mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 09:24:36 +00:00
620 lines
20 KiB
Nim
620 lines
20 KiB
Nim
#
|
|
#
|
|
# Nim's Runtime Library
|
|
# (c) Copyright 2011 Alexander Mitchell-Robinson
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
## :Author: Alexander Mitchell-Robinson (Amrykid)
|
|
##
|
|
## This module implements operations for the built-in `seq`:idx: type which
|
|
## were inspired by functional programming languages. If you are looking for
|
|
## the typical `map` function which applies a function to every element in a
|
|
## sequence, it already exists in the `system <system.html>`_ module in both
|
|
## mutable and immutable styles.
|
|
##
|
|
## Also, for functional style programming you may want to pass `anonymous procs
|
|
## <manual.html#anonymous-procs>`_ to procs like ``filter`` to reduce typing.
|
|
## Anonymous procs can use `the special do notation <manual.html#do-notation>`_
|
|
## which is more convenient in certain situations.
|
|
##
|
|
## **Note**: This interface will change as soon as the compiler supports
|
|
## closures and proper coroutines.
|
|
|
|
when not defined(nimhygiene):
|
|
{.pragma: dirty.}
|
|
|
|
proc concat*[T](seqs: varargs[seq[T]]): seq[T] =
|
|
## Takes several sequences' items and returns them inside a new sequence.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## s1 = @[1, 2, 3]
|
|
## s2 = @[4, 5]
|
|
## s3 = @[6, 7]
|
|
## total = concat(s1, s2, s3)
|
|
## assert total == @[1, 2, 3, 4, 5, 6, 7]
|
|
var L = 0
|
|
for seqitm in items(seqs): inc(L, len(seqitm))
|
|
newSeq(result, L)
|
|
var i = 0
|
|
for s in items(seqs):
|
|
for itm in items(s):
|
|
result[i] = itm
|
|
inc(i)
|
|
|
|
proc repeat*[T](s: seq[T], n: Natural): seq[T] =
|
|
## Returns a new sequence with the items of `s` repeated `n` times.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block:
|
|
##
|
|
## let
|
|
## s = @[1, 2, 3]
|
|
## total = s.repeat(3)
|
|
## assert total == @[1, 2, 3, 1, 2, 3, 1, 2, 3]
|
|
result = newSeq[T](n * s.len)
|
|
var o = 0
|
|
for x in 1..n:
|
|
for e in s:
|
|
result[o] = e
|
|
inc o
|
|
|
|
proc deduplicate*[T](seq1: seq[T]): seq[T] =
|
|
## Returns a new sequence without duplicates.
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
|
|
## dup2 = @["a", "a", "c", "d", "d"]
|
|
## unique1 = deduplicate(dup1)
|
|
## unique2 = deduplicate(dup2)
|
|
## assert unique1 == @[1, 3, 4, 2, 8]
|
|
## assert unique2 == @["a", "c", "d"]
|
|
result = @[]
|
|
for itm in items(seq1):
|
|
if not result.contains(itm): result.add(itm)
|
|
|
|
{.deprecated: [distnct: deduplicate].}
|
|
|
|
proc zip*[S, T](seq1: seq[S], seq2: seq[T]): seq[tuple[a: S, b: T]] =
|
|
## Returns a new sequence with a combination of the two input sequences.
|
|
##
|
|
## For convenience you can access the returned tuples through the named
|
|
## fields `a` and `b`. If one sequence is shorter, the remaining items in the
|
|
## longer sequence are discarded. Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## short = @[1, 2, 3]
|
|
## long = @[6, 5, 4, 3, 2, 1]
|
|
## words = @["one", "two", "three"]
|
|
## zip1 = zip(short, long)
|
|
## zip2 = zip(short, words)
|
|
## assert zip1 == @[(1, 6), (2, 5), (3, 4)]
|
|
## assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
|
|
## assert zip1[2].b == 4
|
|
## assert zip2[2].b == "three"
|
|
var m = min(seq1.len, seq2.len)
|
|
newSeq(result, m)
|
|
for i in 0 .. m-1: result[i] = (seq1[i], seq2[i])
