`z`)
|
|
proc point3d*(x,y,z:float):Point3d {.noInit,inline.}
|
|
## Returns a new 4d point (`x`,`y`,`z`)
|
|
proc tryNormalize*(v:var Vector3d):bool
|
|
## Modifies `v` to have a length of 1.0, keeping its angle.
|
|
## If `v` has zero length (and thus no angle), it is left unmodified and false is
|
|
## returned, otherwise true is returned.
|
|
|
|
|
|
|
|
let
|
|
IDMATRIX*:Matrix3d=matrix3d(
|
|
1.0,0.0,0.0,0.0,
|
|
0.0,1.0,0.0,0.0,
|
|
0.0,0.0,1.0,0.0,
|
|
0.0,0.0,0.0,1.0)
|
|
## Quick access to a 3d identity matrix
|
|
ORIGO*:Point3d=point3d(0.0,0.0,0.0)
|
|
## Quick access to point (0,0)
|
|
XAXIS*:Vector3d=vector3d(1.0,0.0,0.0)
|
|
## Quick access to an 3d x-axis unit vector
|
|
YAXIS*:Vector3d=vector3d(0.0,1.0,0.0)
|
|
## Quick access to an 3d y-axis unit vector
|
|
ZAXIS*:Vector3d=vector3d(0.0,0.0,1.0)
|
|
## Quick access to an 3d z-axis unit vector
|
|
|
|
|
|
|
|
# ***************************************
|
|
# Private utils
|
|
# ***************************************
|
|
|
|
proc rtos(val:float):string=
|
|
return formatFloat(val,ffDefault,0)
|
|
|
|
proc safeArccos(v:float):float=
|
|
## assumes v is in range 0.0-1.0, but clamps
|
|
## the value to avoid out of domain errors
|
|
## due to rounding issues
|
|
return arccos(clamp(v,-1.0,1.0))
|
|
|
|
template makeBinOpVector(s:expr)=
|
|
## implements binary operators + , - , * and / for vectors
|
|
proc s*(a,b:Vector3d):Vector3d {.inline,noInit.} =
|
|
vector3d(s(a.x,b.x),s(a.y,b.y),s(a.z,b.z))
|
|
proc s*(a:Vector3d,b:float):Vector3d {.inline,noInit.} =
|
|
vector3d(s(a.x,b),s(a.y,b),s(a.z,b))
|
|
proc s*(a:float,b:Vector3d):Vector3d {.inline,noInit.} =
|
|
vector3d(s(a,b.x),s(a,b.y),s(a,b.z))
|
|
|
|
template makeBinOpAssignVector(s:expr)=
|
|
## implements inplace binary operators += , -= , /= and *= for vectors
|
|
proc s*(a:var Vector3d,b:Vector3d) {.inline.} =
|
|
s(a.x,b.x) ; s(a.y,b.y) ; s(a.z,b.z)
|
|
proc s*(a:var Vector3d,b:float) {.inline.} =
|
|
s(a.x,b) ; s(a.y,b) ; s(a.z,b)
|
|
|
|
|
|
|
|
# ***************************************
|
|
# Matrix3d implementation
|
|
# ***************************************
|
|
|
|
proc setElements*(t:var Matrix3d,ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float) {.inline.}=
|
|
## Sets arbitrary elements in an exisitng matrix.
|
|
t.ax=ax
|
|
t.ay=ay
|
|
t.az=az
|
|
t.aw=aw
|
|
t.bx=bx
|
|
t.by=by
|
|
t.bz=bz
|
|
t.bw=bw
|
|
t.cx=cx
|
|
t.cy=cy
|
|
t.cz=cz
|
|
t.cw=cw
|
|
t.tx=tx
|
|
t.ty=ty
|
|
t.tz=tz
|
|
t.tw=tw
|
|
|
|
proc matrix3d*(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float):Matrix3d =
|
|
result.setElements(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw)
|
|
|
|
proc `&`*(a,b:Matrix3d):Matrix3d {.noinit.} =
|
|
## Concatenates matrices returning a new matrix.
|
|
result.setElements(
|
|
a.aw*b.tx+a.az*b.cx+a.ay*b.bx+a.ax*b.ax,
|
|
a.aw*b.ty+a.az*b.cy+a.ay*b.by+a.ax*b.ay,
|
|
a.aw*b.tz+a.az*b.cz+a.ay*b.bz+a.ax*b.az,
|
|
a.aw*b.tw+a.az*b.cw+a.ay*b.bw+a.ax*b.aw,
|
|
|
|
a.bw*b.tx+a.bz*b.cx+a.by*b.bx+a.bx*b.ax,
|
|
a.bw*b.ty+a.bz*b.cy+a.by*b.by+a.bx*b.ay,
|
|
a.bw*b.tz+a.bz*b.cz+a.by*b.bz+a.bx*b.az,
|
|
a.bw*b.tw+a.bz*b.cw+a.by*b.bw+a.bx*b.aw,
|
|
|
|
a.cw*b.tx+a.cz*b.cx+a.cy*b.bx+a.cx*b.ax,
|
|
a.cw*b.ty+a.cz*b.cy+a.cy*b.by+a.cx*b.ay,
|
|
a.cw*b.tz+a.cz*b.cz+a.cy*b.bz+a.cx*b.az,
|
|
a.cw*b.tw+a.cz*b.cw+a.cy*b.bw+a.cx*b.aw,
|
|
|
|
a.tw*b.tx+a.tz*b.cx+a.ty*b.bx+a.tx*b.ax,
|
|
a.tw*b.ty+a.tz*b.cy+a.ty*b.by+a.tx*b.ay,
|
|
a.tw*b.tz+a.tz*b.cz+a.ty*b.bz+a.tx*b.az,
|
|
a.tw*b.tw+a.tz*b.cw+a.ty*b.bw+a.tx*b.aw)
