Files
Nim/compiler/semdata.nim
metagn 525d64fe88 leave type section symbols unchanged on resem, fix overly general double semcheck for forward types (#24888)
fixes #24887 (really just this [1 line
commit](632c7b3397)
would have been enough to fix the issue but it would ignore the general
problem)

When a type definition is encountered where the symbol already has a
type (not a forward type), the type is left alone (not reset to
`tyForward`) and the RHS is handled differently: The RHS is still
semchecked, but the type of the symbol is not updated, and nominal type
nodes are ignored entirely (specifically if they are the same kind as
the symbol's existing type but this restriction is not really needed).
If the existing type of the symbol is an enum and and the RHS has a
nominal enum type node, the enum fields of the existing type are added
to scope rather than creating a new type from the RHS and adding its
symbols instead.

The goal is to prevent any incompatible nominal types from being
generated during resem as in #24887. But it also restricts what macros
can do if they generate type section AST, for example if we have:

```nim
type Foo = int
```

and a macro modifies the type section while keeping the symbol node for
`Foo` like:

```nim
type Foo = float
```

Then the type of `Foo` will still remain `int`, while it previously
became `float`. While we could maybe allow this and make it so only
nominal types cannot be changed, it gets even more complex when
considering generic params and whether or not they get updated. So to
keep it as simple as possible the rule is that the symbol type does not
change, but maybe this behavior was useful for macros.

Only nominal type nodes are ignored for semchecking on the RHS, so that
cases like this do not cause a regression:

```nim
template foo(): untyped =
  proc bar() {.inject.} = discard
  int

type Foo = foo()
bar() # normally works
```

However this specific code exposed a problem with forward type handling:

---

In specific cases, when the type section is undergoing the final pass,
if the type fits some overly general criteria (it is not an object,
enum, alias or a sink type and its node is not a nominal type node), the
entire RHS is semchecked for a 2nd time as a standalone type (with `nil`
prev) and *maybe* reassigned to the new semchecked type, depending on
its type kind. (for some reason including nominal types when we excluded
them before?) This causes a redefinition error if the RHS defines a
symbol.

This code goes all the way back to the first commit and I could not find
the reason why it was there, but removing it showed a failure in
`thard_tyforward`: If a generic forward type is invoked, it is left as
an unresolved `tyGenericInvocation` on the first run. Semchecking it
again at the end turns it into a `tyGenericInst`. So my understanding is
that it exists to handle these loose forward types, but it is way too
general and there is a similar mechanism `c.skipTypes` which is supposed
to do the same thing but doesn't.

So this is no longer done, and `c.skipTypes` is revamped (and renamed):
It is now a list of types and the nodes that are supposed to evaluate to
them, such that types needing to be updated later due to containing
forward types are added to it along with their nodes. When finishing the
type section, these types are reassigned to the semchecked value of
their nodes so that the forward types in them are fully resolved. The
"reassigning" here works due to updating the data inside the type
pointer directly, and is how forward types work by themselves normally
(`tyForward` types are modified in place as `s.typ`).

For example, as mentioned before, generic invocations of forward types
are first created as `tyGenericInvocation` and need to become
`tyGenericInst` later. So they are now added to this list along with
their node. Object types with forward types as their base types also
need to be updated later to check that the base type is correct/inherit
fields from it: For this the entire object type and its node are added
to the list. Similarly, any case where whether a component type is
`tyGenericInst` or `tyGenericInvocation` matters also needs to cascade
this (`set` does presumably to check the instantiated type).

This is not complete: Generic invocations with forward types only check
that their base type is a forward type, but not any of their arguments,
which causes #16754 and #24133. The generated invocations also need to
cascade properly: `Foo[Bar[ForwardType]]` for example would see that
`Bar[ForwardType]` is a generic invocation and stay as a generic
invocation itself, but it might not queue itself to be updated later.
Even if it did, only the entire type `Foo[Bar[ForwardType]]` needs to be
queued, updating `Bar[ForwardType]` by itself would be redundant or it
would not change anything at all. But these can be done later.
2025-04-21 07:56:14 +02:00