|
|
|
|
proc distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
|
|
## Splits and distributes a sequence `s` into `num` sub sequences.
|
|
##
|
|
## Returns a sequence of `num` sequences. For some input values this is the
|
|
## inverse of the `concat <#concat>`_ proc. The proc will assert in debug
|
|
## builds if `s` is nil or `num` is less than one, and will likely crash on
|
|
## release builds. The input sequence `s` can be empty, which will produce
|
|
## `num` empty sequences.
|
|
##
|
|
## If `spread` is false and the length of `s` is not a multiple of `num`, the
|
|
## proc will max out the first sub sequences with ``1 + len(s) div num``
|
|
## entries, leaving the remainder of elements to the last sequence.
|
|
##
|
|
## On the other hand, if `spread` is true, the proc will distribute evenly
|
|
## the remainder of the division across all sequences, which makes the result
|
|
## more suited to multithreading where you are passing equal sized work units
|
|
## to a thread pool and want to maximize core usage.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let numbers = @[1, 2, 3, 4, 5, 6, 7]
|
|
## assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
|
|
## assert numbers.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]]
|
|
## assert numbers.distribute(6)[0] == @[1, 2]
|
|
## assert numbers.distribute(6)[5] == @[7]
|
|
assert(not s.isNil, "`s` can't be nil")
|
|
if num < 2:
|
|
result = @[s]
|
|
return
|
|
|
|
let num = int(num) # XXX probably only needed because of .. bug
|
|
|
|
# Create the result and calculate the stride size and the remainder if any.
|
|
result = newSeq[seq[T]](num)
|
|
var
|
|
stride = s.len div num
|
|
first = 0
|
|
last = 0
|
|
extra = s.len mod num
|
|
|
|
if extra == 0 or spread == false:
|
|
# Use an algorithm which overcounts the stride and minimizes reading limits.
|
|
if extra > 0: inc(stride)
|
|
|
|
for i in 0 .. <num:
|
|
result[i] = newSeq[T]()
|
|
for g in first .. <min(s.len, first + stride):
|
|
result[i].add(s[g])
|
|
first += stride
|
|
|
|
else:
|
|
# Use an undercounting algorithm which *adds* the remainder each iteration.
|
|
for i in 0 .. <num:
|
|
last = first + stride
|
|
if extra > 0:
|
|
extra -= 1
|
|
inc(last)
|
|
|
|
result[i] = newSeq[T]()
|
|
for g in first .. <last:
|
|
result[i].add(s[g])
|
|
first = last
|
|
|
|
|
|
|
|
iterator filter*[T](seq1: seq[T], pred: proc(item: T): bool {.closure.}): T =
|
|
## Iterates through a sequence and yields every item that fulfills the
|
|
## predicate.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let numbers = @[1, 4, 5, 8, 9, 7, 4]
|
|
## for n in filter(numbers, proc (x: int): bool = x mod 2 == 0):
|
|
## echo($n)
|
|
## # echoes 4, 8, 4 in separate lines
|
|
for i in countup(0, len(seq1)-1):
|
|
var item = seq1[i]
|
|
if pred(item): yield seq1[i]
|
|
|
|
proc filter*[T](seq1: seq[T], pred: proc(item: T): bool {.closure.}): seq[T] =
|
|
## Returns a new sequence with all the items that fulfilled the predicate.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## colors = @["red", "yellow", "black"]
|
|
## f1 = filter(colors, proc(x: string): bool = x.len < 6)
|
|
## f2 = filter(colors) do (x: string) -> bool : x.len > 5
|
|
## assert f1 == @["red", "black"]
|
|
## assert f2 == @["yellow"]
|
|
accumulateResult(filter(seq1, pred))
|
|
|
|
proc keepIf*[T](seq1: var seq[T], pred: proc(item: T): bool {.closure.}) =
|
|
## Keeps the items in the passed sequence if they fulfilled the predicate.
|
|
## Same as the ``filter`` proc, but modifies the sequence directly.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1]
|
|
## keepIf(floats, proc(x: float): bool = x > 10)
|
|
## assert floats == @[13.0, 12.5, 10.1]
|
|
var pos = 0
|
|
for i in 0 .. <len(seq1):
|
|
if pred(seq1[i]):
|
|
if pos != i:
|
|
seq1[pos] = seq1[i]
|
|
inc(pos)
|
|
setLen(seq1, pos)