|
|
|
|
|
|
proc scale*(s:float):Matrix3d {.noInit.} =
|
|
## Returns a new scaling matrix.
|
|
result.setElements(s,0,0,0, 0,s,0,0, 0,0,s,0, 0,0,0,1)
|
|
|
|
proc scale*(s:float,org:Point3d):Matrix3d {.noInit.} =
|
|
## Returns a new scaling matrix using, `org` as scale origin.
|
|
result.setElements(s,0,0,0, 0,s,0,0, 0,0,s,0,
|
|
org.x-s*org.x,org.y-s*org.y,org.z-s*org.z,1.0)
|
|
|
|
proc stretch*(sx,sy,sz:float):Matrix3d {.noInit.} =
|
|
## Returns new a stretch matrix, which is a
|
|
## scale matrix with non uniform scale in x,y and z.
|
|
result.setElements(sx,0,0,0, 0,sy,0,0, 0,0,sz,0, 0,0,0,1)
|
|
|
|
proc stretch*(sx,sy,sz:float,org:Point3d):Matrix3d {.noInit.} =
|
|
## Returns a new stretch matrix, which is a
|
|
## scale matrix with non uniform scale in x,y and z.
|
|
## `org` is used as stretch origin.
|
|
result.setElements(sx,0,0,0, 0,sy,0,0, 0,0,sz,0, org.x-sx*org.x,org.y-sy*org.y,org.z-sz*org.z,1)
|
|
|
|
proc move*(dx,dy,dz:float):Matrix3d {.noInit.} =
|
|
## Returns a new translation matrix.
|
|
result.setElements(1,0,0,0, 0,1,0,0, 0,0,1,0, dx,dy,dz,1)
|
|
|
|
proc move*(v:Vector3d):Matrix3d {.noInit.} =
|
|
## Returns a new translation matrix from a vector.
|
|
result.setElements(1,0,0,0, 0,1,0,0, 0,0,1,0, v.x,v.y,v.z,1)
|
|
|
|
|
|
proc rotate*(angle:float,axis:Vector3d):Matrix3d {.noInit.}=
|
|
## Creates a rotation matrix that rotates `angle` radians over
|
|
## `axis`, which passes through origo.
|
|
|
|
# see PDF document http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf
|
|
# for how this is computed
|
|
|
|
var normax=axis
|
|
if not normax.tryNormalize: #simplifies matrix computation below a lot
|
|
raise newException(DivByZeroError,"Cannot rotate around zero length axis")
|
|
|
|
let
|
|
cs=cos(angle)
|
|
si=sin(angle)
|
|
omc=1.0-cs
|
|
usi=normax.x*si
|
|
vsi=normax.y*si
|
|
wsi=normax.z*si
|
|
u2=normax.x*normax.x
|
|
v2=normax.y*normax.y
|
|
w2=normax.z*normax.z
|
|
uvomc=normax.x*normax.y*omc
|
|
uwomc=normax.x*normax.z*omc
|
|
vwomc=normax.y*normax.z*omc
|
|
|
|
result.setElements(
|
|
u2+(1.0-u2)*cs, uvomc+wsi, uwomc-vsi, 0.0,
|
|
uvomc-wsi, v2+(1.0-v2)*cs, vwomc+usi, 0.0,
|
|
uwomc+vsi, vwomc-usi, w2+(1.0-w2)*cs, 0.0,
|
|
0.0,0.0,0.0,1.0)
|
|
|
|
proc rotate*(angle:float,org:Point3d,axis:Vector3d):Matrix3d {.noInit.}=
|
|
## Creates a rotation matrix that rotates `angle` radians over
|
|
## `axis`, which passes through `org`.
|
|
|
|
# see PDF document http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf
|
|
# for how this is computed
|
|
|
|
var normax=axis
|
|
if not normax.tryNormalize: #simplifies matrix computation below a lot
|
|
raise newException(DivByZeroError,"Cannot rotate around zero length axis")
|
|
|
|
let
|
|
u=normax.x
|
|
v=normax.y
|
|
w=normax.z
|
|
u2=u*u
|
|
v2=v*v
|
|
w2=w*w
|
|
cs=cos(angle)
|
|
omc=1.0-cs
|
|
si=sin(angle)
|
|
a=org.x
|
|
b=org.y
|
|
c=org.z
|
|
usi=u*si
|
|
vsi=v*si
|
|
wsi=w*si
|
|
uvomc=normax.x*normax.y*omc
|
|
uwomc=normax.x*normax.z*omc
|
|
vwomc=normax.y*normax.z*omc
|
|
|
|
result.setElements(
|
|
u2+(v2+w2)*cs, uvomc+wsi, uwomc-vsi, 0.0,
|
|
uvomc-wsi, v2+(u2+w2)*cs, vwomc+usi, 0.0,
|
|
uwomc+vsi, vwomc-usi, w2+(u2+v2)*cs, 0.0,
|
|
(a*(v2+w2)-u*(b*v+c*w))*omc+(b*w-c*v)*si,
|
|
(b*(u2+w2)-v*(a*u+c*w))*omc+(c*u-a*w)*si,
|
|
(c*(u2+v2)-w*(a*u+b*v))*omc+(a*v-b*u)*si,1.0)
|
|
|
|
|
|
proc rotateX*(angle:float):Matrix3d {.noInit.}=
|
|
## Creates a matrix that rotates around the x-axis with `angle` radians,
|
|
## which is also called a 'roll' matrix.
|
|
let
|
|
c=cos(angle)
|
|
s=sin(angle)
|
|
result.setElements(
|
|
1,0,0,0,
|
|
0,c,s,0,
|
|
0,-s,c,0,
|
|
0,0,0,1)
