mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 09:24:36 +00:00
1399 lines
48 KiB
Nim
1399 lines
48 KiB
Nim
#
|
|
#
|
|
# Nim's Runtime Library
|
|
# (c) Copyright 2012 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
# Garbage Collector
|
|
#
|
|
# The basic algorithm is *Deferrent Reference Counting* with cycle detection.
|
|
# This is achieved by combining a Deutsch-Bobrow garbage collector
|
|
# together with Christoper's partial mark-sweep garbage collector.
|
|
#
|
|
# Special care has been taken to avoid recursion as far as possible to avoid
|
|
# stack overflows when traversing deep datastructures. It is well-suited
|
|
# for soft real time applications (like games).
|
|
{.push profiler:off.}
|
|
|
|
const
|
|
CycleIncrease = 2 # is a multiplicative increase
|
|
InitialCycleThreshold = 4*1024*1024 # X MB because cycle checking is slow
|
|
ZctThreshold = 500 # we collect garbage if the ZCT's size
|
|
# reaches this threshold
|
|
# this seems to be a good value
|
|
withRealTime = defined(useRealtimeGC)
|
|
|
|
when withRealTime and not declared(getTicks):
|
|
include "system/timers"
|
|
when defined(memProfiler):
|
|
proc nimProfile(requestedSize: int)
|
|
|
|
const
|
|
rcShift = 6 # the reference count is shifted so we can use
|
|
# the least significat bits for additinal flags:
|
|
|
|
rcAlive = 0b00000 # object is reachable.
|
|
# color *black* in the original paper
|
|
|
|
rcCycleCandidate = 0b00001 # possible root of a cycle. *purple*
|
|
|
|
rcDecRefApplied = 0b00010 # the first dec-ref phase of the
|
|
# collector was already applied to this
|
|
# object. *gray*
|
|
|
|
rcMaybeDead = 0b00011 # this object is a candidate for deletion
|
|
# during the collect cycles algorithm.
|
|
# *white*.
|
|
|
|
rcReallyDead = 0b00100 # this is proved to be garbage
|
|
|
|
rcRetiredBuffer = 0b00101 # this is a seq or string buffer that
|
|
# was replaced by a resize operation.
|
|
# see growObj for details
|
|
|
|
rcColorMask = RefCount(0b00111)
|
|
|
|
rcZct = 0b01000 # already added to ZCT
|
|
rcInCycleRoots = 0b10000 # already buffered as cycle candidate
|
|
rcHasStackRef = 0b100000 # the object had a stack ref in the last
|
|
# cycle collection
|
|
|
|
rcMarkBit = rcHasStackRef # this is currently used for leak detection
|
|
# when traceGC is on
|
|
|
|
rcBufferedAnywhere = rcZct or rcInCycleRoots
|
|
|
|
rcIncrement = 1 shl rcShift # don't touch the color bits
|
|
|
|
const
|
|
NewObjectsAreCycleRoots = true
|
|
# the alternative is to use the old strategy of adding cycle roots
|
|
# in incRef (in the compiler itself, this doesn't change much)
|
|
|
|
IncRefRemovesCandidates = false
|
|
# this is safe only if we can reliably track the fact that the object
|
|
# has stack references. This could be easily done by adding another bit
|
|
# to the refcount field and setting it up in unmarkStackAndRegisters.
|
|
# The bit must also be set for new objects that are not rc1 and it must be
|
|
# examined in the decref loop in collectCycles.
|
|
# XXX: not implemented yet as tests didn't show any improvement from this
|
|
|
|
MarkingSkipsAcyclicObjects = true
|
|
# Acyclic objects can be safely ignored in the mark and scan phases,
|
|
# because they cannot contribute to the internal count.
|
|
# XXX: if we generate specialized `markCyclic` and `markAcyclic`
|
|
# procs we can further optimize this as there won't be need for any
|
|
# checks in the code
|
|
|
|
MinimumStackMarking = false
|
|
# Try to scan only the user stack and ignore the part of the stack
|
|
# belonging to the GC itself. see setStackTop for further info.
|
|
# XXX: still has problems in release mode in the compiler itself.
|
|
# investigate how it affects growObj
|
|
|
|
CollectCyclesStats = false
|
|
|
|
type
|
|
WalkOp = enum
|
|
waPush
|
|
|
|
Finalizer {.compilerproc.} = proc (self: pointer) {.nimcall.}
|
|
# A ref type can have a finalizer that is called before the object's
|
|
# storage is freed.
|
|
|
|
GcStat {.final, pure.} = object
|
|
stackScans: int # number of performed stack scans (for statistics)
|
|
cycleCollections: int # number of performed full collections
|
|
maxThreshold: int # max threshold that has been set
|
|
maxStackSize: int # max stack size
|
|
maxStackCells: int # max stack cells in ``decStack``
|
|
cycleTableSize: int # max entries in cycle table
|
|
maxPause: int64 # max measured GC pause in nanoseconds
|
|
|
|
GcHeap {.final, pure.} = object # this contains the zero count and
|
|
# non-zero count table
|
|
stackBottom: pointer
|
|
stackTop: pointer
|
|
cycleThreshold: int
|
|
zct: CellSeq # the zero count table
|
|
decStack: CellSeq # cells in the stack that are to decref again
|
|
cycleRoots: CellSeq
|
|
tempStack: CellSeq # temporary stack for recursion elimination
|
|
freeStack: CellSeq # objects ready to be freed
|
|
recGcLock: int # prevent recursion via finalizers; no thread lock
|
|
cycleRootsTrimIdx: int # Trimming is a light-weight collection of the
|
|
# cycle roots table that uses a cheap linear scan
|
|
# to find only possitively dead objects.
|
|
# One strategy is to perform it only for new objects
|
|
# allocated between the invocations of collectZCT.
|
|
# This index indicates the start of the range of
|
|
# such new objects within the table.
|
|
when withRealTime:
|
|
maxPause: Nanos # max allowed pause in nanoseconds; active if > 0
|
|
region: MemRegion # garbage collected region
|
|
stat: GcStat
|
|
{.deprecated: [TWalkOp: WalkOp, TFinalizer: Finalizer, TGcStat: GcStat,
|
|
TGcHeap: GcHeap].}
|
|
var
|
|
gch* {.rtlThreadVar.}: GcHeap
|
|
|
|
when not defined(useNimRtl):
|
|
instantiateForRegion(gch.region)
|
|
|
|
template acquire(gch: GcHeap) =
|
|
when hasThreadSupport and hasSharedHeap:
|
|
AcquireSys(HeapLock)
|
|
|
|
template release(gch: GcHeap) =
|
|
when hasThreadSupport and hasSharedHeap:
|
|
releaseSys(HeapLock)
|
|
|
|
template setColor(c: PCell, color) =
|
|
c.refcount = (c.refcount and not rcColorMask) or color
|
|
|
|
template color(c: PCell): expr =
|
|
c.refcount and rcColorMask
|
|
|
|
template isBitDown(c: PCell, bit): expr =
|
|
(c.refcount and bit) == 0
|
|
|
|
template isBitUp(c: PCell, bit): expr =
|
|
(c.refcount and bit) != 0
|
|
|
|
template setBit(c: PCell, bit): expr =
|
|
c.refcount = c.refcount or bit
|
|
|
|
template isDead(c: Pcell): expr =
|
|
c.isBitUp(rcReallyDead) # also covers rcRetiredBuffer
|
|
|
|
template clearBit(c: PCell, bit): expr =
|
|
c.refcount = c.refcount and (not RefCount(bit))
|
|
|
|
when debugGC:
|
|
var gcCollectionIdx = 0
|
|
|
|
proc colorStr(c: PCell): cstring =
|
|
let color = c.color
|
|
case color
|
|
of rcAlive: return "alive"
|
|
of rcMaybeDead: return "maybedead"
|
|
of rcCycleCandidate: return "candidate"
|
|
of rcDecRefApplied: return "marked"
|
|
of rcRetiredBuffer: return "retired"
|
|
of rcReallyDead: return "dead"
|
|
else: return "unknown?"