807 lines
31 KiB
Nim

#
#
# The Nim Compiler
# (c) Copyright 2017 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module contains the data structures for the semantic checking phase.
import std/[tables, intsets, sets, strutils]
when defined(nimPreviewSlimSystem):
import std/assertions
import
options, ast, msgs, idents, renderer,
magicsys, vmdef, modulegraphs, lineinfos, pathutils, layeredtable,
types, lowerings, trees, parampatterns
import ic / ic
type
TOptionEntry* = object # entries to put on a stack for pragma parsing
options*: TOptions
defaultCC*: TCallingConvention
dynlib*: PLib
notes*: TNoteKinds
features*: set[Feature]
otherPragmas*: PNode # every pragma can be pushed
warningAsErrors*: TNoteKinds
POptionEntry* = ref TOptionEntry
PProcCon* = ref TProcCon
TProcCon* {.acyclic.} = object # procedure context; also used for top-level
# statements
owner*: PSym # the symbol this context belongs to
resultSym*: PSym # the result symbol (if we are in a proc)
nestedLoopCounter*: int # whether we are in a loop or not
nestedBlockCounter*: int # whether we are in a block or not
breakInLoop*: bool # whether we are in a loop without block
next*: PProcCon # used for stacking procedure contexts
mappingExists*: bool
mapping*: Table[ItemId, PSym]
caseContext*: seq[tuple[n: PNode, idx: int]]
localBindStmts*: seq[PNode]
TMatchedConcept* = object
candidateType*: PType
prev*: ptr TMatchedConcept
depth*: int
TInstantiationPair* = object
genericSym*: PSym
inst*: PInstantiation
TExprFlag* = enum
efLValue, efWantIterator, efWantIterable, efInTypeof,
efNeedStatic,
# Use this in contexts where a static value is mandatory
efPreferStatic,
# Use this in contexts where a static value could bring more
# information, but it's not strictly mandatory. This may become
# the default with implicit statics in the future.
efPreferNilResult,
# Use this if you want a certain result (e.g. static value),
# but you don't want to trigger a hard error. For example,
# you may be in position to supply a better error message
# to the user.
efWantStmt, efAllowStmt, efDetermineType, efExplain,
efWantValue, efOperand, efNoSemCheck,
efNoEvaluateGeneric, efInCall, efFromHlo, efNoSem2Check,
efNoUndeclared, efIsDotCall, efCannotBeDotCall,
# Use this if undeclared identifiers should not raise an error during
# overload resolution.
efTypeAllowed # typeAllowed will be called after
efWantNoDefaults
efIgnoreDefaults # var statements without initialization
efAllowSymChoice # symchoice node should not be resolved
TExprFlags* = set[TExprFlag]
ImportMode* = enum
importAll, importSet, importExcept
ImportedModule* = object
m*: PSym
case mode*: ImportMode
of importAll: discard
of importSet:
imported*: IntSet # of PIdent.id
of importExcept:
exceptSet*: IntSet # of PIdent.id
PContext* = ref TContext
TContext* = object of TPassContext # a context represents the module
# that is currently being compiled
enforceVoidContext*: PType
# for `if cond: stmt else: foo`, `foo` will be evaluated under
# enforceVoidContext != nil
voidType*: PType # for typeof(stmt)
module*: PSym # the module sym belonging to the context
currentScope*: PScope # current scope
moduleScope*: PScope # scope for modules
imports*: seq[ImportedModule] # scope for all imported symbols
topLevelScope*: PScope # scope for all top-level symbols
p*: PProcCon # procedure context
intTypeCache*: array[-5..32, PType] # cache some common integer types
# to avoid type allocations
nilTypeCache*: PType
matchedConcept*: ptr TMatchedConcept # the current concept being matched
friendModules*: seq[PSym] # friend modules; may access private data;
# this is used so that generic instantiations
# can access private object fields
instCounter*: int # to prevent endless instantiations
templInstCounter*: ref int # gives every template instantiation a unique id
inGenericContext*: int # > 0 if we are in a generic type
inStaticContext*: int # > 0 if we are inside a static: block
inUnrolledContext*: int # > 0 if we are unrolling a loop