|
|
|
|
proc rotateY*(angle:float):Matrix3d {.noInit.}=
|
|
## Creates a matrix that rotates around the y-axis with `angle` radians,
|
|
## which is also called a 'pitch' matrix.
|
|
let
|
|
c=cos(angle)
|
|
s=sin(angle)
|
|
result.setElements(
|
|
c,0,-s,0,
|
|
0,1,0,0,
|
|
s,0,c,0,
|
|
0,0,0,1)
|
|
|
|
proc rotateZ*(angle:float):Matrix3d {.noInit.}=
|
|
## Creates a matrix that rotates around the z-axis with `angle` radians,
|
|
## which is also called a 'yaw' matrix.
|
|
let
|
|
c=cos(angle)
|
|
s=sin(angle)
|
|
result.setElements(
|
|
c,s,0,0,
|
|
-s,c,0,0,
|
|
0,0,1,0,
|
|
0,0,0,1)
|
|
|
|
proc isUniform*(m:Matrix3d,tol=1.0e-6):bool=
|
|
## Checks if the transform is uniform, that is
|
|
## perpendicular axes of equal length, which means (for example)
|
|
## it cannot transform a sphere into an ellipsoid.
|
|
## `tol` is used as tolerance for both equal length comparison
|
|
## and perpendicular comparison.
|
|
|
|
#dot product=0 means perpendicular coord. system, check xaxis vs yaxis and xaxis vs zaxis
|
|
if abs(m.ax*m.bx+m.ay*m.by+m.az*m.bz)<=tol and # x vs y
|
|
abs(m.ax*m.cx+m.ay*m.cy+m.az*m.cz)<=tol and #x vs z
|
|
abs(m.bx*m.cx+m.by*m.cy+m.bz*m.cz)<=tol: #y vs z
|
|
|
|
#subtract squared lengths of axes to check if uniform scaling:
|
|
let
|
|
sqxlen=(m.ax*m.ax+m.ay*m.ay+m.az*m.az)
|
|
sqylen=(m.bx*m.bx+m.by*m.by+m.bz*m.bz)
|
|
sqzlen=(m.cx*m.cx+m.cy*m.cy+m.cz*m.cz)
|
|
if abs(sqxlen-sqylen)<=tol and abs(sqxlen-sqzlen)<=tol:
|
|
return true
|
|
return false
|
|
|
|
|
|
|
|
proc mirror*(planeperp:Vector3d):Matrix3d {.noInit.}=
|
|
## Creates a matrix that mirrors over the plane that has `planeperp` as normal,
|
|
## and passes through origo. `planeperp` does not need to be normalized.
|
|
|
|
# https://en.wikipedia.org/wiki/Transformation_matrix
|
|
var n=planeperp
|
|
if not n.tryNormalize:
|
|
raise newException(DivByZeroError,"Cannot mirror over a plane with a zero length normal")
|
|
|
|
let
|
|
a=n.x
|
|
b=n.y
|
|
c=n.z
|
|
ab=a*b
|
|
ac=a*c
|
|
bc=b*c
|
|
|
|
result.setElements(
|
|
1-2*a*a , -2*ab,-2*ac,0,
|
|
-2*ab , 1-2*b*b, -2*bc, 0,
|
|
-2*ac, -2*bc, 1-2*c*c,0,
|
|
0,0,0,1)
|
|
|
|
|
|
proc mirror*(org:Point3d,planeperp:Vector3d):Matrix3d {.noInit.}=
|
|
## Creates a matrix that mirrors over the plane that has `planeperp` as normal,
|
|
## and passes through `org`. `planeperp` does not need to be normalized.
|
|
|
|
# constructs a mirror M like the simpler mirror matrix constructor
|
|
# above but premultiplies with the inverse traslation of org
|
|
# and postmultiplies with the translation of org.
|
|
# With some fiddling this becomes reasonably simple:
|
|
var n=planeperp
|
|
if not n.tryNormalize:
|
|
raise newException(DivByZeroError,"Cannot mirror over a plane with a zero length normal")
|
|
|
|
let
|
|
a=n.x
|
|
b=n.y
|
|
c=n.z
|
|
ab=a*b
|
|
ac=a*c
|
|
bc=b*c
|
|
aa=a*a
|
|
bb=b*b
|
|
cc=c*c
|
|
tx=org.x
|
|
ty=org.y
|
|
tz=org.z
|
|
|
|
result.setElements(
|
|
1-2*aa , -2*ab,-2*ac,0,
|
|
-2*ab , 1-2*bb, -2*bc, 0,
|
|
-2*ac, -2*bc, 1-2*cc,0,
|
|
2*(ac*tz+ab*ty+aa*tx),
|
|
2*(bc*tz+bb*ty+ab*tx),
|
|
2*(cc*tz+bc*ty+ac*tx) ,1)