|
|
|
|
proc inCycleRootsStr(c: PCell): cstring =
|
|
if c.isBitUp(rcInCycleRoots): result = "cycleroot"
|
|
else: result = ""
|
|
|
|
proc inZctStr(c: PCell): cstring =
|
|
if c.isBitUp(rcZct): result = "zct"
|
|
else: result = ""
|
|
|
|
proc writeCell*(msg: CString, c: PCell, force = false) =
|
|
var kind = -1
|
|
if c.typ != nil: kind = ord(c.typ.kind)
|
|
when trackAllocationSource:
|
|
c_fprintf(c_stdout, "[GC %d] %s: %p %d rc=%ld %s %s %s from %s(%ld)\n",
|
|
gcCollectionIdx,
|
|
msg, c, kind, c.refcount shr rcShift,
|
|
c.colorStr, c.inCycleRootsStr, c.inZctStr,
|
|
c.filename, c.line)
|
|
else:
|
|
c_fprintf(c_stdout, "[GC] %s: %p %d rc=%ld\n",
|
|
msg, c, kind, c.refcount shr rcShift)
|
|
|
|
proc addZCT(zct: var CellSeq, c: PCell) {.noinline.} =
|
|
if c.isBitDown(rcZct):
|
|
c.setBit rcZct
|
|
zct.add c
|
|
|
|
template setStackTop(gch) =
|
|
# This must be called immediately after we enter the GC code
|
|
# to minimize the size of the scanned stack. The stack consumed
|
|
# by the GC procs may amount to 200-400 bytes depending on the
|
|
# build settings and this contributes to false-positives
|
|
# in the conservative stack marking
|
|
when MinimumStackMarking:
|
|
var stackTop {.volatile.}: pointer
|
|
gch.stackTop = addr(stackTop)
|
|
|
|
template addCycleRoot(cycleRoots: var CellSeq, c: PCell) =
|
|
if c.color != rcCycleCandidate:
|
|
c.setColor rcCycleCandidate
|
|
|
|
# the object may be buffered already. for example, consider:
|
|
# decref; incref; decref
|
|
if c.isBitDown(rcInCycleRoots):
|
|
c.setBit rcInCycleRoots
|
|
cycleRoots.add c
|
|
|
|
proc cellToUsr(cell: PCell): pointer {.inline.} =
|
|
# convert object (=pointer to refcount) to pointer to userdata
|
|
result = cast[pointer](cast[ByteAddress](cell)+%ByteAddress(sizeof(Cell)))
|
|
|
|
proc usrToCell*(usr: pointer): PCell {.inline.} =
|
|
# convert pointer to userdata to object (=pointer to refcount)
|
|
result = cast[PCell](cast[ByteAddress](usr)-%ByteAddress(sizeof(Cell)))
|
|
|
|
proc canbeCycleRoot(c: PCell): bool {.inline.} =
|
|
result = ntfAcyclic notin c.typ.flags
|
|
|
|
proc extGetCellType(c: pointer): PNimType {.compilerproc.} =
|
|
# used for code generation concerning debugging
|
|
result = usrToCell(c).typ
|
|
|
|
proc internRefcount(p: pointer): int {.exportc: "getRefcount".} =
|
|
result = int(usrToCell(p).refcount) shr rcShift
|
|
|
|
# this that has to equals zero, otherwise we have to round up UnitsPerPage:
|
|
when BitsPerPage mod (sizeof(int)*8) != 0:
|
|
{.error: "(BitsPerPage mod BitsPerUnit) should be zero!".}
|
|
|
|
# forward declarations:
|
|
proc collectCT(gch: var GcHeap)
|
|
proc isOnStack*(p: pointer): bool {.noinline.}
|
|
proc forAllChildren(cell: PCell, op: WalkOp)
|
|
proc doOperation(p: pointer, op: WalkOp)
|
|
proc forAllChildrenAux(dest: pointer, mt: PNimType, op: WalkOp)
|
|
# we need the prototype here for debugging purposes
|
|
|
|
proc prepareDealloc(cell: PCell) =
|
|
if cell.typ.finalizer != nil:
|
|
# the finalizer could invoke something that
|
|
# allocates memory; this could trigger a garbage
|
|
# collection. Since we are already collecting we
|
|
# prevend recursive entering here by a lock.
|
|
# XXX: we should set the cell's children to nil!
|
|
inc(gch.recGcLock)
|
|
(cast[Finalizer](cell.typ.finalizer))(cellToUsr(cell))
|
|
dec(gch.recGcLock)
|
|
|
|
when traceGC:
|
|
# traceGC is a special switch to enable extensive debugging
|
|
type
|
|
CellState = enum
|
|
csAllocated, csFreed
|
|
{.deprecated: [TCellState: CellState].}
|
|
var
|
|
states: array[CellState, CellSet]
|
|
|
|
proc traceCell(c: PCell, state: CellState) =
|
|
case state
|
|
of csAllocated:
|
|
if c in states[csAllocated]:
|
|
writeCell("attempt to alloc an already allocated cell", c)
|
|
sysAssert(false, "traceCell 1")
|
|
excl(states[csFreed], c)
|
|
# writecell("allocated", c)
|
|
of csFreed:
|
|
if c in states[csFreed]:
|
|
writeCell("attempt to free a cell twice", c)
|
|
sysAssert(false, "traceCell 2")
|
|
if c notin states[csAllocated]:
|
|
writeCell("attempt to free not an allocated cell", c)
|
|
sysAssert(false, "traceCell 3")
|
|
excl(states[csAllocated], c)
|
|
# writecell("freed", c)
|
|
incl(states[state], c)
|
|
|
|
proc computeCellWeight(c: PCell): int =
|
|
var x: CellSet
|
|
x.init
|
|
|
|
let startLen = gch.tempStack.len
|
|
c.forAllChildren waPush
|
|
|
|
while startLen != gch.tempStack.len:
|
|
dec gch.tempStack.len
|
|
var c = gch.tempStack.d[gch.tempStack.len]
|
|
if c in states[csFreed]: continue
|
|
inc result
|
|
if c notin x:
|
|
x.incl c
|
|
c.forAllChildren waPush
|
|
|
|
template markChildrenRec(cell) =
|
|
let startLen = gch.tempStack.len
|
|
cell.forAllChildren waPush
|
|
let isMarked = cell.isBitUp(rcMarkBit)
|
|
while startLen != gch.tempStack.len:
|
|
dec gch.tempStack.len
|
|
var c = gch.tempStack.d[gch.tempStack.len]
|
|
if c in states[csFreed]: continue
|
|
if c.isBitDown(rcMarkBit):
|
|
c.setBit rcMarkBit
|
|
c.forAllChildren waPush
|
|
if c.isBitUp(rcMarkBit) and not isMarked:
|
|
writecell("cyclic cell", cell)
|
|
cprintf "Weight %d\n", cell.computeCellWeight
|
|
|
|
proc writeLeakage(onlyRoots: bool) =
|
|
if onlyRoots:
|
|
for c in elements(states[csAllocated]):
|
|
if c notin states[csFreed]:
|
|
markChildrenRec(c)
|
|
var f = 0
|
|
var a = 0
|
|
for c in elements(states[csAllocated]):
|
|
inc a
|
|
if c in states[csFreed]: inc f
|
|
elif c.isBitDown(rcMarkBit):
|
|
writeCell("leak", c)
|
|
cprintf "Weight %d\n", c.computeCellWeight
|
|
cfprintf(cstdout, "Allocations: %ld; freed: %ld\n", a, f)
|
|
|
|
template gcTrace(cell, state: expr): stmt {.immediate.} =
|
|
when logGC: writeCell($state, cell)
|
|
when traceGC: traceCell(cell, state)
|
|
|
|
template WithHeapLock(blk: stmt): stmt =
|
|
when hasThreadSupport and hasSharedHeap: AcquireSys(HeapLock)
|
|
blk
|
|
when hasThreadSupport and hasSharedHeap: ReleaseSys(HeapLock)
