mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 09:24:36 +00:00
482 lines
17 KiB
Nim
482 lines
17 KiB
Nim
#
|
|
#
|
|
# Nim's Runtime Library
|
|
# (c) Copyright 2015 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
## Constructive mathematics is naturally typed. -- Simon Thompson
|
|
##
|
|
## Basic math routines for Nim.
|
|
## This module is available for the `JavaScript target
|
|
## <backends.html#the-javascript-target>`_.
|
|
##
|
|
## Note that the trigonometric functions naturally operate on radians.
|
|
## The helper functions `degToRad` and `radToDeg` provide conversion
|
|
## between radians and degrees.
|
|
|
|
include "system/inclrtl"
|
|
{.push debugger:off .} # the user does not want to trace a part
|
|
# of the standard library!
|
|
|
|
proc binom*(n, k: int): int {.noSideEffect.} =
|
|
## Computes the binomial coefficient
|
|
if k <= 0: return 1
|
|
if 2*k > n: return binom(n, n-k)
|
|
result = n
|
|
for i in countup(2, k):
|
|
result = (result * (n + 1 - i)) div i
|
|
|
|
proc fac*(n: int): int {.noSideEffect.} =
|
|
## Computes the faculty/factorial function.
|
|
result = 1
|
|
for i in countup(2, n):
|
|
result = result * i
|
|
|
|
{.push checks:off, line_dir:off, stack_trace:off.}
|
|
|
|
when defined(Posix) and not defined(haiku):
|
|
{.passl: "-lm".}
|
|
when not defined(js) and not defined(nimscript):
|
|
import times
|
|
|
|
const
|
|
PI* = 3.1415926535897932384626433 ## the circle constant PI (Ludolph's number)
|
|
E* = 2.71828182845904523536028747 ## Euler's number
|
|
|
|
MaxFloat64Precision* = 16 ## maximum number of meaningful digits
|
|
## after the decimal point for Nim's
|
|
## ``float64`` type.
|
|
MaxFloat32Precision* = 8 ## maximum number of meaningful digits
|
|
## after the decimal point for Nim's
|
|
## ``float32`` type.
|
|
MaxFloatPrecision* = MaxFloat64Precision ## maximum number of
|
|
## meaningful digits
|
|
## after the decimal point
|
|
## for Nim's ``float`` type.
|
|
RadPerDeg = PI / 180.0 ## number of radians per degree
|
|
|
|
type
|
|
FloatClass* = enum ## describes the class a floating point value belongs to.
|
|
## This is the type that is returned by `classify`.
|
|
fcNormal, ## value is an ordinary nonzero floating point value
|
|
fcSubnormal, ## value is a subnormal (a very small) floating point value
|
|
fcZero, ## value is zero
|
|
fcNegZero, ## value is the negative zero
|
|
fcNan, ## value is Not-A-Number (NAN)
|
|
fcInf, ## value is positive infinity
|
|
fcNegInf ## value is negative infinity
|
|
|
|
proc classify*(x: float): FloatClass =
|
|
## Classifies a floating point value. Returns `x`'s class as specified by
|
|
## `FloatClass`.
|
|
|
|
# JavaScript and most C compilers have no classify:
|
|
if x == 0.0:
|
|
if 1.0/x == Inf:
|
|
return fcZero
|
|
else:
|
|
return fcNegZero
|
|
if x*0.5 == x:
|
|
if x > 0.0: return fcInf
|
|
else: return fcNegInf
|
|
if x != x: return fcNan
|
|
return fcNormal
|
|
# XXX: fcSubnormal is not detected!
|
|
|
|
proc isPowerOfTwo*(x: int): bool {.noSideEffect.} =
|
|
## Returns true, if `x` is a power of two, false otherwise.
|
|
## Zero and negative numbers are not a power of two.
|
|
return (x > 0) and ((x and (x - 1)) == 0)
|
|
|
|
proc nextPowerOfTwo*(x: int): int {.noSideEffect.} =
|
|
## Returns `x` rounded up to the nearest power of two.
|
|
## Zero and negative numbers get rounded up to 1.
|
|
result = x - 1
|
|
when defined(cpu64):
|
|
result = result or (result shr 32)
|
|
when sizeof(int) > 2:
|
|
result = result or (result shr 16)
|
|
when sizeof(int) > 1:
|
|
result = result or (result shr 8)
|
|
result = result or (result shr 4)
|
|
result = result or (result shr 2)
|
|
result = result or (result shr 1)
|
|
result += 1 + ord(x<=0)