|
|
|
|
|
|
proc determinant*(m:Matrix3d):float=
|
|
## Computes the determinant of matrix `m`.
|
|
|
|
# This computation is gotten from ratsimp(optimize(determinant(m)))
|
|
# in maxima CAS
|
|
let
|
|
O1=m.cx*m.tw-m.cw*m.tx
|
|
O2=m.cy*m.tw-m.cw*m.ty
|
|
O3=m.cx*m.ty-m.cy*m.tx
|
|
O4=m.cz*m.tw-m.cw*m.tz
|
|
O5=m.cx*m.tz-m.cz*m.tx
|
|
O6=m.cy*m.tz-m.cz*m.ty
|
|
|
|
return (O1*m.ay-O2*m.ax-O3*m.aw)*m.bz+
|
|
(-O1*m.az+O4*m.ax+O5*m.aw)*m.by+
|
|
(O2*m.az-O4*m.ay-O6*m.aw)*m.bx+
|
|
(O3*m.az-O5*m.ay+O6*m.ax)*m.bw
|
|
|
|
|
|
proc inverse*(m:Matrix3d):Matrix3d {.noInit.}=
|
|
## Computes the inverse of matrix `m`. If the matrix
|
|
## determinant is zero, thus not invertible, a EDivByZero
|
|
## will be raised.
|
|
|
|
# this computation comes from optimize(invert(m)) in maxima CAS
|
|
|
|
let
|
|
det=m.determinant
|
|
O2=m.cy*m.tw-m.cw*m.ty
|
|
O3=m.cz*m.tw-m.cw*m.tz
|
|
O4=m.cy*m.tz-m.cz*m.ty
|
|
O5=m.by*m.tw-m.bw*m.ty
|
|
O6=m.bz*m.tw-m.bw*m.tz
|
|
O7=m.by*m.tz-m.bz*m.ty
|
|
O8=m.by*m.cw-m.bw*m.cy
|
|
O9=m.bz*m.cw-m.bw*m.cz
|
|
O10=m.by*m.cz-m.bz*m.cy
|
|
O11=m.cx*m.tw-m.cw*m.tx
|
|
O12=m.cx*m.tz-m.cz*m.tx
|
|
O13=m.bx*m.tw-m.bw*m.tx
|
|
O14=m.bx*m.tz-m.bz*m.tx
|
|
O15=m.bx*m.cw-m.bw*m.cx
|
|
O16=m.bx*m.cz-m.bz*m.cx
|
|
O17=m.cx*m.ty-m.cy*m.tx
|
|
O18=m.bx*m.ty-m.by*m.tx
|
|
O19=m.bx*m.cy-m.by*m.cx
|
|
|
|
if det==0.0:
|
|
raise newException(DivByZeroError,"Cannot normalize zero length vector")
|
|
|
|
result.setElements(
|
|
(m.bw*O4+m.by*O3-m.bz*O2)/det , (-m.aw*O4-m.ay*O3+m.az*O2)/det,
|
|
(m.aw*O7+m.ay*O6-m.az*O5)/det , (-m.aw*O10-m.ay*O9+m.az*O8)/det,
|
|
(-m.bw*O12-m.bx*O3+m.bz*O11)/det , (m.aw*O12+m.ax*O3-m.az*O11)/det,
|
|
(-m.aw*O14-m.ax*O6+m.az*O13)/det , (m.aw*O16+m.ax*O9-m.az*O15)/det,
|
|
(m.bw*O17+m.bx*O2-m.by*O11)/det , (-m.aw*O17-m.ax*O2+m.ay*O11)/det,
|
|
(m.aw*O18+m.ax*O5-m.ay*O13)/det , (-m.aw*O19-m.ax*O8+m.ay*O15)/det,
|
|
(-m.bx*O4+m.by*O12-m.bz*O17)/det , (m.ax*O4-m.ay*O12+m.az*O17)/det,
|
|
(-m.ax*O7+m.ay*O14-m.az*O18)/det , (m.ax*O10-m.ay*O16+m.az*O19)/det)
|
|
|
|
|
|
proc equals*(m1:Matrix3d,m2:Matrix3d,tol=1.0e-6):bool=
|
|
## Checks if all elements of `m1`and `m2` is equal within
|
|
## a given tolerance `tol`.
|
|
return
|
|
abs(m1.ax-m2.ax)<=tol and
|
|
abs(m1.ay-m2.ay)<=tol and
|
|
abs(m1.az-m2.az)<=tol and
|
|
abs(m1.aw-m2.aw)<=tol and
|
|
abs(m1.bx-m2.bx)<=tol and
|
|
abs(m1.by-m2.by)<=tol and
|
|
abs(m1.bz-m2.bz)<=tol and
|
|
abs(m1.bw-m2.bw)<=tol and
|
|
abs(m1.cx-m2.cx)<=tol and
|
|
abs(m1.cy-m2.cy)<=tol and
|
|
abs(m1.cz-m2.cz)<=tol and
|
|
abs(m1.cw-m2.cw)<=tol and
|
|
abs(m1.tx-m2.tx)<=tol and
|
|
abs(m1.ty-m2.ty)<=tol and
|
|
abs(m1.tz-m2.tz)<=tol and
|
|
abs(m1.tw-m2.tw)<=tol
|
|
|
|
proc `=~`*(m1,m2:Matrix3d):bool=
|
|
## Checks if `m1` and `m2` is approximately equal, using a
|
|
## tolerance of 1e-6.
|
|
equals(m1,m2)
|
|
|
|
proc transpose*(m:Matrix3d):Matrix3d {.noInit.}=
|
|
## Returns the transpose of `m`
|
|
result.setElements(m.ax,m.bx,m.cx,m.tx,m.ay,m.by,m.cy,m.ty,m.az,m.bz,m.cz,m.tz,m.aw,m.bw,m.cw,m.tw)
|
|
|
|
proc getXAxis*(m:Matrix3d):Vector3d {.noInit.}=
|
|
## Gets the local x axis of `m`
|
|
result.x=m.ax
|
|
result.y=m.ay
|
|
result.z=m.az
|
|
|
|
proc getYAxis*(m:Matrix3d):Vector3d {.noInit.}=
|
|
## Gets the local y axis of `m`
|
|
result.x=m.bx
|
|
result.y=m.by
|
|
result.z=m.bz
|
|
|
|
proc getZAxis*(m:Matrix3d):Vector3d {.noInit.}=
|
|
## Gets the local y axis of `m`
|
|
result.x=m.cx
|
|
result.y=m.cy
|
|
result.z=m.cz
|
|
|
|
|
|
proc `$`*(m:Matrix3d):string=
|
|
## String representation of `m`
|
|
return rtos(m.ax) & "," & rtos(m.ay) & "," & rtos(m.az) & "," & rtos(m.aw) &
|
|
"\n" & rtos(m.bx) & "," & rtos(m.by) & "," & rtos(m.bz) & "," & rtos(m.bw) &
|
|
"\n" & rtos(m.cx) & "," & rtos(m.cy) & "," & rtos(m.cz) & "," & rtos(m.cw) &
|
|
"\n" & rtos(m.tx) & "," & rtos(m.ty) & "," & rtos(m.tz) & "," & rtos(m.tw)