compilesContextId*: int # > 0 if we are in a ``compiles`` magic
compilesContextIdGenerator*: int
inGenericInst*: int # > 0 if we are instantiating a generic
converters*: seq[PSym]
patterns*: seq[PSym] # sequence of pattern matchers
optionStack*: seq[POptionEntry]
libs*: seq[PLib] # all libs used by this module
semConstExpr*: proc (c: PContext, n: PNode; expectedType: PType = nil): PNode {.nimcall.} # for the pragmas
semExpr*: proc (c: PContext, n: PNode, flags: TExprFlags = {}, expectedType: PType = nil): PNode {.nimcall.}
semExprWithType*: proc (c: PContext, n: PNode, flags: TExprFlags = {}, expectedType: PType = nil): PNode {.nimcall.}
semTryExpr*: proc (c: PContext, n: PNode, flags: TExprFlags = {}): PNode {.nimcall.}
semTryConstExpr*: proc (c: PContext, n: PNode; expectedType: PType = nil): PNode {.nimcall.}
computeRequiresInit*: proc (c: PContext, t: PType): bool {.nimcall.}
hasUnresolvedArgs*: proc (c: PContext, n: PNode): bool
semOperand*: proc (c: PContext, n: PNode, flags: TExprFlags = {}): PNode {.nimcall.}
semConstBoolExpr*: proc (c: PContext, n: PNode): PNode {.nimcall.} # XXX bite the bullet
semOverloadedCall*: proc (c: PContext, n, nOrig: PNode,
filter: TSymKinds, flags: TExprFlags, expectedType: PType = nil): PNode {.nimcall.}
semTypeNode*: proc(c: PContext, n: PNode, prev: PType): PType {.nimcall.}
semInferredLambda*: proc(c: PContext, pt: LayeredIdTable, n: PNode): PNode
semGenerateInstance*: proc (c: PContext, fn: PSym, pt: LayeredIdTable,
info: TLineInfo): PSym
instantiateOnlyProcType*: proc (c: PContext, pt: LayeredIdTable,
prc: PSym, info: TLineInfo): PType
# used by sigmatch for explicit generic instantiations
fitDefaultNode*: proc (c: PContext, n: var PNode, expectedType: PType)
includedFiles*: IntSet # used to detect recursive include files
pureEnumFields*: TStrTable # pure enum fields that can be used unambiguously
userPragmas*: TStrTable
evalContext*: PEvalContext
unknownIdents*: IntSet # ids of all unknown identifiers to prevent
# naming it multiple times
generics*: seq[TInstantiationPair] # pending list of instantiated generics to compile
topStmts*: int # counts the number of encountered top level statements
lastGenericIdx*: int # used for the generics stack
hloLoopDetector*: int # used to prevent endless loops in the HLO
inParallelStmt*: int
instTypeBoundOp*: proc (c: PContext; dc: PSym; t: PType; info: TLineInfo;
op: TTypeAttachedOp; col: int): PSym {.nimcall.}
cache*: IdentCache
graph*: ModuleGraph
signatures*: TStrTable
recursiveDep*: string
suggestionsMade*: bool
isAmbiguous*: bool # little hack
features*: set[Feature]
inTypeContext*, inConceptDecl*: int
unusedImports*: seq[(PSym, TLineInfo)]
exportIndirections*: HashSet[(int, int)] # (module.id, symbol.id)
importModuleMap*: Table[int, int] # (module.id, module.id)
lastTLineInfo*: TLineInfo
sideEffects*: Table[int, seq[(TLineInfo, PSym)]] # symbol.id index
inUncheckedAssignSection*: int
importModuleLookup*: Table[int, seq[int]] # (module.ident.id, [module.id])
forwardTypeUpdates*: seq[(PType, PNode)]
# types that need to be updated in a type section
# due to containing forward types, and their corresponding nodes
inTypeofContext*: int
semAsgnOpr*: proc (c: PContext; n: PNode; k: TNodeKind): PNode {.nimcall.}
TBorrowState* = enum
bsNone, bsReturnNotMatch, bsNoDistinct, bsGeneric, bsNotSupported, bsMatch
template config*(c: PContext): ConfigRef = c.graph.config
proc getIntLitType*(c: PContext; literal: PNode): PType =
# we cache some common integer literal types for performance:
let value = literal.intVal
if value >= low(c.intTypeCache) and value <= high(c.intTypeCache):
result = c.intTypeCache[value.int]
if result == nil:
let ti = getSysType(c.graph, literal.info, tyInt)
result = copyType(ti, c.idgen, ti.owner)
result.n = literal
c.intTypeCache[value.int] = result
else:
let ti = getSysType(c.graph, literal.info, tyInt)
result = copyType(ti, c.idgen, ti.owner)
result.n = literal
proc setIntLitType*(c: PContext; result: PNode) =
let i = result.intVal
case c.config.target.intSize
