Files
Nim/compiler/vmdeps.nim
metagn ed9e3cba07 make getType nodes of generic insts have full inst type (#22655)
fixes #22639 for the third time

Nodes generated by `getType` for `tyGenericInst` types, instead of
having the original `tyGenericInst` type, will have the type of the last
child (due to the `mapTypeToAst` calls which set the type to the given
argument). This will cause subsequent `getType` calls to lose
information and think it's OK to use the sym of the instantiated type
rather than fully expand the generic instantiation.

To prevent this, update the type of the node from the `mapTypeToAst`
calls to the full generic instantiation type.
2023-09-07 05:30:37 +02:00

326 lines
13 KiB
Nim

#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
import ast, types, msgs, os, options, idents, lineinfos
from pathutils import AbsoluteFile
when defined(nimPreviewSlimSystem):
import std/syncio
proc opSlurp*(file: string, info: TLineInfo, module: PSym; conf: ConfigRef): string =
try:
var filename = parentDir(toFullPath(conf, info)) / file
if not fileExists(filename):
filename = findFile(conf, file).string
result = readFile(filename)
# we produce a fake include statement for every slurped filename, so that
# the module dependencies are accurate:
discard conf.fileInfoIdx(AbsoluteFile filename)
appendToModule(module, newTreeI(nkIncludeStmt, info, newStrNode(nkStrLit, filename)))
except IOError:
localError(conf, info, "cannot open file: " & file)
result = ""
proc atomicTypeX(cache: IdentCache; name: string; m: TMagic; t: PType; info: TLineInfo;
idgen: IdGenerator): PNode =
let sym = newSym(skType, getIdent(cache, name), idgen, t.owner, info)
sym.magic = m
sym.typ = t
result = newSymNode(sym)
result.typ = t
proc atomicTypeX(s: PSym; info: TLineInfo): PNode =
result = newSymNode(s)
result.info = info
proc mapTypeToAstX(cache: IdentCache; t: PType; info: TLineInfo; idgen: IdGenerator;
inst=false; allowRecursionX=false): PNode
proc mapTypeToBracketX(cache: IdentCache; name: string; m: TMagic; t: PType; info: TLineInfo;
idgen: IdGenerator;
inst=false): PNode =
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
result.add atomicTypeX(cache, name, m, t, info, idgen)
for i in 0..<t.len:
if t[i] == nil:
let void = atomicTypeX(cache, "void", mVoid, t, info, idgen)
void.typ = newType(tyVoid, nextTypeId(idgen), t.owner)
result.add void
else:
result.add mapTypeToAstX(cache, t[i], info, idgen, inst)
proc objectNode(cache: IdentCache; n: PNode; idgen: IdGenerator): PNode =
if n.kind == nkSym:
result = newNodeI(nkIdentDefs, n.info)
result.add n # name
result.add mapTypeToAstX(cache, n.sym.typ, n.info, idgen, true, false) # type
result.add newNodeI(nkEmpty, n.info) # no assigned value
else:
result = copyNode(n)
for i in 0..<n.safeLen:
result.add objectNode(cache, n[i], idgen)
proc mapTypeToAstX(cache: IdentCache; t: PType; info: TLineInfo;
idgen: IdGenerator;
inst=false; allowRecursionX=false): PNode =
var allowRecursion = allowRecursionX
template atomicType(name, m): untyped = atomicTypeX(cache, name, m, t, info, idgen)
template atomicType(s): untyped = atomicTypeX(s, info)
template mapTypeToAst(t,info): untyped = mapTypeToAstX(cache, t, info, idgen, inst)
template mapTypeToAstR(t,info): untyped = mapTypeToAstX(cache, t, info, idgen, inst, true)
template mapTypeToAst(t,i,info): untyped =
if i<t.len and t[i]!=nil: mapTypeToAstX(cache, t[i], info, idgen, inst)
else: newNodeI(nkEmpty, info)
template mapTypeToBracket(name, m, t, info): untyped =
mapTypeToBracketX(cache, name, m, t, info, idgen, inst)
template newNodeX(kind): untyped =
newNodeIT(kind, if t.n.isNil: info else: t.n.info, t)
template newIdentDefs(n,t): untyped =
var id = newNodeX(nkIdentDefs)
id.add n # name
id.add mapTypeToAst(t, info) # type
id.add newNodeI(nkEmpty, info) # no assigned value
id
template newIdentDefs(s): untyped = newIdentDefs(s, s.typ)
if inst and not allowRecursion and t.sym != nil:
# getTypeInst behavior: return symbol
return atomicType(t.sym)
case t.kind