|
|
|
|
proc delete*[T](s: var seq[T]; first, last: Natural) =
|
|
## Deletes in `s` the items at position `first` .. `last`. This modifies
|
|
## `s` itself, it does not return a copy.
|
|
##
|
|
## Example:
|
|
##
|
|
##.. code-block::
|
|
## let outcome = @[1,1,1,1,1,1,1,1]
|
|
## var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
|
|
## dest.delete(3, 8)
|
|
## assert outcome == dest
|
|
|
|
var i = first
|
|
var j = last+1
|
|
var newLen = len(s)-j+i
|
|
while i < newLen:
|
|
s[i].shallowCopy(s[j])
|
|
inc(i)
|
|
inc(j)
|
|
setLen(s, newLen)
|
|
|
|
proc insert*[T](dest: var seq[T], src: openArray[T], pos=0) =
|
|
## Inserts items from `src` into `dest` at position `pos`. This modifies
|
|
## `dest` itself, it does not return a copy.
|
|
##
|
|
## Example:
|
|
##
|
|
##.. code-block::
|
|
## var dest = @[1,1,1,1,1,1,1,1]
|
|
## let
|
|
## src = @[2,2,2,2,2,2]
|
|
## outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
|
|
## dest.insert(src, 3)
|
|
## assert dest == outcome
|
|
|
|
var j = len(dest) - 1
|
|
var i = len(dest) + len(src) - 1
|
|
dest.setLen(i + 1)
|
|
|
|
# Move items after `pos` to the end of the sequence.
|
|
while j >= pos:
|
|
dest[i].shallowCopy(dest[j])
|
|
dec(i)
|
|
dec(j)
|
|
# Insert items from `dest` into `dest` at `pos`
|
|
inc(j)
|
|
for item in src:
|
|
dest[j] = item
|
|
inc(j)
|
|
|
|
|
|
template filterIt*(seq1, pred: expr): expr {.immediate.} =
|
|
## Returns a new sequence with all the items that fulfilled the predicate.
|
|
##
|
|
## Unlike the `proc` version, the predicate needs to be an expression using
|
|
## the ``it`` variable for testing, like: ``filterIt("abcxyz", it == 'x')``.
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
|
|
## acceptable = filterIt(temperatures, it < 50 and it > -10)
|
|
## notAcceptable = filterIt(temperatures, it > 50 or it < -10)
|
|
## assert acceptable == @[-2.0, 24.5, 44.31]
|
|
## assert notAcceptable == @[-272.15, 99.9, -113.44]
|
|
var result {.gensym.}: type(seq1) = @[]
|
|
for it {.inject.} in items(seq1):
|
|
if pred: result.add(it)
|
|
result
|
|
|
|
template keepItIf*(varSeq, pred: expr) =
|
|
## Convenience template around the ``keepIf`` proc to reduce typing.
|
|
##
|
|
## Unlike the `proc` version, the predicate needs to be an expression using
|
|
## the ``it`` variable for testing, like: ``keepItIf("abcxyz", it == 'x')``.
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## var candidates = @["foo", "bar", "baz", "foobar"]
|
|
## keepItIf(candidates, it.len == 3 and it[0] == 'b')
|
|
## assert candidates == @["bar", "baz"]
|
|
var pos = 0
|
|
for i in 0 .. <len(varSeq):
|
|
let it {.inject.} = varSeq[i]
|
|
if pred:
|
|
if pos != i:
|
|
varSeq[pos] = varSeq[i]
|
|
inc(pos)
|
|
setLen(varSeq, pos)
|
|
|
|
|
|
template toSeq*(iter: expr): expr {.immediate.} =
|
|
## Transforms any iterator into a sequence.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## numeric = @[1, 2, 3, 4, 5, 6, 7, 8, 9]
|
|
## odd_numbers = toSeq(filter(numeric) do (x: int) -> bool:
|
|
## if x mod 2 == 1:
|
|
## result = true)
|
|
## assert odd_numbers == @[1, 3, 5, 7, 9]
|
|
##
|
|
## **Note**: Since this is an immediate macro, you cannot always invoke this
|
|
## as ``x.toSeq``, depending on the ``x``.
|
|
## See `this <manual.html#limitations-of-the-method-call-syntax>`_
|
|
## for an explanation.
|
|
var result {.gensym.}: seq[type(iter)] = @[]
|
|
for x in iter: add(result, x)