|
|
|
|
proc apply*(m:Matrix3d, x,y,z:var float, translate=false)=
|
|
## Applies transformation `m` onto `x` , `y` , `z` , optionally
|
|
## using the translation part of the matrix.
|
|
let
|
|
oldx=x
|
|
oldy=y
|
|
oldz=z
|
|
|
|
x=m.cx*oldz+m.bx*oldy+m.ax*oldx
|
|
y=m.cy*oldz+m.by*oldy+m.ay*oldx
|
|
z=m.cz*oldz+m.bz*oldy+m.az*oldx
|
|
|
|
if translate:
|
|
x+=m.tx
|
|
y+=m.ty
|
|
z+=m.tz
|
|
|
|
# ***************************************
|
|
# Vector3d implementation
|
|
# ***************************************
|
|
proc vector3d*(x,y,z:float):Vector3d=
|
|
result.x=x
|
|
result.y=y
|
|
result.z=z
|
|
|
|
proc len*(v:Vector3d):float=
|
|
## Returns the length of the vector `v`.
|
|
sqrt(v.x*v.x+v.y*v.y+v.z*v.z)
|
|
|
|
proc `len=`*(v:var Vector3d,newlen:float) {.noInit.} =
|
|
## Sets the length of the vector, keeping its direction.
|
|
## If the vector has zero length before changing it's length,
|
|
## an arbitrary vector of the requested length is returned.
|
|
|
|
let fac=newlen/v.len
|
|
|
|
if newlen==0.0:
|
|
v.x=0.0
|
|
v.y=0.0
|
|
v.z=0.0
|
|
return
|
|
|
|
if fac==Inf or fac==NegInf:
|
|
#to short for float accuracy
|
|
#do as good as possible:
|
|
v.x=newlen
|
|
v.y=0.0
|
|
v.z=0.0
|
|
else:
|
|
v.x*=fac
|
|
v.y*=fac
|
|
v.z*=fac
|
|
|
|
|
|
proc sqrLen*(v:Vector3d):float {.inline.}=
|
|
## Computes the squared length of the vector, which is
|
|
## faster than computing the absolute length.
|
|
return v.x*v.x+v.y*v.y+v.z*v.z
|
|
|
|
proc `$` *(v:Vector3d):string=
|
|
## String representation of `v`
|
|
result=rtos(v.x)
|
|
result.add(",")
|
|
result.add(rtos(v.y))
|
|
result.add(",")
|
|
result.add(rtos(v.z))
|
|
|
|
proc `&` *(v:Vector3d,m:Matrix3d):Vector3d {.noInit.} =
|
|
## Concatenate vector `v` with a transformation matrix.
|
|
## Transforming a vector ignores the translational part
|
|
## of the matrix.
|
|
|
|
# | AX AY AZ AW |
|
|
# | X Y Z 1 | * | BX BY BZ BW |
|
|
# | CX CY CZ CW |
|
|
# | 0 0 0 1 |
|
|
let
|
|
newx=m.cx*v.z+m.bx*v.y+m.ax*v.x
|
|
newy=m.cy*v.z+m.by*v.y+m.ay*v.x
|
|
result.z=m.cz*v.z+m.bz*v.y+m.az*v.x
|
|
result.y=newy
|
|
result.x=newx
|
|
|
|
|
|
proc `&=` *(v:var Vector3d,m:Matrix3d) {.noInit.} =
|
|
## Applies transformation `m` onto `v` in place.
|
|
## Transforming a vector ignores the translational part
|
|
## of the matrix.
|
|
|
|
# | AX AY AZ AW |
|
|
# | X Y Z 1 | * | BX BY BZ BW |
|
|
# | CX CY CZ CW |
|
|
# | 0 0 0 1 |
|
|
|
|
let
|
|
newx=m.cx*v.z+m.bx*v.y+m.ax*v.x
|
|
newy=m.cy*v.z+m.by*v.y+m.ay*v.x
|
|
v.z=m.cz*v.z+m.bz*v.y+m.az*v.x
|
|
v.y=newy
|
|
v.x=newx
|
|
|
|
proc transformNorm*(v:var Vector3d,m:Matrix3d)=
|
|
## Applies a normal direction transformation `m` onto `v` in place.
|
|
## The resulting vector is *not* normalized. Transforming a vector ignores the
|
|
## translational part of the matrix. If the matrix is not invertible
|
|
## (determinant=0), an EDivByZero will be raised.
|
|
|
|
# transforming a normal is done by transforming
|
|
# by the transpose of the inverse of the original matrix
|
|
|
|
# Major reason this simple function is here is that this function can be optimized in the future,
|
|
# (possibly by hardware) as well as having a consistent API with the 2d version.
|
|
v&=transpose(inverse(m))