|
|
|
|
proc rtlAddCycleRoot(c: PCell) {.rtl, inl.} =
|
|
# we MUST access gch as a global here, because this crosses DLL boundaries!
|
|
WithHeapLock: addCycleRoot(gch.cycleRoots, c)
|
|
|
|
proc rtlAddZCT(c: PCell) {.rtl, inl.} =
|
|
# we MUST access gch as a global here, because this crosses DLL boundaries!
|
|
WithHeapLock: addZCT(gch.zct, c)
|
|
|
|
type
|
|
CyclicMode = enum
|
|
Cyclic,
|
|
Acyclic,
|
|
MaybeCyclic
|
|
|
|
ReleaseType = enum
|
|
AddToZTC
|
|
FreeImmediately
|
|
|
|
HeapType = enum
|
|
LocalHeap
|
|
SharedHeap
|
|
{.deprecated: [TCyclicMode: CyclicMode, TReleaseType: ReleaseType,
|
|
THeapType: HeapType].}
|
|
|
|
template `++` (rc: RefCount, heapType: HeapType): stmt =
|
|
when heapType == SharedHeap:
|
|
discard atomicInc(rc, rcIncrement)
|
|
else:
|
|
inc rc, rcIncrement
|
|
|
|
template `--`(rc: RefCount): expr =
|
|
dec rc, rcIncrement
|
|
rc <% rcIncrement
|
|
|
|
template `--` (rc: RefCount, heapType: HeapType): expr =
|
|
(when heapType == SharedHeap: atomicDec(rc, rcIncrement) <% rcIncrement else: --rc)
|
|
|
|
template doDecRef(cc: PCell,
|
|
heapType = LocalHeap,
|
|
cycleFlag = MaybeCyclic): stmt =
|
|
var c = cc
|
|
sysAssert(isAllocatedPtr(gch.region, c), "decRef: interiorPtr")
|
|
# XXX: move this elesewhere
|
|
|
|
sysAssert(c.refcount >=% rcIncrement, "decRef")
|
|
if c.refcount--(heapType):
|
|
# this is the last reference from the heap
|
|
# add to a zero-count-table that will be matched against stack pointers
|
|
rtlAddZCT(c)
|
|
else:
|
|
when cycleFlag != Acyclic:
|
|
if cycleFlag == Cyclic or canBeCycleRoot(c):
|
|
# a cycle may have been broken
|
|
rtlAddCycleRoot(c)
|
|
|
|
template doIncRef(cc: PCell,
|
|
heapType = LocalHeap,
|
|
cycleFlag = MaybeCyclic): stmt =
|
|
var c = cc
|
|
c.refcount++(heapType)
|
|
when cycleFlag != Acyclic:
|
|
when NewObjectsAreCycleRoots:
|
|
if canbeCycleRoot(c):
|
|
addCycleRoot(gch.cycleRoots, c)
|
|
elif IncRefRemovesCandidates:
|
|
c.setColor rcAlive
|
|
# XXX: this is not really atomic enough!
|
|
|
|
proc nimGCref(p: pointer) {.compilerProc, inline.} = doIncRef(usrToCell(p))
|
|
proc nimGCunref(p: pointer) {.compilerProc, inline.} = doDecRef(usrToCell(p))
|
|
|
|
proc nimGCunrefNoCycle(p: pointer) {.compilerProc, inline.} =
|
|
sysAssert(allocInv(gch.region), "begin nimGCunrefNoCycle")
|
|
var c = usrToCell(p)
|
|
sysAssert(isAllocatedPtr(gch.region, c), "nimGCunrefNoCycle: isAllocatedPtr")
|
|
if c.refcount--(LocalHeap):
|
|
rtlAddZCT(c)
|
|
sysAssert(allocInv(gch.region), "end nimGCunrefNoCycle 2")
|
|
sysAssert(allocInv(gch.region), "end nimGCunrefNoCycle 5")
|
|
|
|
template doAsgnRef(dest: PPointer, src: pointer,
|
|
heapType = LocalHeap, cycleFlag = MaybeCyclic): stmt =
|
|
sysAssert(not isOnStack(dest), "asgnRef")
|
|
# BUGFIX: first incRef then decRef!
|
|
if src != nil: doIncRef(usrToCell(src), heapType, cycleFlag)
|
|
if dest[] != nil: doDecRef(usrToCell(dest[]), heapType, cycleFlag)
|
|
dest[] = src
|
|
|
|
proc asgnRef(dest: PPointer, src: pointer) {.compilerProc, inline.} =
|
|
# the code generator calls this proc!
|
|
doAsgnRef(dest, src, LocalHeap, MaybeCyclic)
|
|
|
|
proc asgnRefNoCycle(dest: PPointer, src: pointer) {.compilerProc, inline.} =
|
|
# the code generator calls this proc if it is known at compile time that no
|
|
# cycle is possible.
|
|
doAsgnRef(dest, src, LocalHeap, Acyclic)
|
|
|
|
proc unsureAsgnRef(dest: PPointer, src: pointer) {.compilerProc.} =
|
|
# unsureAsgnRef updates the reference counters only if dest is not on the
|
|
# stack. It is used by the code generator if it cannot decide wether a
|
|
# reference is in the stack or not (this can happen for var parameters).
|
|
if not isOnStack(dest):
|
|
if src != nil: doIncRef(usrToCell(src))
|
|
# XXX we must detect a shared heap here
|
|
# better idea may be to just eliminate the need for unsureAsgnRef
|
|
#
|
|
# XXX finally use assembler for the stack checking instead!
|
|
# the test for '!= nil' is correct, but I got tired of the segfaults
|
|
# resulting from the crappy stack checking:
|
|
if cast[int](dest[]) >=% PageSize: doDecRef(usrToCell(dest[]))
|
|
else:
|
|
# can't be an interior pointer if it's a stack location!
|
|
sysAssert(interiorAllocatedPtr(gch.region, dest)==nil,
|
|
"stack loc AND interior pointer")
|
|
dest[] = src
|
|
|
|
when hasThreadSupport and hasSharedHeap:
|
|
# shared heap version of the above procs
|
|
proc asgnRefSh(dest: PPointer, src: pointer) {.compilerProc, inline.} =
|
|
doAsgnRef(dest, src, SharedHeap, MaybeCyclic)
|
|
|
|
proc asgnRefNoCycleSh(dest: PPointer, src: pointer) {.compilerProc, inline.} =
|
|
doAsgnRef(dest, src, SharedHeap, Acyclic)
|
|
|
|
proc initGC() =
|
|
when not defined(useNimRtl):
|
|
when traceGC:
|
|
for i in low(CellState)..high(CellState): init(states[i])
|
|
gch.cycleThreshold = InitialCycleThreshold
|
|
gch.stat.stackScans = 0
|
|
gch.stat.cycleCollections = 0
|
|
gch.stat.maxThreshold = 0
|
|
gch.stat.maxStackSize = 0
|
|
gch.stat.maxStackCells = 0
|
|
gch.stat.cycleTableSize = 0
|
|
# init the rt
|
|
init(gch.zct)
|
|
init(gch.tempStack)
|
|
init(gch.freeStack)
|
|
init(gch.cycleRoots)
|
|
init(gch.decStack)
|
|
|
|
proc forAllSlotsAux(dest: pointer, n: ptr TNimNode, op: WalkOp) =
|
|
var d = cast[ByteAddress](dest)
|
|
case n.kind
|
|
of nkSlot: forAllChildrenAux(cast[pointer](d +% n.offset), n.typ, op)
|
|
of nkList:
|
|
for i in 0..n.len-1:
|
|
# inlined for speed
|
|
if n.sons[i].kind == nkSlot:
|
|
if n.sons[i].typ.kind in {tyRef, tyString, tySequence}:
|
|
doOperation(cast[PPointer](d +% n.sons[i].offset)[], op)
|
|
else:
|
|
forAllChildrenAux(cast[pointer](d +% n.sons[i].offset),
|
|
n.sons[i].typ, op)
|
|
else:
|
|
forAllSlotsAux(dest, n.sons[i], op)
|
|
of nkCase:
|
|
var m = selectBranch(dest, n)
|
|
if m != nil: forAllSlotsAux(dest, m, op)
|
|
of nkNone: sysAssert(false, "forAllSlotsAux")
|
|
|
|
proc forAllChildrenAux(dest: pointer, mt: PNimType, op: WalkOp) =
|
|
var d = cast[ByteAddress](dest)
|
|
if dest == nil: return # nothing to do
|
|
if ntfNoRefs notin mt.flags:
|
|
case mt.kind
|
|
of tyRef, tyString, tySequence: # leaf:
|
|
doOperation(cast[PPointer](d)[], op)
|
|
of tyObject, tyTuple:
|
|
forAllSlotsAux(dest, mt.node, op)
|
|
of tyArray, tyArrayConstr, tyOpenArray:
|
|
for i in 0..(mt.size div mt.base.size)-1:
|
|
forAllChildrenAux(cast[pointer](d +% i *% mt.base.size), mt.base, op)
|
|
else: discard
|
|
|
|
proc forAllChildren(cell: PCell, op: WalkOp) =
|
|
sysAssert(cell != nil, "forAllChildren: 1")
|
|
sysAssert(cell.typ != nil, "forAllChildren: 2")
|
|
sysAssert cell.typ.kind in {tyRef, tySequence, tyString}, "forAllChildren: 3"
|
|
let marker = cell.typ.marker
|
|
if marker != nil:
|
|
marker(cellToUsr(cell), op.int)
|
|
else:
|
|
case cell.typ.kind
|
|
of tyRef: # common case
|
|
forAllChildrenAux(cellToUsr(cell), cell.typ.base, op)
|
|
of tySequence:
|
|
var d = cast[ByteAddress](cellToUsr(cell))
|
|
var s = cast[PGenericSeq](d)
|
|
if s != nil:
|
|
let baseAddr = d +% GenericSeqSize
|
|
for i in 0..s.len-1:
|
|
forAllChildrenAux(cast[pointer](baseAddr +% i *% cell.typ.base.size),
|
|
cell.typ.base, op)