|
|
|
|
proc countBits32*(n: int32): int {.noSideEffect.} =
|
|
## Counts the set bits in `n`.
|
|
var v = n
|
|
v = v -% ((v shr 1'i32) and 0x55555555'i32)
|
|
v = (v and 0x33333333'i32) +% ((v shr 2'i32) and 0x33333333'i32)
|
|
result = ((v +% (v shr 4'i32) and 0xF0F0F0F'i32) *% 0x1010101'i32) shr 24'i32
|
|
|
|
proc sum*[T](x: openArray[T]): T {.noSideEffect.} =
|
|
## Computes the sum of the elements in `x`.
|
|
## If `x` is empty, 0 is returned.
|
|
for i in items(x): result = result + i
|
|
|
|
template toFloat(f: float): float = f
|
|
|
|
proc mean*[T](x: openArray[T]): float {.noSideEffect.} =
|
|
## Computes the mean of the elements in `x`, which are first converted to floats.
|
|
## If `x` is empty, NaN is returned.
|
|
## ``toFloat(x: T): float`` must be defined.
|
|
for i in items(x): result = result + toFloat(i)
|
|
result = result / toFloat(len(x))
|
|
|
|
proc variance*[T](x: openArray[T]): float {.noSideEffect.} =
|
|
## Computes the variance of the elements in `x`.
|
|
## If `x` is empty, NaN is returned.
|
|
## ``toFloat(x: T): float`` must be defined.
|
|
result = 0.0
|
|
var m = mean(x)
|
|
for i in items(x):
|
|
var diff = toFloat(i) - m
|
|
result = result + diff*diff
|
|
result = result / toFloat(len(x))
|
|
|
|
proc random*(max: int): int {.benign.}
|
|
## Returns a random number in the range 0..max-1. The sequence of
|
|
## random number is always the same, unless `randomize` is called
|
|
## which initializes the random number generator with a "random"
|
|
## number, i.e. a tickcount.
|
|
|
|
proc random*(max: float): float {.benign.}
|
|
## Returns a random number in the range 0..<max. The sequence of
|
|
## random number is always the same, unless `randomize` is called
|
|
## which initializes the random number generator with a "random"
|
|
## number, i.e. a tickcount. This has a 16-bit resolution on windows
|
|
## and a 48-bit resolution on other platforms.
|
|
|
|
when not defined(nimscript):
|
|
proc randomize*() {.benign.}
|
|
## Initializes the random number generator with a "random"
|
|
## number, i.e. a tickcount. Note: Does nothing for the JavaScript target,
|
|
## as JavaScript does not support this. Nor does it work for NimScript.
|
|
|
|
proc randomize*(seed: int) {.benign.}
|
|
## Initializes the random number generator with a specific seed.
|
|
## Note: Does nothing for the JavaScript target,
|
|
## as JavaScript does not support this.
|
|
|
|
{.push noSideEffect.}
|
|
when not defined(JS):
|
|
proc sqrt*(x: float): float {.importc: "sqrt", header: "<math.h>".}
|
|
## Computes the square root of `x`.
|
|
proc cbrt*(x: float): float {.importc: "cbrt", header: "<math.h>".}
|
|
## Computes the cubic root of `x`
|
|
|
|
proc ln*(x: float): float {.importc: "log", header: "<math.h>".}
|
|
## Computes the natural log of `x`
|
|
proc log10*(x: float): float {.importc: "log10", header: "<math.h>".}
|
|
## Computes the common logarithm (base 10) of `x`
|
|
proc log2*(x: float): float = return ln(x) / ln(2.0)
|
|
## Computes the binary logarithm (base 2) of `x`
|
|
proc exp*(x: float): float {.importc: "exp", header: "<math.h>".}
|
|
## Computes the exponential function of `x` (pow(E, x))
|
|
|
|
proc frexp*(x: float, exponent: var int): float {.