|
|
|
|
proc transformInv*(v:var Vector3d,m:Matrix3d)=
|
|
## Applies the inverse of `m` on vector `v`. Transforming a vector ignores
|
|
## the translational part of the matrix. Transforming a vector ignores the
|
|
## translational part of the matrix.
|
|
## If the matrix is not invertible (determinant=0), an EDivByZero
|
|
## will be raised.
|
|
|
|
# Major reason this simple function is here is that this function can be optimized in the future,
|
|
# (possibly by hardware) as well as having a consistent API with the 2d version.
|
|
v&=m.inverse
|
|
|
|
proc transformNormInv*(vec:var Vector3d,m:Matrix3d)=
|
|
## Applies an inverse normal direction transformation `m` onto `v` in place.
|
|
## This is faster than creating an inverse
|
|
## matrix and transformNorm(...) it. Transforming a vector ignores the
|
|
## translational part of the matrix.
|
|
|
|
# see vector2d:s equivalent for a deeper look how/why this works
|
|
vec&=m.transpose
|
|
|
|
proc tryNormalize*(v:var Vector3d):bool=
|
|
## Modifies `v` to have a length of 1.0, keeping its angle.
|
|
## If `v` has zero length (and thus no angle), it is left unmodified and false is
|
|
## returned, otherwise true is returned.
|
|
let mag=v.len
|
|
|
|
if mag==0.0:
|
|
return false
|
|
|
|
v.x/=mag
|
|
v.y/=mag
|
|
v.z/=mag
|
|
|
|
return true
|
|
|
|
proc normalize*(v:var Vector3d) {.inline.}=
|
|
## Modifies `v` to have a length of 1.0, keeping its angle.
|
|
## If `v` has zero length, an EDivByZero will be raised.
|
|
if not tryNormalize(v):
|
|
raise newException(DivByZeroError,"Cannot normalize zero length vector")
|
|
|
|
proc rotate*(vec:var Vector3d,angle:float,axis:Vector3d)=
|
|
## Rotates `vec` in place, with `angle` radians over `axis`, which passes
|
|
## through origo.
|
|
|
|
# see PDF document http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf
|
|
# for how this is computed
|
|
|
|
var normax=axis
|
|
if not normax.tryNormalize:
|
|
raise newException(DivByZeroError,"Cannot rotate around zero length axis")
|
|
|
|
let
|
|
cs=cos(angle)
|
|
si=sin(angle)
|
|
omc=1.0-cs
|
|
u=normax.x
|
|
v=normax.y
|
|
w=normax.z
|
|
x=vec.x
|
|
y=vec.y
|
|
z=vec.z
|
|
uxyzomc=(u*x+v*y+w*z)*omc
|
|
|
|
vec.x=u*uxyzomc+x*cs+(v*z-w*y)*si
|
|
vec.y=v*uxyzomc+y*cs+(w*x-u*z)*si
|
|
vec.z=w*uxyzomc+z*cs+(u*y-v*x)*si
|
|
|
|
proc scale*(v:var Vector3d,s:float)=
|
|
## Scales the vector in place with factor `s`
|
|
v.x*=s
|
|
v.y*=s
|
|
v.z*=s
|
|
|
|
proc stretch*(v:var Vector3d,sx,sy,sz:float)=
|
|
## Scales the vector non uniformly with factors `sx` , `sy` , `sz`
|
|
v.x*=sx
|
|
v.y*=sy
|
|
v.z*=sz
|
|
|
|
proc mirror*(v:var Vector3d,planeperp:Vector3d)=
|
|
## Computes the mirrored vector of `v` over the plane
|
|
## that has `planeperp` as normal direction.
|
|
## `planeperp` does not need to be normalized.
|
|
|
|
var n=planeperp
|
|
n.normalize
|
|
|
|
let
|
|
x=v.x
|
|
y=v.y
|
|
z=v.z
|
|
a=n.x
|
|
b=n.y
|
|
c=n.z
|
|
ac=a*c
|
|
ab=a*b
|
|
bc=b*c
|
|
|
|
v.x= -2*(ac*z+ab*y+a*a*x)+x
|
|
v.y= -2*(bc*z+b*b*y+ab*x)+y
|
|
v.z= -2*(c*c*z+bc*y+ac*x)+z
|
|
|
|
|
|
proc `-` *(v:Vector3d):Vector3d=
|
|
## Negates a vector
|
|
result.x= -v.x
|
|
result.y= -v.y
|
|
result.z= -v.z
|
|
|
|
# declare templated binary operators
|
|
makeBinOpVector(`+`)
|
|
makeBinOpVector(`-`)
|
|
makeBinOpVector(`*`)
|
|
makeBinOpVector(`/`)
|
|
makeBinOpAssignVector(`+=`)
|
|
makeBinOpAssignVector(`-=`)
|
|
makeBinOpAssignVector(`*=`)
|
|
makeBinOpAssignVector(`/=`)
|
|
|
|
proc dot*(v1,v2:Vector3d):float {.inline.}=
|
|
## Computes the dot product of two vectors.
|
|
## Returns 0.0 if the vectors are perpendicular.
|
|
return v1.x*v2.x+v1.y*v2.y+v1.z*v2.z
|
|
|
|
proc cross*(v1,v2:Vector3d):Vector3d {.inline.}=
|
|
## Computes the cross product of two vectors.
|
|
## The result is a vector which is perpendicular
|
|
## to the plane of `v1` and `v2`, which means
|
|
## cross(xaxis,yaxis)=zaxis. The magnitude of the result is
|
|
## zero if the vectors are colinear.
|
|
result.x = (v1.y * v2.z) - (v2.y * v1.z)
|
|
result.y = (v1.z * v2.x) - (v2.z * v1.x)
|
|
result.z = (v1.x * v2.y) - (v2.x * v1.y)
|
|
|
|
proc equals*(v1,v2:Vector3d,tol=1.0e-6):bool=
|
|
## Checks if two vectors approximately equals with a tolerance.
|
|
return abs(v2.x-v1.x)<=tol and abs(v2.y-v1.y)<=tol and abs(v2.z-v1.z)<=tol
|
|
|
|
proc `=~` *(v1,v2:Vector3d):bool=
|
|
## Checks if two vectors approximately equals with a
|
|
## hardcoded tolerance 1e-6
|
|
equals(v1,v2)
|
|
|
|
proc angleTo*(v1,v2:Vector3d):float=
|
|
## Returns the smallest angle between v1 and v2,
|
|
## which is in range 0-PI
|
|
var
|
|
nv1=v1
|
|
nv2=v2
|
|
if not nv1.tryNormalize or not nv2.tryNormalize:
|
|
return 0.0 # zero length vector has zero angle to any other vector
|
|
return safeArccos(dot(nv1,nv2))