|
|
else: discard
|
|
|
|
proc addNewObjToZCT(res: PCell, gch: var GcHeap) {.inline.} =
|
|
# we check the last 8 entries (cache line) for a slot that could be reused.
|
|
# In 63% of all cases we succeed here! But we have to optimize the heck
|
|
# out of this small linear search so that ``newObj`` is not slowed down.
|
|
#
|
|
# Slots to try cache hit
|
|
# 1 32%
|
|
# 4 59%
|
|
# 8 63%
|
|
# 16 66%
|
|
# all slots 68%
|
|
var L = gch.zct.len
|
|
var d = gch.zct.d
|
|
when true:
|
|
# loop unrolled for performance:
|
|
template replaceZctEntry(i: expr) =
|
|
c = d[i]
|
|
if c.refcount >=% rcIncrement:
|
|
c.clearBit(rcZct)
|
|
d[i] = res
|
|
return
|
|
if L > 8:
|
|
var c: PCell
|
|
replaceZctEntry(L-1)
|
|
replaceZctEntry(L-2)
|
|
replaceZctEntry(L-3)
|
|
replaceZctEntry(L-4)
|
|
replaceZctEntry(L-5)
|
|
replaceZctEntry(L-6)
|
|
replaceZctEntry(L-7)
|
|
replaceZctEntry(L-8)
|
|
add(gch.zct, res)
|
|
else:
|
|
d[L] = res
|
|
inc(gch.zct.len)
|
|
else:
|
|
for i in countdown(L-1, max(0, L-8)):
|
|
var c = d[i]
|
|
if c.refcount >=% rcIncrement:
|
|
c.clearBit(rcZct)
|
|
d[i] = res
|
|
return
|
|
add(gch.zct, res)
|
|
|
|
proc rawNewObj(typ: PNimType, size: int, gch: var GcHeap, rc1 = false): pointer =
|
|
# generates a new object and sets its reference counter to 0
|
|
acquire(gch)
|
|
sysAssert(allocInv(gch.region), "rawNewObj begin")
|
|
sysAssert(typ.kind in {tyRef, tyString, tySequence}, "newObj: 1")
|
|
|
|
collectCT(gch)
|
|
sysAssert(allocInv(gch.region), "rawNewObj after collect")
|
|
|
|
var res = cast[PCell](rawAlloc(gch.region, size + sizeof(Cell)))
|
|
sysAssert(allocInv(gch.region), "rawNewObj after rawAlloc")
|
|
|
|
sysAssert((cast[ByteAddress](res) and (MemAlign-1)) == 0, "newObj: 2")
|
|
|
|
res.typ = typ
|
|
|
|
when trackAllocationSource and not hasThreadSupport:
|
|
if framePtr != nil and framePtr.prev != nil and framePtr.prev.prev != nil:
|
|
res.filename = framePtr.prev.prev.filename
|
|
res.line = framePtr.prev.prev.line
|
|
else:
|
|
res.filename = "nofile"
|
|
|
|
if rc1:
|
|
res.refcount = rcIncrement # refcount is 1
|
|
else:
|
|
# its refcount is zero, so add it to the ZCT:
|
|
res.refcount = rcZct
|
|
addNewObjToZCT(res, gch)
|
|
|
|
if NewObjectsAreCycleRoots and canBeCycleRoot(res):
|
|
res.setBit(rcInCycleRoots)
|
|
res.setColor rcCycleCandidate
|
|
gch.cycleRoots.add res
|
|
|
|
sysAssert(isAllocatedPtr(gch.region, res), "newObj: 3")
|
|
|
|
when logGC: writeCell("new cell", res)
|
|
gcTrace(res, csAllocated)
|
|
release(gch)
|
|
result = cellToUsr(res)
|
|
sysAssert(allocInv(gch.region), "rawNewObj end")
|
|
|
|
{.pop.}
|
|
|
|
proc freeCell(gch: var GcHeap, c: PCell) =
|
|
# prepareDealloc(c)
|
|
gcTrace(c, csFreed)
|
|
|
|
when reallyDealloc: rawDealloc(gch.region, c)
|
|
else:
|
|
sysAssert(c.typ != nil, "collectCycles")
|
|
zeroMem(c, sizeof(Cell))
|
|
|
|
template eraseAt(cells: var CellSeq, at: int): stmt =
|
|
cells.d[at] = cells.d[cells.len - 1]
|
|
dec cells.len
|
|
|
|
template trimAt(roots: var CellSeq, at: int): stmt =
|
|
# This will remove a cycle root candidate during trimming.
|
|
# a candidate is removed either because it received a refup and
|
|
# it's no longer a candidate or because it received further refdowns
|
|
# and now it's dead for sure.
|
|
let c = roots.d[at]
|
|
c.clearBit(rcInCycleRoots)
|
|
roots.eraseAt(at)
|
|
if c.isBitUp(rcReallyDead) and c.refcount <% rcIncrement:
|
|
# This case covers both dead objects and retired buffers
|
|
# That's why we must also check the refcount (it may be
|
|
# kept possitive by stack references).
|
|
freeCell(gch, c)
|
|
|
|
proc newObj(typ: PNimType, size: int): pointer {.compilerRtl.} =
|
|
setStackTop(gch)
|
|
result = rawNewObj(typ, size, gch, false)
|
|
zeroMem(result, size)
|
|
when defined(memProfiler): nimProfile(size)
|
|
|
|
proc newObjNoInit(typ: PNimType, size: int): pointer {.compilerRtl.} =
|
|
setStackTop(gch)
|
|
result = rawNewObj(typ, size, gch, false)
|
|
when defined(memProfiler): nimProfile(size)
|
|
|
|
proc newSeq(typ: PNimType, len: int): pointer {.compilerRtl.} =
|
|
setStackTop(gch)