|
|
result
|
|
|
|
template foldl*(sequence, operation: expr): expr =
|
|
## Template to fold a sequence from left to right, returning the accumulation.
|
|
##
|
|
## The sequence is required to have at least a single element. Debug versions
|
|
## of your program will assert in this situation but release versions will
|
|
## happily go ahead. If the sequence has a single element it will be returned
|
|
## without applying ``operation``.
|
|
##
|
|
## The ``operation`` parameter should be an expression which uses the
|
|
## variables ``a`` and ``b`` for each step of the fold. Since this is a left
|
|
## fold, for non associative binary operations like subtraction think that
|
|
## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) -
|
|
## 3). Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## numbers = @[5, 9, 11]
|
|
## addition = foldl(numbers, a + b)
|
|
## subtraction = foldl(numbers, a - b)
|
|
## multiplication = foldl(numbers, a * b)
|
|
## words = @["nim", "is", "cool"]
|
|
## concatenation = foldl(words, a & b)
|
|
## assert addition == 25, "Addition is (((5)+9)+11)"
|
|
## assert subtraction == -15, "Subtraction is (((5)-9)-11)"
|
|
## assert multiplication == 495, "Multiplication is (((5)*9)*11)"
|
|
## assert concatenation == "nimiscool"
|
|
assert sequence.len > 0, "Can't fold empty sequences"
|
|
var result {.gensym.}: type(sequence[0])
|
|
result = sequence[0]
|
|
for i in countup(1, sequence.len - 1):
|
|
let
|
|
a {.inject.} = result
|
|
b {.inject.} = sequence[i]
|
|
result = operation
|
|
result
|
|
|
|
template foldr*(sequence, operation: expr): expr =
|
|
## Template to fold a sequence from right to left, returning the accumulation.
|
|
##
|
|
## The sequence is required to have at least a single element. Debug versions
|
|
## of your program will assert in this situation but release versions will
|
|
## happily go ahead. If the sequence has a single element it will be returned
|
|
## without applying ``operation``.
|
|
##
|
|
## The ``operation`` parameter should be an expression which uses the
|
|
## variables ``a`` and ``b`` for each step of the fold. Since this is a right
|
|
## fold, for non associative binary operations like subtraction think that
|
|
## the sequence of numbers 1, 2 and 3 will be parenthesized as (1 - (2 -
|
|
## (3))). Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## numbers = @[5, 9, 11]
|
|
## addition = foldr(numbers, a + b)
|
|
## subtraction = foldr(numbers, a - b)
|
|
## multiplication = foldr(numbers, a * b)
|
|
## words = @["nim", "is", "cool"]
|
|
## concatenation = foldr(words, a & b)
|
|
## assert addition == 25, "Addition is (5+(9+(11)))"
|
|
## assert subtraction == 7, "Subtraction is (5-(9-(11)))"
|
|
## assert multiplication == 495, "Multiplication is (5*(9*(11)))"
|
|
## assert concatenation == "nimiscool"
|
|
assert sequence.len > 0, "Can't fold empty sequences"
|
|
var result {.gensym.}: type(sequence[0])
|
|
result = sequence[sequence.len - 1]
|
|
for i in countdown(sequence.len - 2, 0):
|
|
let
|
|
a {.inject.} = sequence[i]
|
|
b {.inject.} = result
|
|
result = operation
|
|
result
|
|
|
|
template mapIt*(seq1, typ, op: expr): expr =
|
|
## Convenience template around the ``map`` proc to reduce typing.
|
|
##
|
|
## The template injects the ``it`` variable which you can use directly in an
|
|
## expression. You also need to pass as `typ` the type of the expression,
|
|
## since the new returned sequence can have a different type than the
|
|
## original. Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## nums = @[1, 2, 3, 4]
|
|
## strings = nums.mapIt(string, $(4 * it))
|
|
## assert strings == @["4", "8", "12", "16"]
|
|
var result {.gensym.}: seq[typ] = @[]
|
|
for it {.inject.} in items(seq1):
|
|
result.add(op)