|
|
importc: "frexp", header: "<math.h>".}
|
|
## Split a number into mantissa and exponent.
|
|
## `frexp` calculates the mantissa m (a float greater than or equal to 0.5
|
|
## and less than 1) and the integer value n such that `x` (the original
|
|
## float value) equals m * 2**n. frexp stores n in `exponent` and returns
|
|
## m.
|
|
|
|
proc round*(x: float): int {.importc: "lrint", header: "<math.h>".}
|
|
## Converts a float to an int by rounding.
|
|
|
|
proc arccos*(x: float): float {.importc: "acos", header: "<math.h>".}
|
|
## Computes the arc cosine of `x`
|
|
proc arcsin*(x: float): float {.importc: "asin", header: "<math.h>".}
|
|
## Computes the arc sine of `x`
|
|
proc arctan*(x: float): float {.importc: "atan", header: "<math.h>".}
|
|
## Calculate the arc tangent of `y` / `x`
|
|
proc arctan2*(y, x: float): float {.importc: "atan2", header: "<math.h>".}
|
|
## Calculate the arc tangent of `y` / `x`.
|
|
## `atan2` returns the arc tangent of `y` / `x`; it produces correct
|
|
## results even when the resulting angle is near pi/2 or -pi/2
|
|
## (`x` near 0).
|
|
|
|
proc cos*(x: float): float {.importc: "cos", header: "<math.h>".}
|
|
## Computes the cosine of `x`
|
|
proc cosh*(x: float): float {.importc: "cosh", header: "<math.h>".}
|
|
## Computes the hyperbolic cosine of `x`
|
|
proc hypot*(x, y: float): float {.importc: "hypot", header: "<math.h>".}
|
|
## Computes the hypotenuse of a right-angle triangle with `x` and
|
|
## `y` as its base and height. Equivalent to ``sqrt(x*x + y*y)``.
|
|
|
|
proc sinh*(x: float): float {.importc: "sinh", header: "<math.h>".}
|
|
## Computes the hyperbolic sine of `x`
|
|
proc sin*(x: float): float {.importc: "sin", header: "<math.h>".}
|
|
## Computes the sine of `x`
|
|
proc tan*(x: float): float {.importc: "tan", header: "<math.h>".}
|
|
## Computes the tangent of `x`
|
|
proc tanh*(x: float): float {.importc: "tanh", header: "<math.h>".}
|
|
## Computes the hyperbolic tangent of `x`
|
|
proc pow*(x, y: float): float {.importc: "pow", header: "<math.h>".}
|
|
## Computes `x` to power of `y`.
|
|
|
|
proc erf*(x: float): float {.importc: "erf", header: "<math.h>".}
|
|
## The error function
|
|
proc erfc*(x: float): float {.importc: "erfc", header: "<math.h>".}
|
|
## The complementary error function
|
|
|
|
proc lgamma*(x: float): float {.importc: "lgamma", header: "<math.h>".}
|
|
## Natural log of the gamma function
|
|
proc tgamma*(x: float): float {.importc: "tgamma", header: "<math.h>".}
|
|
## The gamma function
|
|
|
|
# C procs:
|
|
when defined(vcc) and false:
|
|
# The "secure" random, available from Windows XP
|
|
# https://msdn.microsoft.com/en-us/library/sxtz2fa8.aspx
|
|
# Present in some variants of MinGW but not enough to justify
|
|
# `when defined(windows)` yet
|
|
proc rand_s(val: var cuint) {.importc: "rand_s", header: "<stdlib.h>".}
|
|
# To behave like the normal version
|
|
proc rand(): cuint = rand_s(result)
|
|
else:
|
|
proc srand(seed: cint) {.importc: "srand", header: "<stdlib.h>".}
|
|
proc rand(): cint {.importc: "rand", header: "<stdlib.h>".}
|
|
|
|
when not defined(windows):
|
|
proc srand48(seed: clong) {.importc: "srand48", header: "<stdlib.h>".}
|
|
proc drand48(): float {.importc: "drand48", header: "<stdlib.h>".}
|
|
proc random(max: float): float =
|
|
result = drand48() * max
|
|
else:
|
|
when defined(vcc): # Windows with Visual C
|
|
proc random(max: float): float =
|
|
# we are hardcoding this because
|
|
# importc-ing macros is extremely problematic
|
|
# and because the value is publicly documented
|
|
# on MSDN and very unlikely to change
|
|
# See https://msdn.microsoft.com/en-us/library/296az74e.aspx
|