|
|
# `newObj` already uses locks, so no need for them here.
|
|
let size = addInt(mulInt(len, typ.base.size), GenericSeqSize)
|
|
result = newObj(typ, size)
|
|
cast[PGenericSeq](result).len = len
|
|
cast[PGenericSeq](result).reserved = len
|
|
|
|
proc newObjRC1(typ: PNimType, size: int): pointer {.compilerRtl.} =
|
|
setStackTop(gch)
|
|
result = rawNewObj(typ, size, gch, true)
|
|
when defined(memProfiler): nimProfile(size)
|
|
|
|
proc newSeqRC1(typ: PNimType, len: int): pointer {.compilerRtl.} =
|
|
setStackTop(gch)
|
|
let size = addInt(mulInt(len, typ.base.size), GenericSeqSize)
|
|
result = newObjRC1(typ, size)
|
|
cast[PGenericSeq](result).len = len
|
|
cast[PGenericSeq](result).reserved = len
|
|
|
|
proc growObj(old: pointer, newsize: int, gch: var GcHeap): pointer =
|
|
acquire(gch)
|
|
collectCT(gch)
|
|
var ol = usrToCell(old)
|
|
sysAssert(ol.typ != nil, "growObj: 1")
|
|
sysAssert(ol.typ.kind in {tyString, tySequence}, "growObj: 2")
|
|
sysAssert(allocInv(gch.region), "growObj begin")
|
|
|
|
var res = cast[PCell](rawAlloc(gch.region, newsize + sizeof(Cell)))
|
|
var elemSize = if ol.typ.kind != tyString: ol.typ.base.size
|
|
else: 1
|
|
|
|
var oldsize = cast[PGenericSeq](old).len*elemSize + GenericSeqSize
|
|
|
|
# XXX: This should happen outside
|
|
# call user-defined move code
|
|
# call user-defined default constructor
|
|
copyMem(res, ol, oldsize + sizeof(Cell))
|
|
zeroMem(cast[pointer](cast[ByteAddress](res)+% oldsize +% sizeof(Cell)),
|
|
newsize-oldsize)
|
|
|
|
sysAssert((cast[ByteAddress](res) and (MemAlign-1)) == 0, "growObj: 3")
|
|
sysAssert(res.refcount shr rcShift <=% 1, "growObj: 4")
|
|
|
|
when false:
|
|
if ol.isBitUp(rcZct):
|
|
var j = gch.zct.len-1
|
|
var d = gch.zct.d
|
|
while j >= 0:
|
|
if d[j] == ol:
|
|
d[j] = res
|
|
break
|
|
dec(j)
|
|
|
|
if ol.isBitUp(rcInCycleRoots):
|
|
for i in 0 .. <gch.cycleRoots.len:
|
|
if gch.cycleRoots.d[i] == ol:
|
|
eraseAt(gch.cycleRoots, i)
|
|
|
|
freeCell(gch, ol)
|
|
|
|
else:
|
|
# the new buffer inherits the GC state of the old one
|
|
if res.isBitUp(rcZct): gch.zct.add res
|
|
if res.isBitUp(rcInCycleRoots): gch.cycleRoots.add res
|
|
|
|
# Pay attention to what's going on here! We're not releasing the old memory.
|
|
# This is because at this point there may be an interior pointer pointing
|
|
# into this buffer somewhere on the stack (due to `var` parameters now and
|
|
# and `let` and `var:var` stack locations in the future).
|
|
# We'll release the memory in the next GC cycle. If we release it here,
|
|
# we cannot guarantee that no memory will be corrupted when only safe
|
|
# language features are used. Accessing the memory after the seq/string
|
|
# has been invalidated may still result in logic errors in the user code.
|
|
# We may improve on that by protecting the page in debug builds or
|
|
# by providing a warning when we detect a stack pointer into it.
|
|
let bufferFlags = ol.refcount and rcBufferedAnywhere
|
|
if bufferFlags == 0:
|
|
# we need this in order to collect it safely later
|
|
ol.refcount = rcRetiredBuffer or rcZct
|
|
gch.zct.add ol
|
|
else:
|
|
ol.refcount = rcRetiredBuffer or bufferFlags
|
|
|
|
when logGC:
|
|
writeCell("growObj old cell", ol)
|
|
writeCell("growObj new cell", res)
|
|
|
|
gcTrace(res, csAllocated)
|
|
release(gch)
|
|
result = cellToUsr(res)
|
|
sysAssert(allocInv(gch.region), "growObj end")
|
|
when defined(memProfiler): nimProfile(newsize-oldsize)
|
|
|
|
proc growObj(old: pointer, newsize: int): pointer {.rtl.} =
|
|
setStackTop(gch)
|
|
result = growObj(old, newsize, gch)
|
|
|
|
{.push profiler:off.}
|
|
|
|
# ---------------- cycle collector -------------------------------------------
|
|
|
|
proc doOperation(p: pointer, op: WalkOp) =
|
|
if p == nil: return
|
|
var c: PCell = usrToCell(p)
|
|
sysAssert(c != nil, "doOperation: 1")
|
|
gch.tempStack.add c
|
|
|
|
proc nimGCvisit(d: pointer, op: int) {.compilerRtl.} =
|
|
doOperation(d, WalkOp(op))
|
|
|
|
type
|
|
RecursionType = enum
|
|
FromChildren,
|
|
FromRoot
|
|
{.deprecated: [TRecursionType: RecursionType].}
|
|
|
|
proc collectZCT(gch: var GcHeap): bool
|
|
|
|
template pseudoRecursion(typ: RecursionType, body: stmt): stmt =
|
|
discard
|
|
|
|
proc trimCycleRoots(gch: var GcHeap, startIdx = gch.cycleRootsTrimIdx) =
|
|
var i = startIdx
|
|
while i < gch.cycleRoots.len:
|
|
if gch.cycleRoots.d[i].color != rcCycleCandidate:
|
|
gch.cycleRoots.trimAt i
|
|
else:
|
|
inc i
|
|
|
|
gch.cycleRootsTrimIdx = gch.cycleRoots.len
|
|
|
|
# we now use a much simpler and non-recursive algorithm for cycle removal
|
|
proc collectCycles(gch: var GcHeap) =
|
|
if gch.cycleRoots.len == 0: return
|
|
gch.stat.cycleTableSize = max(gch.stat.cycleTableSize, gch.cycleRoots.len)
|
|
|
|
when CollectCyclesStats:
|
|
let l0 = gch.cycleRoots.len
|
|
let tStart = getTicks()
|
|
|
|
var
|
|
decrefs = 0
|
|
increfs = 0
|
|
collected = 0
|
|
maybedeads = 0
|
|
|
|
template ignoreObject(c: PCell): expr =
|
|
# This controls which objects will be ignored in the mark and scan stages
|
|
(when MarkingSkipsAcyclicObjects: not canbeCycleRoot(c) else: false)
|
|
# not canbeCycleRoot(c)
|
|
# false
|
|
# c.isBitUp(rcHasStackRef)
|
|
|
|
template earlyMarkAliveRec(cell) =
|
|
let startLen = gch.tempStack.len
|
|
cell.setColor rcAlive
|
|
cell.forAllChildren waPush
|
|
|
|
while startLen != gch.tempStack.len:
|
|
dec gch.tempStack.len
|
|
var c = gch.tempStack.d[gch.tempStack.len]
|
|
if c.color != rcAlive:
|
|
c.setColor rcAlive
|
|
c.forAllChildren waPush
|
|
|
|
template earlyMarkAlive(stackRoots) =
|
|
# This marks all objects reachable from the stack as alive before any
|
|
# of the other stages is executed. Such objects cannot be garbage and
|
|
# they don't need to participate in the recursive decref/incref.
|
|
for i in 0 .. <stackRoots.len:
|
|
var c = stackRoots.d[i]
|
|
# c.setBit rcHasStackRef
|
|
earlyMarkAliveRec(c)
|
|
|
|
earlyMarkAlive(gch.decStack)
|
|
|
|
when CollectCyclesStats:
|
|
let tAfterEarlyMarkAlive = getTicks()
|
|
|
|
template recursiveDecRef(cell) =
|
|
let startLen = gch.tempStack.len
|
|
cell.setColor rcDecRefApplied
|
|
cell.forAllChildren waPush
|
|
|
|
while startLen != gch.tempStack.len:
|
|
dec gch.tempStack.len
|
|
var c = gch.tempStack.d[gch.tempStack.len]
|
|
if ignoreObject(c): continue
|
|
|
|
sysAssert(c.refcount >=% rcIncrement, "recursive dec ref")
|
|
dec c.refcount, rcIncrement
|
|
inc decrefs
|
|
if c.color != rcDecRefApplied:
|
|
c.setColor rcDecRefApplied
|
|
c.forAllChildren waPush
|
|
|
|
template markRoots(roots) =
|
|
var i = 0
|
|
while i < roots.len:
|
|
if roots.d[i].color == rcCycleCandidate:
|
|
recursiveDecRef(roots.d[i])
|
|
inc i
|
|
else:
|
|
roots.trimAt i
|
|
|
|
markRoots(gch.cycleRoots)
|
|
|
|
when CollectCyclesStats:
|
|
let tAfterMark = getTicks()
|
|
c_printf "COLLECT CYCLES %d: %d/%d\n", gcCollectionIdx, gch.cycleRoots.len, l0
|
|
|
|
template recursiveMarkAlive(cell) =
|
|
let startLen = gch.tempStack.len
|
|
cell.setColor rcAlive
|
|
cell.forAllChildren waPush
|
|
|
|
while startLen != gch.tempStack.len:
|
|
dec gch.tempStack.len
|
|
var c = gch.tempStack.d[gch.tempStack.len]
|
|
if ignoreObject(c): continue
|
|
inc c.refcount, rcIncrement
|
|
inc increfs
|
|
|
|
if c.color != rcAlive:
|
|
c.setColor rcAlive
|
|
c.forAllChildren waPush
|
|
|
|
template scanRoots(roots) =
|
|
for i in 0 .. <roots.len:
|
|
let startLen = gch.tempStack.len
|
|
gch.tempStack.add roots.d[i]
|
|
|
|
while startLen != gch.tempStack.len:
|
|
dec gch.tempStack.len
|
|
var c = gch.tempStack.d[gch.tempStack.len]
|
|
if ignoreObject(c): continue
|
|
if c.color == rcDecRefApplied:
|
|
if c.refcount >=% rcIncrement:
|
|
recursiveMarkAlive(c)
|
|
else:
|
|
# note that this is not necessarily the ultimate
|
|
# destiny of the object. we may still mark it alive
|
|
# later if we encounter another node from where it's
|
|
# reachable.
|
|
c.setColor rcMaybeDead
|
|
inc maybedeads
|
|
c.forAllChildren waPush
|
|
|
|
scanRoots(gch.cycleRoots)
|
|
|
|
when CollectCyclesStats:
|
|
let tAfterScan = getTicks()
|
|
|
|
template collectDead(roots) =
|
|
for i in 0 .. <roots.len:
|
|
var c = roots.d[i]
|
|
c.clearBit(rcInCycleRoots)
|
|
|
|
let startLen = gch.tempStack.len
|
|
gch.tempStack.add c
|
|
|
|
while startLen != gch.tempStack.len:
|
|
dec gch.tempStack.len
|
|
var c = gch.tempStack.d[gch.tempStack.len]
|
|
when MarkingSkipsAcyclicObjects:
|
|
if not canbeCycleRoot(c):
|
|
# This is an acyclic object reachable from a dead cyclic object
|
|
# We must do a normal decref here that may add the acyclic object
|
|
# to the ZCT
|
|
doDecRef(c, LocalHeap, Cyclic)
|
|
continue
|
|
if c.color == rcMaybeDead and not c.isBitUp(rcInCycleRoots):
|
|
c.setColor(rcReallyDead)
|
|
inc collected
|
|
c.forAllChildren waPush
|
|
# we need to postpone the actual deallocation in order to allow
|
|
# the finalizers to run while the data structures are still intact
|
|
gch.freeStack.add c
|
|
prepareDealloc(c)
|
|
|
|
for i in 0 .. <gch.freeStack.len:
|
|
freeCell(gch, gch.freeStack.d[i])
|
|
|
|
collectDead(gch.cycleRoots)
|
|
|
|
when CollectCyclesStats:
|
|
let tFinal = getTicks()
|
|
cprintf "times:\n early mark alive: %d ms\n mark: %d ms\n scan: %d ms\n collect: %d ms\n decrefs: %d\n increfs: %d\n marked dead: %d\n collected: %d\n",
|
|
(tAfterEarlyMarkAlive - tStart) div 1_000_000,
|
|
(tAfterMark - tAfterEarlyMarkAlive) div 1_000_000,
|
|
(tAfterScan - tAfterMark) div 1_000_000,
|
|
(tFinal - tAfterScan) div 1_000_000,
|
|
decrefs,
|
|
increfs,
|
|
maybedeads,
|
|
collected
|
|
|
|
deinit(gch.cycleRoots)
|
|
init(gch.cycleRoots)
|
|
|
|
deinit(gch.freeStack)
|
|
init(gch.freeStack)
|
|
|
|
when MarkingSkipsAcyclicObjects:
|
|
# Collect the acyclic objects that became unreachable due to collected
|
|
# cyclic objects.
|
|
discard collectZCT(gch)
|
|
# collectZCT may add new cycle candidates and we may decide to loop here
|
|
# if gch.cycleRoots.len > 0: repeat
|
|
|
|
var gcDebugging* = false
|
|
|
|
var seqdbg* : proc (s: PGenericSeq) {.cdecl.}
|
|
|
|
proc gcMark(gch: var GcHeap, p: pointer) {.inline.} =
|
|
# the addresses are not as cells on the stack, so turn them to cells:
|
|
sysAssert(allocInv(gch.region), "gcMark begin")
|
|
var cell = usrToCell(p)
|
|
var c = cast[ByteAddress](cell)
|
|
if c >% PageSize:
|
|
# fast check: does it look like a cell?
|
|
var objStart = cast[PCell](interiorAllocatedPtr(gch.region, cell))
|
|
if objStart != nil:
|
|
# mark the cell:
|
|
if objStart.color != rcReallyDead:
|
|
if gcDebugging:
|
|
# writeCell("marking ", objStart)
|
|
discard
|
|
else:
|
|
inc objStart.refcount, rcIncrement
|
|
gch.decStack.add objStart
|
|
else:
|
|
# With incremental clean-up, objects spend some time
|
|
# in various lists before being deallocated.
|
|
# We just found a reference on the stack to an object,
|
|
# which we have previously labeled as unreachable.
|
|
# This is either a bug in the GC or a pure accidental
|
|
# coincidence due to the conservative stack marking.
|
|
when debugGC:
|
|
# writeCell("marking dead object", objStart)
|
|
discard
|
|
when false:
|
|
if isAllocatedPtr(gch.region, cell):
|
|
sysAssert false, "allocated pointer but not interior?"
|
|
# mark the cell:
|
|
inc cell.refcount, rcIncrement
|
|
add(gch.decStack, cell)
|
|
sysAssert(allocInv(gch.region), "gcMark end")
|
|
|
|
proc markThreadStacks(gch: var GcHeap) =
|
|
when hasThreadSupport and hasSharedHeap:
|
|
{.error: "not fully implemented".}
|
|
var it = threadList
|
|
while it != nil:
|
|
# mark registers:
|
|
for i in 0 .. high(it.registers): gcMark(gch, it.registers[i])
|
|
var sp = cast[ByteAddress](it.stackBottom)
|
|
var max = cast[ByteAddress](it.stackTop)
|
|
# XXX stack direction?
|
|
# XXX unroll this loop:
|
|
while sp <=% max:
|
|
gcMark(gch, cast[PPointer](sp)[])
|
|
sp = sp +% sizeof(pointer)
|
|
it = it.next
|
|
|
|
# ----------------- stack management --------------------------------------
|
|
# inspired from Smart Eiffel
|
|
|
|
when defined(sparc):
|
|
const stackIncreases = false
|
|
elif defined(hppa) or defined(hp9000) or defined(hp9000s300) or
|
|
defined(hp9000s700) or defined(hp9000s800) or defined(hp9000s820):
|
|
const stackIncreases = true
|
|
else:
|
|
const stackIncreases = false
|
|
|
|
when not defined(useNimRtl):
|
|
{.push stack_trace: off.}
|
|
proc setStackBottom(theStackBottom: pointer) =
|
|
#c_fprintf(c_stdout, "stack bottom: %p;\n", theStackBottom)
|
|
# the first init must be the one that defines the stack bottom:
|
|
if gch.stackBottom == nil: gch.stackBottom = theStackBottom
|
|
else:
|
|
var a = cast[ByteAddress](theStackBottom) # and not PageMask - PageSize*2
|
|
var b = cast[ByteAddress](gch.stackBottom)
|
|
#c_fprintf(c_stdout, "old: %p new: %p;\n",gch.stackBottom,theStackBottom)
|
|
when stackIncreases:
|
|
gch.stackBottom = cast[pointer](min(a, b))
|
|
else:
|
|
gch.stackBottom = cast[pointer](max(a, b))
|
|
{.pop.}
|
|
|
|
proc stackSize(): int {.noinline.} =
|
|
var stackTop {.volatile.}: pointer
|
|
result = abs(cast[int](addr(stackTop)) - cast[int](gch.stackBottom))
|
|
|
|
var
|
|
jmpbufSize {.importc: "sizeof(jmp_buf)", nodecl.}: int
|
|
# a little hack to get the size of a JmpBuf in the generated C code
|
|
# in a platform independent way
|
|
|
|
when defined(sparc): # For SPARC architecture.