|
|
|
|
proc arbitraryAxis*(norm:Vector3d):Matrix3d {.noInit.}=
|
|
## Computes the rotation matrix that would transform
|
|
## world z vector into `norm`. The inverse of this matrix
|
|
## is useful to transform a planar 3d object to 2d space.
|
|
## This is the same algorithm used to interpret DXF and DWG files.
|
|
const lim=1.0/64.0
|
|
var ax,ay,az:Vector3d
|
|
if abs(norm.x)<lim and abs(norm.y)<lim:
|
|
ax=cross(YAXIS,norm)
|
|
else:
|
|
ax=cross(ZAXIS,norm)
|
|
|
|
ax.normalize()
|
|
ay=cross(norm,ax)
|
|
ay.normalize()
|
|
az=cross(ax,ay)
|
|
|
|
result.setElements(
|
|
ax.x,ax.y,ax.z,0.0,
|
|
ay.x,ay.y,ay.z,0.0,
|
|
az.x,az.y,az.z,0.0,
|
|
0.0,0.0,0.0,1.0)
|
|
|
|
proc bisect*(v1,v2:Vector3d):Vector3d {.noInit.}=
|
|
## Computes the bisector between v1 and v2 as a normalized vector.
|
|
## If one of the input vectors has zero length, a normalized version
|
|
## of the other is returned. If both input vectors has zero length,
|
|
## an arbitrary normalized vector `v1` is returned.
|
|
var
|
|
vmag1=v1.len
|
|
vmag2=v2.len
|
|
|
|
# zero length vector equals arbitrary vector, just change
|
|
# magnitude to one to avoid zero division
|
|
if vmag1==0.0:
|
|
if vmag2==0: #both are zero length return any normalized vector
|
|
return XAXIS
|
|
vmag1=1.0
|
|
if vmag2==0.0: vmag2=1.0
|
|
|
|
let
|
|
x1=v1.x/vmag1
|
|
y1=v1.y/vmag1
|
|
z1=v1.z/vmag1
|
|
x2=v2.x/vmag2
|
|
y2=v2.y/vmag2
|
|
z2=v2.z/vmag2
|
|
|
|
result.x=(x1 + x2) * 0.5
|
|
result.y=(y1 + y2) * 0.5
|
|
result.z=(z1 + z2) * 0.5
|
|
|
|
if not result.tryNormalize():
|
|
# This can happen if vectors are colinear. In this special case
|
|
# there are actually inifinitely many bisectors, we select just
|
|
# one of them.
|
|
result=v1.cross(XAXIS)
|
|
if result.sqrLen<1.0e-9:
|
|
result=v1.cross(YAXIS)
|
|
if result.sqrLen<1.0e-9:
|
|
result=v1.cross(ZAXIS) # now we should be guaranteed to have succeeded
|
|
result.normalize
|
|
|
|
|
|
|
|
# ***************************************
|
|
# Point3d implementation
|
|
# ***************************************
|
|
proc point3d*(x,y,z:float):Point3d=
|
|
result.x=x
|
|
result.y=y
|
|
result.z=z
|
|
|
|
proc sqrDist*(a,b:Point3d):float=
|
|
## Computes the squared distance between `a`and `b`
|
|
let dx=b.x-a.x
|
|
let dy=b.y-a.y
|
|
let dz=b.z-a.z
|
|
result=dx*dx+dy*dy+dz*dz
|
|
|
|
proc dist*(a,b:Point3d):float {.inline.}=
|
|
## Computes the absolute distance between `a`and `b`
|
|
result=sqrt(sqrDist(a,b))
|
|
|
|
proc `$` *(p:Point3d):string=
|
|
## String representation of `p`
|
|
result=rtos(p.x)
|
|
result.add(",")
|
|
result.add(rtos(p.y))
|
|
result.add(",")
|
|
result.add(rtos(p.z))
|
|
|
|
proc `&`*(p:Point3d,m:Matrix3d):Point3d=
|
|
## Concatenates a point `p` with a transform `m`,
|
|
## resulting in a new, transformed point.
|
|
result.z=m.cz*p.z+m.bz*p.y+m.az*p.x+m.tz
|
|
result.y=m.cy*p.z+m.by*p.y+m.ay*p.x+m.ty
|
|
result.x=m.cx*p.z+m.bx*p.y+m.ax*p.x+m.tx
|
|
|
|
proc `&=` *(p:var Point3d,m:Matrix3d)=
|
|
## Applies transformation `m` onto `p` in place.
|
|
let
|
|
x=p.x
|
|
y=p.y
|
|
z=p.z
|
|
p.x=m.cx*z+m.bx*y+m.ax*x+m.tx
|
|
p.y=m.cy*z+m.by*y+m.ay*x+m.ty
|
|
p.z=m.cz*z+m.bz*y+m.az*x+m.tz
|
|
|
|
proc transformInv*(p:var Point3d,m:Matrix3d)=
|
|
## Applies the inverse of transformation `m` onto `p` in place.
|
|
## If the matrix is not invertable (determinant=0) , EDivByZero will
|
|
## be raised.
|
|
|
|
# can possibly be more optimized in the future so use this function when possible
|
|
p&=inverse(m)