|
const rand_max = 4294967295 # UINT_MAX
|
|
result = (float(rand()) / float(rand_max)) * max
|
|
proc randomize() = discard
|
|
proc randomize(seed: int) = discard
|
|
else: # Windows with another compiler
|
|
proc random(max: float): float =
|
|
# we are hardcoding this because
|
|
# importc-ing macros is extremely problematic
|
|
# and because the value is publicly documented
|
|
# on MSDN and very unlikely to change
|
|
const rand_max = 32767
|
|
result = (float(rand()) / float(rand_max)) * max
|
|
|
|
when not defined(vcc): # the above code for vcc uses `discard` instead
|
|
# this is either not Windows or is Windows without vcc
|
|
when not defined(nimscript):
|
|
proc randomize() =
|
|
randomize(cast[int](epochTime()))
|
|
proc randomize(seed: int) =
|
|
srand(cint(seed)) # rand_s doesn't use srand
|
|
when declared(srand48): srand48(seed)
|
|
|
|
proc random(max: int): int =
|
|
result = int(rand()) mod max
|
|
|
|
proc trunc*(x: float): float {.importc: "trunc", header: "<math.h>".}
|
|
## Truncates `x` to the decimal point
|
|
##
|
|
## .. code-block:: nim
|
|
## echo trunc(PI) # 3.0
|
|
proc floor*(x: float): float {.importc: "floor", header: "<math.h>".}
|
|
## Computes the floor function (i.e., the largest integer not greater than `x`)
|
|
##
|
|
## .. code-block:: nim
|
|
## echo floor(-3.5) ## -4.0
|
|
proc ceil*(x: float): float {.importc: "ceil", header: "<math.h>".}
|
|
## Computes the ceiling function (i.e., the smallest integer not less than `x`)
|
|
##
|
|
## .. code-block:: nim
|
|
## echo ceil(-2.1) ## -2.0
|
|
|
|
proc fmod*(x, y: float): float {.importc: "fmod", header: "<math.h>".}
|
|
## Computes the remainder of `x` divided by `y`
|
|
##
|
|
## .. code-block:: nim
|
|
## echo fmod(-2.5, 0.3) ## -0.1
|
|
|
|
else:
|
|
proc mathrandom(): float {.importc: "Math.random", nodecl.}
|
|
proc floor*(x: float): float {.importc: "Math.floor", nodecl.}
|
|
proc ceil*(x: float): float {.importc: "Math.ceil", nodecl.}
|
|
proc random(max: int): int =
|
|
result = int(floor(mathrandom() * float(max)))
|
|
proc random(max: float): float =
|
|
result = float(mathrandom() * float(max))
|
|
proc randomize() = discard
|
|
proc randomize(seed: int) = discard
|
|
|
|
proc sqrt*(x: float): float {.importc: "Math.sqrt", nodecl.}
|
|
proc ln*(x: float): float {.importc: "Math.log", nodecl.}
|
|
proc log10*(x: float): float = return ln(x) / ln(10.0)
|
|
proc log2*(x: float): float = return ln(x) / ln(2.0)
|
|
|
|
proc exp*(x: float): float {.importc: "Math.exp", nodecl.}
|
|
proc round*(x: float): int {.importc: "Math.round", nodecl.}
|
|
proc pow*(x, y: float): float {.importc: "Math.pow", nodecl.}
|
|
|
|
proc frexp*(x: float, exponent: var int): float =
|
|
if x == 0.0:
|
|
exponent = 0
|
|
result = 0.0
|
|
elif x < 0.0:
|
|
result = -frexp(-x, exponent)
|
|
else:
|
|
var ex = floor(log2(x))
|
|
exponent = round(ex)
|
|
result = x / pow(2.0, ex)
|
|
|
|
proc arccos*(x: float): float {.importc: "Math.acos", nodecl.}
|
|
proc arcsin*(x: float): float {.importc: "Math.asin", nodecl.}
|
|
proc arctan*(x: float): float {.importc: "Math.atan", nodecl.}
|
|
proc arctan2*(y, x: float): float {.importc: "Math.atan2", nodecl.}
|
|
|
|
proc cos*(x: float): float {.importc: "Math.cos", nodecl.}
|
|
proc cosh*(x: float): float = return (exp(x)+exp(-x))*0.5
|
|
proc hypot*(x, y: float): float = return sqrt(x*x + y*y)
|
|
proc sinh*(x: float): float = return (exp(x)-exp(-x))*0.5
|
|
proc sin*(x: float): float {.importc: "Math.sin", nodecl.}
|
|
proc tan*(x: float): float {.importc: "Math.tan", nodecl.}
|
|
proc tanh*(x: float): float =
|
|
var y = exp(2.0*x)
|
|
return (y-1.0)/(y+1.0)