|
|
proc isOnStack(p: pointer): bool =
|
|
var stackTop {.volatile.}: pointer
|
|
stackTop = addr(stackTop)
|
|
var b = cast[ByteAddress](gch.stackBottom)
|
|
var a = cast[ByteAddress](stackTop)
|
|
var x = cast[ByteAddress](p)
|
|
result = a <=% x and x <=% b
|
|
|
|
proc markStackAndRegisters(gch: var GcHeap) {.noinline, cdecl.} =
|
|
when defined(sparcv9):
|
|
asm """"flushw \n" """
|
|
else:
|
|
asm """"ta 0x3 ! ST_FLUSH_WINDOWS\n" """
|
|
|
|
var
|
|
max = gch.stackBottom
|
|
sp: PPointer
|
|
stackTop: array[0..1, pointer]
|
|
sp = addr(stackTop[0])
|
|
# Addresses decrease as the stack grows.
|
|
while sp <= max:
|
|
gcMark(gch, sp[])
|
|
sp = cast[PPointer](cast[ByteAddress](sp) +% sizeof(pointer))
|
|
|
|
elif defined(ELATE):
|
|
{.error: "stack marking code is to be written for this architecture".}
|
|
|
|
elif stackIncreases:
|
|
# ---------------------------------------------------------------------------
|
|
# Generic code for architectures where addresses increase as the stack grows.
|
|
# ---------------------------------------------------------------------------
|
|
proc isOnStack(p: pointer): bool =
|
|
var stackTop {.volatile.}: pointer
|
|
stackTop = addr(stackTop)
|
|
var a = cast[ByteAddress](gch.stackBottom)
|
|
var b = cast[ByteAddress](stackTop)
|
|
var x = cast[ByteAddress](p)
|
|
result = a <=% x and x <=% b
|
|
|
|
proc markStackAndRegisters(gch: var GcHeap) {.noinline, cdecl.} =
|
|
var registers: C_JmpBuf
|
|
if c_setjmp(registers) == 0'i32: # To fill the C stack with registers.
|
|
var max = cast[ByteAddress](gch.stackBottom)
|
|
var sp = cast[ByteAddress](addr(registers)) +% jmpbufSize -% sizeof(pointer)
|
|
# sp will traverse the JMP_BUF as well (jmp_buf size is added,
|
|
# otherwise sp would be below the registers structure).
|
|
while sp >=% max:
|
|
gcMark(gch, cast[PPointer](sp)[])
|
|
sp = sp -% sizeof(pointer)
|
|
|
|
else:
|
|
# ---------------------------------------------------------------------------
|
|
# Generic code for architectures where addresses decrease as the stack grows.
|
|
# ---------------------------------------------------------------------------
|
|
proc isOnStack(p: pointer): bool =
|
|
var stackTop {.volatile.}: pointer
|
|
stackTop = addr(stackTop)
|
|
var b = cast[ByteAddress](gch.stackBottom)
|
|
var a = cast[ByteAddress](stackTop)
|
|
var x = cast[ByteAddress](p)
|
|
result = a <=% x and x <=% b
|
|
|
|
proc markStackAndRegisters(gch: var GcHeap) {.noinline, cdecl.} =
|
|
# We use a jmp_buf buffer that is in the C stack.
|
|
# Used to traverse the stack and registers assuming
|
|
# that 'setjmp' will save registers in the C stack.
|
|
type PStackSlice = ptr array [0..7, pointer]
|
|
var registers: C_JmpBuf
|
|
if c_setjmp(registers) == 0'i32: # To fill the C stack with registers.
|
|
when MinimumStackMarking:
|
|
# mark the registers
|
|
var jmpbufPtr = cast[ByteAddress](addr(registers))
|
|
var jmpbufEnd = jmpbufPtr +% jmpbufSize
|
|
|
|
while jmpbufPtr <=% jmpbufEnd:
|
|
gcMark(gch, cast[PPointer](jmpbufPtr)[])
|
|
jmpbufPtr = jmpbufPtr +% sizeof(pointer)
|
|
|
|
var sp = cast[ByteAddress](gch.stackTop)
|
|
else:
|
|
var sp = cast[ByteAddress](addr(registers))
|
|
# mark the user stack
|
|
var max = cast[ByteAddress](gch.stackBottom)
|
|
# loop unrolled:
|
|
while sp <% max - 8*sizeof(pointer):
|
|
gcMark(gch, cast[PStackSlice](sp)[0])
|
|
gcMark(gch, cast[PStackSlice](sp)[1])
|
|
gcMark(gch, cast[PStackSlice](sp)[2])
|
|
gcMark(gch, cast[PStackSlice](sp)[3])
|
|
gcMark(gch, cast[PStackSlice](sp)[4])
|
|
gcMark(gch, cast[PStackSlice](sp)[5])
|
|
gcMark(gch, cast[PStackSlice](sp)[6])
|
|
gcMark(gch, cast[PStackSlice](sp)[7])
|
|
sp = sp +% sizeof(pointer)*8
|
|
# last few entries:
|
|
while sp <=% max:
|
|
gcMark(gch, cast[PPointer](sp)[])
|
|
sp = sp +% sizeof(pointer)
|
|
|
|
# ----------------------------------------------------------------------------
|
|
# end of non-portable code
|
|
# ----------------------------------------------------------------------------
|
|
|
|
proc releaseCell(gch: var GcHeap, cell: PCell) =
|
|
if cell.color != rcReallyDead:
|
|
prepareDealloc(cell)
|
|
cell.setColor rcReallyDead
|
|
|
|
let l1 = gch.tempStack.len
|
|
cell.forAllChildren waPush
|
|
let l2 = gch.tempStack.len
|
|
for i in l1 .. <l2:
|
|
var cc = gch.tempStack.d[i]
|
|
if cc.refcount--(LocalHeap):
|
|
releaseCell(gch, cc)
|
|
else:
|
|
if canbeCycleRoot(cc):
|
|
addCycleRoot(gch.cycleRoots, cc)
|
|
|
|
gch.tempStack.len = l1
|
|
|
|
if cell.isBitDown(rcBufferedAnywhere):
|
|
freeCell(gch, cell)
|
|
# else:
|
|
# This object is either buffered in the cycleRoots list and we'll leave
|
|
# it there to be collected in the next collectCycles or it's pending in
|
|
# the ZCT:
|
|
# (e.g. we are now cleaning the 15th object, but this one is 18th in the
|
|
# list. Note that this can happen only if we reached this point by the
|
|
# recursion).
|
|
# We can ignore it now as the ZCT cleaner will reach it soon.
|
|
|
|
proc collectZCT(gch: var GcHeap): bool =
|
|
const workPackage = 100
|
|
var L = addr(gch.zct.len)
|
|
|
|
when withRealtime:
|
|
var steps = workPackage
|
|
var t0: Ticks
|
|
if gch.maxPause > 0: t0 = getticks()
|
|
|
|
while L[] > 0:
|
|
var c = gch.zct.d[0]
|
|
sysAssert c.isBitUp(rcZct), "collectZCT: rcZct missing!"