of 8: result.typ() = getIntLitType(c, result)
of 4:
if i >= low(int32) and i <= high(int32):
result.typ() = getIntLitType(c, result)
else:
result.typ() = getSysType(c.graph, result.info, tyInt64)
of 2:
if i >= low(int16) and i <= high(int16):
result.typ() = getIntLitType(c, result)
elif i >= low(int32) and i <= high(int32):
result.typ() = getSysType(c.graph, result.info, tyInt32)
else:
result.typ() = getSysType(c.graph, result.info, tyInt64)
of 1:
# 8 bit CPUs are insane ...
if i >= low(int8) and i <= high(int8):
result.typ() = getIntLitType(c, result)
elif i >= low(int16) and i <= high(int16):
result.typ() = getSysType(c.graph, result.info, tyInt16)
elif i >= low(int32) and i <= high(int32):
result.typ() = getSysType(c.graph, result.info, tyInt32)
else:
result.typ() = getSysType(c.graph, result.info, tyInt64)
else:
internalError(c.config, result.info, "invalid int size")
proc makeInstPair*(s: PSym, inst: PInstantiation): TInstantiationPair =
result = TInstantiationPair(genericSym: s, inst: inst)
proc filename*(c: PContext): string =
# the module's filename
result = toFilename(c.config, FileIndex c.module.position)
proc scopeDepth*(c: PContext): int {.inline.} =
result = if c.currentScope != nil: c.currentScope.depthLevel
else: 0
proc getCurrOwner*(c: PContext): PSym =
# owner stack (used for initializing the
# owner field of syms)
# the documentation comment always gets
# assigned to the current owner
result = c.graph.owners[^1]
proc pushOwner*(c: PContext; owner: PSym) =
c.graph.owners.add(owner)
proc popOwner*(c: PContext) =
if c.graph.owners.len > 0: setLen(c.graph.owners, c.graph.owners.len - 1)
else: internalError(c.config, "popOwner")
proc lastOptionEntry*(c: PContext): POptionEntry =
result = c.optionStack[^1]
proc popProcCon*(c: PContext) {.inline.} = c.p = c.p.next
proc put*(p: PProcCon; key, val: PSym) =
if not p.mappingExists:
p.mapping = initTable[ItemId, PSym]()
p.mappingExists = true
#echo "put into table ", key.info
p.mapping[key.itemId] = val
proc get*(p: PProcCon; key: PSym): PSym =
if not p.mappingExists: return nil
result = p.mapping.getOrDefault(key.itemId)
proc getGenSym*(c: PContext; s: PSym): PSym =
if sfGenSym notin s.flags: return s
var it = c.p
while it != nil:
result = get(it, s)
if result != nil:
#echo "got from table ", result.name.s, " ", result.info
return result
it = it.next
result = s
proc considerGenSyms*(c: PContext; n: PNode) =
if n == nil:
discard "can happen for nkFormalParams/nkArgList"
elif n.kind == nkSym:
let s = getGenSym(c, n.sym)
if n.sym != s:
n.sym = s
else:
for i in 0..<n.safeLen:
considerGenSyms(c, n[i])
proc newOptionEntry*(conf: ConfigRef): POptionEntry =
new(result)
result.options = conf.options
result.defaultCC = ccNimCall
result.dynlib = nil
result.notes = conf.notes
result.warningAsErrors = conf.warningAsErrors
proc pushOptionEntry*(c: PContext): POptionEntry =
new(result)
var prev = c.optionStack[^1]
result.options = c.config.options
result.defaultCC = prev.defaultCC
result.dynlib = prev.dynlib
result.notes = c.config.notes
result.warningAsErrors = c.config.warningAsErrors
result.features = c.features
c.optionStack.add(result)
proc popOptionEntry*(c: PContext) =
c.config.options = c.optionStack[^1].options
c.config.notes = c.optionStack[^1].notes
c.config.warningAsErrors = c.optionStack[^1].warningAsErrors
c.features = c.optionStack[^1].features
c.optionStack.setLen(c.optionStack.len - 1)
proc newContext*(graph: ModuleGraph; module: PSym): PContext =
new(result)
result.optionStack = @[newOptionEntry(graph.config)]
result.libs = @[]
result.module = module
result.friendModules = @[module]
result.converters = @[]
result.patterns = @[]
result.includedFiles = initIntSet()
result.pureEnumFields = initStrTable()
result.userPragmas = initStrTable()
result.generics = @[]
result.unknownIdents = initIntSet()
result.cache = graph.cache
result.graph = graph
result.signatures = initStrTable()
result.features = graph.config.features
if graph.config.symbolFiles != disabledSf:
let id = module.position