|
|
result
|
|
|
|
template mapIt*(varSeq, op: expr) =
|
|
## Convenience template around the mutable ``map`` proc to reduce typing.
|
|
##
|
|
## The template injects the ``it`` variable which you can use directly in an
|
|
## expression. The expression has to return the same type as the sequence you
|
|
## are mutating. Example:
|
|
##
|
|
## .. code-block::
|
|
## var nums = @[1, 2, 3, 4]
|
|
## nums.mapIt(it * 3)
|
|
## assert nums[0] + nums[3] == 15
|
|
for i in 0 .. <len(varSeq):
|
|
let it {.inject.} = varSeq[i]
|
|
varSeq[i] = op
|
|
|
|
template newSeqWith*(len: int, init: expr): expr =
|
|
## creates a new sequence, calling `init` to initialize each value. Example:
|
|
##
|
|
## .. code-block::
|
|
## var seq2D = newSeqWith(20, newSeq[bool](10))
|
|
## seq2D[0][0] = true
|
|
## seq2D[1][0] = true
|
|
## seq2D[0][1] = true
|
|
##
|
|
## import math
|
|
## var seqRand = newSeqWith(20, random(10))
|
|
## echo seqRand
|
|
var result {.gensym.} = newSeq[type(init)](len)
|
|
for i in 0 .. <len:
|
|
result[i] = init
|
|
result
|
|
|
|
when isMainModule:
|
|
import strutils
|
|
block: # concat test
|
|
let
|
|
s1 = @[1, 2, 3]
|
|
s2 = @[4, 5]
|
|
s3 = @[6, 7]
|
|
total = concat(s1, s2, s3)
|
|
assert total == @[1, 2, 3, 4, 5, 6, 7]
|
|
|
|
block: # duplicates test
|
|
let
|
|
dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
|
|
dup2 = @["a", "a", "c", "d", "d"]
|
|
unique1 = deduplicate(dup1)
|
|
unique2 = deduplicate(dup2)
|
|
assert unique1 == @[1, 3, 4, 2, 8]
|
|
assert unique2 == @["a", "c", "d"]
|
|
|
|
block: # zip test
|
|
let
|
|
short = @[1, 2, 3]
|
|
long = @[6, 5, 4, 3, 2, 1]
|
|
words = @["one", "two", "three"]
|
|
zip1 = zip(short, long)
|
|
zip2 = zip(short, words)
|
|
assert zip1 == @[(1, 6), (2, 5), (3, 4)]
|
|
assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
|
|
assert zip1[2].b == 4
|
|
assert zip2[2].b == "three"
|
|
|
|
block: # filter proc test
|
|
let
|
|
colors = @["red", "yellow", "black"]
|
|
f1 = filter(colors, proc(x: string): bool = x.len < 6)
|
|
f2 = filter(colors) do (x: string) -> bool : x.len > 5
|
|
assert f1 == @["red", "black"]
|
|
assert f2 == @["yellow"]
|
|
|
|
block: # filter iterator test
|
|
let numbers = @[1, 4, 5, 8, 9, 7, 4]
|
|
assert toSeq(filter(numbers, proc (x: int): bool = x mod 2 == 0)) ==
|
|
@[4, 8, 4]
|
|
|
|
block: # keepIf test
|
|
var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1]
|
|
keepIf(floats, proc(x: float): bool = x > 10)
|
|
assert floats == @[13.0, 12.5, 10.1]
|
|
|
|
block: # filterIt test
|
|
let
|
|
temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
|
|
acceptable = filterIt(temperatures, it < 50 and it > -10)
|
|
notAcceptable = filterIt(temperatures, it > 50 or it < -10)
|
|
assert acceptable == @[-2.0, 24.5, 44.31]
|
|
assert notAcceptable == @[-272.15, 99.9, -113.44]
|
|
|
|
block: # keepItIf test
|
|
var candidates = @["foo", "bar", "baz", "foobar"]
|
|
keepItIf(candidates, it.len == 3 and it[0] == 'b')
|
|
assert candidates == @["bar", "baz"]
|
|
|
|
block: # toSeq test
|
|
let
|
|
numeric = @[1, 2, 3, 4, 5, 6, 7, 8, 9]
|
|
odd_numbers = toSeq(filter(numeric) do (x: int) -> bool:
|
|
if x mod 2 == 1:
|
|
result = true)
|
|
assert odd_numbers == @[1, 3, 5, 7, 9]
|
|
|
|
block: # foldl tests
|
|
let
|
|
numbers = @[5, 9, 11]
|
|
addition = foldl(numbers, a + b)
|
|
subtraction = foldl(numbers, a - b)
|
|
multiplication = foldl(numbers, a * b)
|
|
words = @["nim", "is", "cool"]
|
|