of tyNone: result = atomicType("none", mNone)
of tyBool: result = atomicType("bool", mBool)
of tyChar: result = atomicType("char", mChar)
of tyNil: result = atomicType("nil", mNil)
of tyUntyped: result = atomicType("untyped", mExpr)
of tyTyped: result = atomicType("typed", mStmt)
of tyVoid: result = atomicType("void", mVoid)
of tyEmpty: result = atomicType("empty", mNone)
of tyUncheckedArray:
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
result.add atomicType("UncheckedArray", mUncheckedArray)
result.add mapTypeToAst(t[0], info)
of tyArray:
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
result.add atomicType("array", mArray)
if inst and t[0].kind == tyRange:
var rng = newNodeX(nkInfix)
rng.add newIdentNode(getIdent(cache, ".."), info)
rng.add t[0].n[0].copyTree
rng.add t[0].n[1].copyTree
result.add rng
else:
result.add mapTypeToAst(t[0], info)
result.add mapTypeToAst(t[1], info)
of tyTypeDesc:
if t.base != nil:
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
result.add atomicType("typeDesc", mTypeDesc)
result.add mapTypeToAst(t.base, info)
else:
result = atomicType("typeDesc", mTypeDesc)
of tyGenericInvocation:
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
for i in 0..<t.len:
result.add mapTypeToAst(t[i], info)
of tyGenericInst:
if inst:
if allowRecursion:
result = mapTypeToAstR(t.lastSon, info)
# keep original type info for getType calls on the output node:
result.typ = t
else:
result = newNodeX(nkBracketExpr)
#result.add mapTypeToAst(t.lastSon, info)
result.add mapTypeToAst(t[0], info)
for i in 1..<t.len-1:
result.add mapTypeToAst(t[i], info)
else:
result = mapTypeToAstX(cache, t.lastSon, info, idgen, inst, allowRecursion)
# keep original type info for getType calls on the output node:
result.typ = t
of tyGenericBody:
if inst:
result = mapTypeToAstR(t.lastSon, info)
else:
result = mapTypeToAst(t.lastSon, info)
of tyAlias:
result = mapTypeToAstX(cache, t.lastSon, info, idgen, inst, allowRecursion)
of tyOrdinal:
result = mapTypeToAst(t.lastSon, info)
of tyDistinct:
if inst:
result = newNodeX(nkDistinctTy)
result.add mapTypeToAst(t[0], info)
else:
if allowRecursion or t.sym == nil:
result = mapTypeToBracket("distinct", mDistinct, t, info)
else:
result = atomicType(t.sym)
of tyGenericParam, tyForward:
result = atomicType(t.sym)
of tyObject:
if inst:
result = newNodeX(nkObjectTy)
var objectDef = t.sym.ast[2]
if objectDef.kind == nkRefTy:
objectDef = objectDef[0]
result.add objectDef[0].copyTree # copy object pragmas
if t[0] == nil:
result.add newNodeI(nkEmpty, info)
else: # handle parent object
var nn = newNodeX(nkOfInherit)
nn.add mapTypeToAst(t[0], info)
result.add nn
if t.n.len > 0:
result.add objectNode(cache, t.n, idgen)
else:
result.add newNodeI(nkEmpty, info)
else:
if allowRecursion or t.sym == nil:
result = newNodeIT(nkObjectTy, if t.n.isNil: info else: t.n.info, t)
result.add newNodeI(nkEmpty, info)
if t[0] == nil:
result.add newNodeI(nkEmpty, info)
else:
result.add mapTypeToAst(t[0], info)
result.add copyTree(t.n)
else:
result = atomicType(t.sym)
of tyEnum:
result = newNodeIT(nkEnumTy, if t.n.isNil: info else: t.n.info, t)
result.add newNodeI(nkEmpty, info) # pragma node, currently always empty for enum
for c in t.n.sons:
result.add copyTree(c)
of tyTuple:
if inst:
# only named tuples have a node, unnamed tuples don't
if t.n.isNil:
result = newNodeX(nkTupleConstr)
for subType in t:
result.add mapTypeToAst(subType, info)
else:
result = newNodeX(nkTupleTy)
for s in t.n.sons:
result.add newIdentDefs(s)
else:
result = mapTypeToBracket("tuple", mTuple, t, info)
of tySet: result = mapTypeToBracket("set", mSet, t, info)
of tyPtr:
if inst:
result = newNodeX(nkPtrTy)
result.add mapTypeToAst(t[0], info)
else:
result = mapTypeToBracket("ptr", mPtr, t, info)
of tyRef:
if inst:
result = newNodeX(nkRefTy)
result.add mapTypeToAst(t[0], info)
else:
result = mapTypeToBracket("ref", mRef, t, info)
of tyVar:
if inst:
result = newNodeX(nkVarTy)
result.add mapTypeToAst(t[0], info)
else:
result = mapTypeToBracket("var", mVar, t, info)