|
|
|
|
{.pop.}
|
|
|
|
proc degToRad*[T: float32|float64](d: T): T {.inline.} =
|
|
## Convert from degrees to radians
|
|
result = T(d) * RadPerDeg
|
|
|
|
proc radToDeg*[T: float32|float64](d: T): T {.inline.} =
|
|
## Convert from radians to degrees
|
|
result = T(d) / RadPerDeg
|
|
|
|
proc `mod`*(x, y: float): float =
|
|
## Computes the modulo operation for float operators. Equivalent
|
|
## to ``x - y * floor(x/y)``. Note that the remainder will always
|
|
## have the same sign as the divisor.
|
|
##
|
|
## .. code-block:: nim
|
|
## echo (4.0 mod -3.1) # -2.2
|
|
result = if y == 0.0: x else: x - y * (x/y).floor
|
|
|
|
proc random*[T](x: Slice[T]): T =
|
|
## For a slice `a .. b` returns a value in the range `a .. b-1`.
|
|
result = random(x.b - x.a) + x.a
|
|
|
|
proc random*[T](a: openArray[T]): T =
|
|
## returns a random element from the openarray `a`.
|
|
result = a[random(a.low..a.len)]
|
|
|
|
type
|
|
RunningStat* = object ## an accumulator for statistical data
|
|
n*: int ## number of pushed data
|
|
sum*, min*, max*, mean*: float ## self-explaining
|
|
oldM, oldS, newS: float
|
|
|
|
{.deprecated: [TFloatClass: FloatClass, TRunningStat: RunningStat].}
|
|
|
|
proc push*(s: var RunningStat, x: float) =
|
|
## pushes a value `x` for processing
|
|
inc(s.n)
|
|
# See Knuth TAOCP vol 2, 3rd edition, page 232
|
|
if s.n == 1:
|
|
s.min = x
|
|
s.max = x
|
|
s.oldM = x
|
|
s.mean = x
|
|
s.oldS = 0.0
|
|
else:
|
|
if s.min > x: s.min = x
|
|
if s.max < x: s.max = x
|
|
s.mean = s.oldM + (x - s.oldM)/toFloat(s.n)
|
|
s.newS = s.oldS + (x - s.oldM)*(x - s.mean)
|
|
|
|
# set up for next iteration:
|
|
s.oldM = s.mean
|
|
s.oldS = s.newS
|
|
s.sum = s.sum + x
|
|
|
|
proc push*(s: var RunningStat, x: int) =
|
|
## pushes a value `x` for processing. `x` is simply converted to ``float``
|
|
## and the other push operation is called.
|
|
push(s, toFloat(x))
|
|
|
|
proc variance*(s: RunningStat): float =
|
|
## computes the current variance of `s`
|
|
if s.n > 1: result = s.newS / (toFloat(s.n - 1))
|
|
|
|
proc standardDeviation*(s: RunningStat): float =
|
|
## computes the current standard deviation of `s`
|
|
result = sqrt(variance(s))
|
|
|
|
{.pop.}
|
|
{.pop.}
|
|
|
|
proc `^`*[T](x, y: T): T =
|
|
## Computes ``x`` to the power ``y`. ``x`` must be non-negative, use
|
|
## `pow <#pow,float,float>` for negative exponents.
|
|
assert y >= 0
|
|
var (x, y) = (x, y)
|
|
result = 1
|
|
|
|
while true:
|
|
if (y and 1) != 0:
|
|
result *= x
|
|
y = y shr 1
|
|
if y == 0:
|
|
break
|
|
x *= x
|
|
|
|
proc gcd*[T](x, y: T): T =
|
|
## Computes the greatest common divisor of ``x`` and ``y``.
|
|
## Note that for floats, the result cannot always be interpreted as
|
|
## "greatest decimal `z` such that ``z*N == x and z*M == y``
|
|
## where N and M are positive integers."
|
|
var (x,y) = (x,y)
|
|
while y != 0:
|
|
x = x mod y
|
|
swap x, y
|
|
abs x
|
|
|
|
proc lcm*[T](x, y: T): T =
|
|
## Computes the least common multiple of ``x`` and ``y``.
|
|
x div gcd(x, y) * y
|
|
|
|
when isMainModule and not defined(JS):
|
|
proc gettime(dummy: ptr cint): cint {.importc: "time", header: "<time.h>".}
|
|
|
|
# Verifies random seed initialization.
|
|
let seed = gettime(nil)
|
|
randomize(seed)
|
|
const SIZE = 10
|
|
var buf : array[0..SIZE, int]
|
|
# Fill the buffer with random values
|
|
for i in 0..SIZE-1:
|
|
buf[i] = random(high(int))
|
|
# Check that the second random calls are the same for each position.
|
|
randomize(seed)
|
|
for i in 0..SIZE-1:
|
|
assert buf[i] == random(high(int)), "non deterministic random seeding"
|
|
|
|
when not defined(testing):
|
|
echo "random values equal after reseeding"
|
|
|
|
# Check for no side effect annotation
|
|
proc mySqrt(num: float): float {.noSideEffect.} =
|
|
return sqrt(num)
|
|
|
|
# check gamma function
|
|
assert(tgamma(5.0) == 24.0) # 4!
|
|
assert(lgamma(1.0) == 0.0) # ln(1.0) == 0.0
|
|
assert(erf(6.0) > erf(5.0))
|
|
assert(erfc(6.0) < erfc(5.0))
|