|
|
|
|
|
|
proc `+`*(p:Point3d,v:Vector3d):Point3d {.noInit,inline.} =
|
|
## Adds a vector `v` to a point `p`, resulting
|
|
## in a new point.
|
|
result.x=p.x+v.x
|
|
result.y=p.y+v.y
|
|
result.z=p.z+v.z
|
|
|
|
proc `+=`*(p:var Point3d,v:Vector3d) {.noInit,inline.} =
|
|
## Adds a vector `v` to a point `p` in place.
|
|
p.x+=v.x
|
|
p.y+=v.y
|
|
p.z+=v.z
|
|
|
|
proc `-`*(p:Point3d,v:Vector3d):Point3d {.noInit,inline.} =
|
|
## Subtracts a vector `v` from a point `p`, resulting
|
|
## in a new point.
|
|
result.x=p.x-v.x
|
|
result.y=p.y-v.y
|
|
result.z=p.z-v.z
|
|
|
|
proc `-`*(p1,p2:Point3d):Vector3d {.noInit,inline.} =
|
|
## Subtracts `p2`from `p1` resulting in a difference vector.
|
|
result.x=p1.x-p2.x
|
|
result.y=p1.y-p2.y
|
|
result.z=p1.z-p2.z
|
|
|
|
proc `-=`*(p:var Point3d,v:Vector3d) {.noInit,inline.} =
|
|
## Subtracts a vector `v` from a point `p` in place.
|
|
p.x-=v.x
|
|
p.y-=v.y
|
|
p.z-=v.z
|
|
|
|
proc equals(p1,p2:Point3d,tol=1.0e-6):bool {.inline.}=
|
|
## Checks if two points approximately equals with a tolerance.
|
|
return abs(p2.x-p1.x)<=tol and abs(p2.y-p1.y)<=tol and abs(p2.z-p1.z)<=tol
|
|
|
|
proc `=~`*(p1,p2:Point3d):bool {.inline.}=
|
|
## Checks if two vectors approximately equals with a
|
|
## hardcoded tolerance 1e-6
|
|
equals(p1,p2)
|
|
|
|
proc rotate*(p:var Point3d,rad:float,axis:Vector3d)=
|
|
## Rotates point `p` in place `rad` radians about an axis
|
|
## passing through origo.
|
|
|
|
var v=vector3d(p.x,p.y,p.z)
|
|
v.rotate(rad,axis) # reuse this code here since doing the same thing and quite complicated
|
|
p.x=v.x
|
|
p.y=v.y
|
|
p.z=v.z
|
|
|
|
proc rotate*(p:var Point3d,angle:float,org:Point3d,axis:Vector3d)=
|
|
## Rotates point `p` in place `rad` radians about an axis
|
|
## passing through `org`
|
|
|
|
# see PDF document http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf
|
|
# for how this is computed
|
|
|
|
var normax=axis
|
|
normax.normalize
|
|
|
|
let
|
|
cs=cos(angle)
|
|
omc=1.0-cs
|
|
si=sin(angle)
|
|
u=normax.x
|
|
v=normax.y
|
|
w=normax.z
|
|
a=org.x
|
|
b=org.y
|
|
c=org.z
|
|
x=p.x
|
|
y=p.y
|
|
z=p.z
|
|
uu=u*u
|
|
vv=v*v
|
|
ww=w*w
|
|
ux=u*p.x
|
|
vy=v*p.y
|
|
wz=w*p.z
|
|
au=a*u
|
|
bv=b*v
|
|
cw=c*w
|
|
uxmvymwz=ux-vy-wz
|
|
|
|
p.x=(a*(vv+ww)-u*(bv+cw-uxmvymwz))*omc + x*cs + (b*w+v*z-c*v-w*y)*si
|
|
p.y=(b*(uu+ww)-v*(au+cw-uxmvymwz))*omc + y*cs + (c*u-a*w+w*x-u*z)*si
|
|
p.z=(c*(uu+vv)-w*(au+bv-uxmvymwz))*omc + z*cs + (a*v+u*y-b*u-v*x)*si
|
|
|
|
proc scale*(p:var Point3d,fac:float) {.inline.}=
|
|
## Scales a point in place `fac` times with world origo as origin.
|
|
p.x*=fac
|
|
p.y*=fac
|
|
p.z*=fac
|
|
|
|
proc scale*(p:var Point3d,fac:float,org:Point3d){.inline.}=
|
|
## Scales the point in place `fac` times with `org` as origin.
|
|
p.x=(p.x - org.x) * fac + org.x
|
|
p.y=(p.y - org.y) * fac + org.y
|
|
p.z=(p.z - org.z) * fac + org.z
|
|
|
|
proc stretch*(p:var Point3d,facx,facy,facz:float){.inline.}=
|
|
## Scales a point in place non uniformly `facx` , `facy` , `facz` times
|
|
## with world origo as origin.
|
|
p.x*=facx
|
|
p.y*=facy
|
|
p.z*=facz
|
|
|
|
proc stretch*(p:var Point3d,facx,facy,facz:float,org:Point3d){.inline.}=
|
|
## Scales the point in place non uniformly `facx` , `facy` , `facz` times
|
|
## with `org` as origin.
|
|
p.x=(p.x - org.x) * facx + org.x
|
|
p.y=(p.y - org.y) * facy + org.y
|
|
p.z=(p.z - org.z) * facz + org.z
|
|
|
|
|
|
proc move*(p:var Point3d,dx,dy,dz:float){.inline.}=
|
|
## Translates a point `dx` , `dy` , `dz` in place.
|
|
p.x+=dx
|
|
p.y+=dy
|
|
p.z+=dz
|
|
|
|
proc move*(p:var Point3d,v:Vector3d){.inline.}=
|
|
## Translates a point with vector `v` in place.
|
|
p.x+=v.x
|
|
p.y+=v.y
|
|
p.z+=v.z
|
|
|
|
proc area*(a,b,c:Point3d):float {.inline.}=
|
|
## Computes the area of the triangle thru points `a` , `b` and `c`
|
|
|
|
# The area of a planar 3d quadliteral is the magnitude of the cross
|
|
# product of two edge vectors. Taking this time 0.5 gives the triangle area.
|
|
return cross(b-a,c-a).len*0.5
|
|
|