of tyLent: result = mapTypeToBracket("lent", mBuiltinType, t, info)
of tySink: result = mapTypeToBracket("sink", mBuiltinType, t, info)
of tySequence: result = mapTypeToBracket("seq", mSeq, t, info)
of tyProc:
if inst:
result = newNodeX(nkProcTy)
var fp = newNodeX(nkFormalParams)
if t[0] == nil:
fp.add newNodeI(nkEmpty, info)
else:
fp.add mapTypeToAst(t[0], t.n[0].info)
for i in 1..<t.len:
fp.add newIdentDefs(t.n[i], t[i])
result.add fp
result.add if t.n[0].len > 0: t.n[0][pragmasEffects].copyTree
else: newNodeI(nkEmpty, info)
else:
result = mapTypeToBracket("proc", mNone, t, info)
of tyOpenArray: result = mapTypeToBracket("openArray", mOpenArray, t, info)
of tyRange:
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
result.add atomicType("range", mRange)
if inst and t.n.len == 2:
let rng = newNodeX(nkInfix)
rng.add newIdentNode(getIdent(cache, ".."), info)
rng.add t.n[0].copyTree
rng.add t.n[1].copyTree
result.add rng
else:
result.add t.n[0].copyTree
if t.n.len > 1:
result.add t.n[1].copyTree
of tyPointer: result = atomicType("pointer", mPointer)
of tyString: result = atomicType("string", mString)
of tyCstring: result = atomicType("cstring", mCstring)
of tyInt: result = atomicType("int", mInt)
of tyInt8: result = atomicType("int8", mInt8)
of tyInt16: result = atomicType("int16", mInt16)
of tyInt32: result = atomicType("int32", mInt32)
of tyInt64: result = atomicType("int64", mInt64)
of tyFloat: result = atomicType("float", mFloat)
of tyFloat32: result = atomicType("float32", mFloat32)
of tyFloat64: result = atomicType("float64", mFloat64)
of tyFloat128: result = atomicType("float128", mFloat128)
of tyUInt: result = atomicType("uint", mUInt)
of tyUInt8: result = atomicType("uint8", mUInt8)
of tyUInt16: result = atomicType("uint16", mUInt16)
of tyUInt32: result = atomicType("uint32", mUInt32)
of tyUInt64: result = atomicType("uint64", mUInt64)
of tyVarargs: result = mapTypeToBracket("varargs", mVarargs, t, info)
of tyProxy: result = atomicType("error", mNone)
of tyBuiltInTypeClass:
result = mapTypeToBracket("builtinTypeClass", mNone, t, info)
of tyUserTypeClass, tyUserTypeClassInst:
if t.isResolvedUserTypeClass:
result = mapTypeToAst(t.lastSon, info)
else:
result = mapTypeToBracket("concept", mNone, t, info)
result.add t.n.copyTree
of tyCompositeTypeClass:
result = mapTypeToBracket("compositeTypeClass", mNone, t, info)
of tyAnd: result = mapTypeToBracket("and", mAnd, t, info)
of tyOr: result = mapTypeToBracket("or", mOr, t, info)
of tyNot: result = mapTypeToBracket("not", mNot, t, info)
of tyIterable: result = mapTypeToBracket("iterable", mIterableType, t, info)
of tyAnything: result = atomicType("anything", mNone)
of tyInferred: result = mapTypeToAstX(cache, t.lastSon, info, idgen, inst, allowRecursion)
of tyStatic, tyFromExpr:
if inst:
if t.n != nil: result = t.n.copyTree
else: result = atomicType("void", mVoid)
else:
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
result.add atomicType("static", mNone)
if t.n != nil:
result.add t.n.copyTree
of tyOwned: result = mapTypeToBracket("owned", mBuiltinType, t, info)
of tyConcept:
result = mapTypeToBracket("concept", mNone, t, info)
result.add t.n.copyTree
proc opMapTypeToAst*(cache: IdentCache; t: PType; info: TLineInfo; idgen: IdGenerator): PNode =
result = mapTypeToAstX(cache, t, info, idgen, inst=false, allowRecursionX=true)
# the "Inst" version includes generic parameters in the resulting type tree
# and also tries to look like the corresponding Nim type declaration
proc opMapTypeInstToAst*(cache: IdentCache; t: PType; info: TLineInfo; idgen: IdGenerator): PNode =
result = mapTypeToAstX(cache, t, info, idgen, inst=true, allowRecursionX=false)
# the "Impl" version includes generic parameters in the resulting type tree
# and also tries to look like the corresponding Nim type implementation
proc opMapTypeImplToAst*(cache: IdentCache; t: PType; info: TLineInfo; idgen: IdGenerator): PNode =
result = mapTypeToAstX(cache, t, info, idgen, inst=true, allowRecursionX=true)