concatenation = foldl(words, a & b)
|
|
assert addition == 25, "Addition is (((5)+9)+11)"
|
|
assert subtraction == -15, "Subtraction is (((5)-9)-11)"
|
|
assert multiplication == 495, "Multiplication is (((5)*9)*11)"
|
|
assert concatenation == "nimiscool"
|
|
|
|
block: # foldr tests
|
|
let
|
|
numbers = @[5, 9, 11]
|
|
addition = foldr(numbers, a + b)
|
|
subtraction = foldr(numbers, a - b)
|
|
multiplication = foldr(numbers, a * b)
|
|
words = @["nim", "is", "cool"]
|
|
concatenation = foldr(words, a & b)
|
|
assert addition == 25, "Addition is (5+(9+(11)))"
|
|
assert subtraction == 7, "Subtraction is (5-(9-(11)))"
|
|
assert multiplication == 495, "Multiplication is (5*(9*(11)))"
|
|
assert concatenation == "nimiscool"
|
|
|
|
block: # delete tests
|
|
let outcome = @[1,1,1,1,1,1,1,1]
|
|
var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
|
|
dest.delete(3, 8)
|
|
assert outcome == dest, """\
|
|
Deleting range 3-9 from [1,1,1,2,2,2,2,2,2,1,1,1,1,1]
|
|
is [1,1,1,1,1,1,1,1]"""
|
|
|
|
block: # insert tests
|
|
var dest = @[1,1,1,1,1,1,1,1]
|
|
let
|
|
src = @[2,2,2,2,2,2]
|
|
outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
|
|
dest.insert(src, 3)
|
|
assert dest == outcome, """\
|
|
Inserting [2,2,2,2,2,2] into [1,1,1,1,1,1,1,1]
|
|
at 3 is [1,1,1,2,2,2,2,2,2,1,1,1,1,1]"""
|
|
|
|
block: # mapIt tests
|
|
var
|
|
nums = @[1, 2, 3, 4]
|
|
strings = nums.mapIt(string, $(4 * it))
|
|
nums.mapIt(it * 3)
|
|
assert nums[0] + nums[3] == 15
|
|
|
|
block: # distribute tests
|
|
let numbers = @[1, 2, 3, 4, 5, 6, 7]
|
|
doAssert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
|
|
doAssert numbers.distribute(6)[0] == @[1, 2]
|
|
doAssert numbers.distribute(6)[5] == @[7]
|
|
let a = @[1, 2, 3, 4, 5, 6, 7]
|
|
doAssert a.distribute(1, true) == @[@[1, 2, 3, 4, 5, 6, 7]]
|
|
doAssert a.distribute(1, false) == @[@[1, 2, 3, 4, 5, 6, 7]]
|
|
doAssert a.distribute(2, true) == @[@[1, 2, 3, 4], @[5, 6, 7]]
|
|
doAssert a.distribute(2, false) == @[@[1, 2, 3, 4], @[5, 6, 7]]
|
|
doAssert a.distribute(3, true) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
|
|
doAssert a.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]]
|
|
doAssert a.distribute(4, true) == @[@[1, 2], @[3, 4], @[5, 6], @[7]]
|
|
doAssert a.distribute(4, false) == @[@[1, 2], @[3, 4], @[5, 6], @[7]]
|
|
doAssert a.distribute(5, true) == @[@[1, 2], @[3, 4], @[5], @[6], @[7]]
|
|
doAssert a.distribute(5, false) == @[@[1, 2], @[3, 4], @[5, 6], @[7], @[]]
|
|
doAssert a.distribute(6, true) == @[@[1, 2], @[3], @[4], @[5], @[6], @[7]]
|
|
doAssert a.distribute(6, false) == @[
|
|
@[1, 2], @[3, 4], @[5, 6], @[7], @[], @[]]
|
|
doAssert a.distribute(8, false) == a.distribute(8, true)
|
|
doAssert a.distribute(90, false) == a.distribute(90, true)
|
|
var b = @[0]
|
|
for f in 1 .. 25: b.add(f)
|
|
doAssert b.distribute(5, true)[4].len == 5
|
|
doAssert b.distribute(5, false)[4].len == 2
|
|
|
|
block: # newSeqWith tests
|
|
var seq2D = newSeqWith(4, newSeq[bool](2))
|
|
seq2D[0][0] = true
|
|
seq2D[1][0] = true
|
|
seq2D[0][1] = true
|
|
doAssert seq2D == @[@[true, true], @[true, false], @[false, false], @[false, false]]
|
|
|
|
block: # repeat tests
|
|
let
|
|
a = @[1, 2, 3]
|
|
b: seq[int] = @[]
|
|
|
|
doAssert a.repeat(3) == @[1, 2, 3, 1, 2, 3, 1, 2, 3]
|
|
doAssert a.repeat(0) == @[]
|
|
#doAssert a.repeat(-1) == @[] # will not compile!
|
|
doAssert b.repeat(3) == @[]
|
|
|
|
when not defined(testing):
|
|
echo "Finished doc tests"
|