|
|
sysAssert(isAllocatedPtr(gch.region, c), "collectZCT: isAllocatedPtr")
|
|
|
|
# remove from ZCT:
|
|
c.clearBit(rcZct)
|
|
gch.zct.d[0] = gch.zct.d[L[] - 1]
|
|
dec(L[])
|
|
when withRealtime: dec steps
|
|
if c.refcount <% rcIncrement:
|
|
# It may have a RC > 0, if it is in the hardware stack or
|
|
# it has not been removed yet from the ZCT. This is because
|
|
# ``incref`` does not bother to remove the cell from the ZCT
|
|
# as this might be too slow.
|
|
# In any case, it should be removed from the ZCT. But not
|
|
# freed. **KEEP THIS IN MIND WHEN MAKING THIS INCREMENTAL!**
|
|
if c.color == rcRetiredBuffer:
|
|
if c.isBitDown(rcInCycleRoots):
|
|
freeCell(gch, c)
|
|
else:
|
|
# if c.color == rcReallyDead: writeCell("ReallyDead in ZCT?", c)
|
|
releaseCell(gch, c)
|
|
when withRealtime:
|
|
if steps == 0:
|
|
steps = workPackage
|
|
if gch.maxPause > 0:
|
|
let duration = getticks() - t0
|
|
# the GC's measuring is not accurate and needs some cleanup actions
|
|
# (stack unmarking), so subtract some short amount of time in to
|
|
# order to miss deadlines less often:
|
|
if duration >= gch.maxPause - 50_000:
|
|
return false
|
|
result = true
|
|
gch.trimCycleRoots
|
|
#deInit(gch.zct)
|
|
#init(gch.zct)
|
|
|
|
proc unmarkStackAndRegisters(gch: var GcHeap) =
|
|
var d = gch.decStack.d
|
|
for i in 0 .. <gch.decStack.len:
|
|
sysAssert isAllocatedPtr(gch.region, d[i]), "unmarkStackAndRegisters"
|
|
# XXX: just call doDecRef?
|
|
var c = d[i]
|
|
sysAssert c.typ != nil, "unmarkStackAndRegisters 2"
|
|
|
|
if c.color == rcRetiredBuffer:
|
|
continue
|
|
|
|
# XXX no need for an atomic dec here:
|
|
if c.refcount--(LocalHeap):
|
|
# the object survived only because of a stack reference
|
|
# it still doesn't have heap references
|
|
addZCT(gch.zct, c)
|
|
|
|
if canbeCycleRoot(c):
|
|
# any cyclic object reachable from the stack can be turned into
|
|
# a leak if it's orphaned through the stack reference
|
|
# that's because the write-barrier won't be executed for stack
|
|
# locations
|
|
addCycleRoot(gch.cycleRoots, c)
|
|
|
|
gch.decStack.len = 0
|
|
|
|
proc collectCTBody(gch: var GcHeap) =
|
|
when withRealtime:
|
|
let t0 = getticks()
|
|
when debugGC: inc gcCollectionIdx
|
|
sysAssert(allocInv(gch.region), "collectCT: begin")
|
|
|
|
gch.stat.maxStackSize = max(gch.stat.maxStackSize, stackSize())
|
|
sysAssert(gch.decStack.len == 0, "collectCT")
|
|
prepareForInteriorPointerChecking(gch.region)
|
|
markStackAndRegisters(gch)
|
|
markThreadStacks(gch)
|
|
gch.stat.maxStackCells = max(gch.stat.maxStackCells, gch.decStack.len)
|
|
inc(gch.stat.stackScans)
|
|
if collectZCT(gch):
|
|
when cycleGC:
|
|
if getOccupiedMem(gch.region) >= gch.cycleThreshold or alwaysCycleGC:
|
|
collectCycles(gch)
|
|
sysAssert gch.zct.len == 0, "zct is not null after collect cycles"
|
|
inc(gch.stat.cycleCollections)
|
|
gch.cycleThreshold = max(InitialCycleThreshold, getOccupiedMem() *
|
|
CycleIncrease)
|
|
gch.stat.maxThreshold = max(gch.stat.maxThreshold, gch.cycleThreshold)
|
|
unmarkStackAndRegisters(gch)
|
|
sysAssert(allocInv(gch.region), "collectCT: end")
|
|
|
|
when withRealtime:
|
|
let duration = getticks() - t0
|
|
gch.stat.maxPause = max(gch.stat.maxPause, duration)
|
|
when defined(reportMissedDeadlines):
|
|
if gch.maxPause > 0 and duration > gch.maxPause:
|
|
c_fprintf(c_stdout, "[GC] missed deadline: %ld\n", duration)
|
|
|
|
proc collectCT(gch: var GcHeap) =
|
|
if (gch.zct.len >= ZctThreshold or (cycleGC and
|
|
getOccupiedMem(gch.region)>=gch.cycleThreshold) or alwaysGC) and
|
|
gch.recGcLock == 0:
|
|
collectCTBody(gch)
|
|
|
|
when withRealtime:
|
|
proc toNano(x: int): Nanos {.inline.} =
|
|
result = x * 1000
|
|
|
|
proc GC_setMaxPause*(MaxPauseInUs: int) =
|
|
gch.maxPause = MaxPauseInUs.toNano
|
|
|
|
proc GC_step(gch: var GcHeap, us: int, strongAdvice: bool) =
|
|
acquire(gch)
|
|
gch.maxPause = us.toNano
|
|
if (gch.zct.len >= ZctThreshold or (cycleGC and
|
|
getOccupiedMem(gch.region)>=gch.cycleThreshold) or alwaysGC) or
|
|
strongAdvice:
|
|
collectCTBody(gch)
|
|
release(gch)
|
|
|
|
proc GC_step*(us: int, strongAdvice = false) = GC_step(gch, us, strongAdvice)
|
|
|
|
when not defined(useNimRtl):
|
|
proc GC_disable() =
|
|
when hasThreadSupport and hasSharedHeap:
|
|
discard atomicInc(gch.recGcLock, 1)
|
|
else:
|
|
inc(gch.recGcLock)
|
|
proc GC_enable() =
|
|
if gch.recGcLock > 0:
|
|
when hasThreadSupport and hasSharedHeap:
|
|
discard atomicDec(gch.recGcLock, 1)
|
|
else:
|
|
dec(gch.recGcLock)
|
|
|
|
proc GC_setStrategy(strategy: GC_Strategy) =
|
|
case strategy
|
|
of gcThroughput: discard
|
|
of gcResponsiveness: discard
|
|
of gcOptimizeSpace: discard
|
|
of gcOptimizeTime: discard
|
|
|
|
proc GC_enableMarkAndSweep() =
|
|
gch.cycleThreshold = InitialCycleThreshold
|
|
|
|
proc GC_disableMarkAndSweep() =
|
|
gch.cycleThreshold = high(gch.cycleThreshold)-1
|
|
# set to the max value to suppress the cycle detector
|
|
|
|
proc GC_fullCollect() =
|
|
setStackTop(gch)
|
|
acquire(gch)
|
|
var oldThreshold = gch.cycleThreshold
|
|
gch.cycleThreshold = 0 # forces cycle collection
|
|
collectCT(gch)
|
|
gch.cycleThreshold = oldThreshold
|
|
release(gch)
|
|
|
|
proc GC_getStatistics(): string =
|
|
GC_disable()
|
|
result = "[GC] total memory: " & $(getTotalMem()) & "\n" &
|
|
"[GC] occupied memory: " & $(getOccupiedMem()) & "\n" &
|
|
"[GC] stack scans: " & $gch.stat.stackScans & "\n" &
|
|
"[GC] stack cells: " & $gch.stat.maxStackCells & "\n" &
|
|
"[GC] cycle collections: " & $gch.stat.cycleCollections & "\n" &
|
|
"[GC] max threshold: " & $gch.stat.maxThreshold & "\n" &
|
|
"[GC] zct capacity: " & $gch.zct.cap & "\n" &
|
|
"[GC] max cycle table size: " & $gch.stat.cycleTableSize & "\n" &
|
|
"[GC] max stack size: " & $gch.stat.maxStackSize & "\n" &
|
|
"[GC] max pause time [ms]: " & $(gch.stat.maxPause div 1000_000)
|
|
when traceGC: writeLeakage(true)
|
|
GC_enable()
|
|
|
|
{.pop.}
|