if graph.config.cmd != cmdM:
assert graph.packed[id].status in {undefined, outdated}
graph.packed[id].status = storing
graph.packed[id].module = module
initEncoder graph, module
template packedRepr*(c): untyped = c.graph.packed[c.module.position].fromDisk
template encoder*(c): untyped = c.graph.encoders[c.module.position]
proc addIncludeFileDep*(c: PContext; f: FileIndex) =
if c.config.symbolFiles != disabledSf:
addIncludeFileDep(c.encoder, c.packedRepr, f)
proc addImportFileDep*(c: PContext; f: FileIndex) =
if c.config.symbolFiles != disabledSf:
addImportFileDep(c.encoder, c.packedRepr, f)
proc addPragmaComputation*(c: PContext; n: PNode) =
if c.config.symbolFiles != disabledSf:
addPragmaComputation(c.encoder, c.packedRepr, n)
proc inclSym(sq: var seq[PSym], s: PSym): bool =
for i in 0..<sq.len:
if sq[i].id == s.id: return false
sq.add s
result = true
proc addConverter*(c: PContext, conv: LazySym) =
assert conv.sym != nil
if inclSym(c.converters, conv.sym):
add(c.graph.ifaces[c.module.position].converters, conv)
proc addConverterDef*(c: PContext, conv: LazySym) =
addConverter(c, conv)
if c.config.symbolFiles != disabledSf:
addConverter(c.encoder, c.packedRepr, conv.sym)
proc addPureEnum*(c: PContext, e: LazySym) =
assert e.sym != nil
add(c.graph.ifaces[c.module.position].pureEnums, e)
if c.config.symbolFiles != disabledSf:
addPureEnum(c.encoder, c.packedRepr, e.sym)
proc addPattern*(c: PContext, p: LazySym) =
assert p.sym != nil
if inclSym(c.patterns, p.sym):
add(c.graph.ifaces[c.module.position].patterns, p)
if c.config.symbolFiles != disabledSf:
addTrmacro(c.encoder, c.packedRepr, p.sym)
proc exportSym*(c: PContext; s: PSym) =
strTableAdds(c.graph, c.module, s)
if c.config.symbolFiles != disabledSf:
addExported(c.encoder, c.packedRepr, s)
proc reexportSym*(c: PContext; s: PSym) =
strTableAdds(c.graph, c.module, s)
if c.config.symbolFiles != disabledSf:
addReexport(c.encoder, c.packedRepr, s)
proc newLib*(kind: TLibKind): PLib =
new(result)
result.kind = kind #result.syms = initObjectSet()
proc addToLib*(lib: PLib, sym: PSym) =
#if sym.annex != nil and not isGenericRoutine(sym):
# LocalError(sym.info, errInvalidPragma)
sym.annex = lib
proc newTypeS*(kind: TTypeKind; c: PContext; son: sink PType = nil): PType =
result = newType(kind, c.idgen, getCurrOwner(c), son = son)
proc makePtrType*(owner: PSym, baseType: PType; idgen: IdGenerator): PType =
result = newType(tyPtr, idgen, owner, skipIntLit(baseType, idgen))
proc makePtrType*(c: PContext, baseType: PType): PType =
makePtrType(getCurrOwner(c), baseType, c.idgen)
proc makeTypeWithModifier*(c: PContext,
modifier: TTypeKind,
baseType: PType): PType =
assert modifier in {tyVar, tyLent, tyPtr, tyRef, tyStatic, tyTypeDesc}
if modifier in {tyVar, tyLent, tyTypeDesc} and baseType.kind == modifier:
result = baseType
else:
result = newTypeS(modifier, c, skipIntLit(baseType, c.idgen))
proc makeVarType*(c: PContext, baseType: PType; kind = tyVar): PType =
if baseType.kind == kind:
result = baseType
else:
result = newTypeS(kind, c, skipIntLit(baseType, c.idgen))
proc makeTypeSymNode*(c: PContext, typ: PType, info: TLineInfo): PNode =
let typedesc = newTypeS(tyTypeDesc, c)
incl typedesc.flags, tfCheckedForDestructor
internalAssert(c.config, typ != nil)
typedesc.addSonSkipIntLit(typ, c.idgen)
let sym = newSym(skType, c.cache.idAnon, c.idgen, getCurrOwner(c), info,
c.config.options).linkTo(typedesc)
result = newSymNode(sym, info)
proc makeTypeFromExpr*(c: PContext, n: PNode): PType =
result = newTypeS(tyFromExpr, c)
assert n != nil
result.n = n
when false:
proc newTypeWithSons*(owner: PSym, kind: TTypeKind, sons: seq[PType];
idgen: IdGenerator): PType =
result = newType(kind, idgen, owner, sons = sons)
proc newTypeWithSons*(c: PContext, kind: TTypeKind,
sons: seq[PType]): PType =
result = newType(kind, c.idgen, getCurrOwner(c), sons = sons)
proc makeStaticExpr*(c: PContext, n: PNode): PNode =
result = newNodeI(nkStaticExpr, n.info)
result.sons = @[n]
result.typ() = if n.typ != nil and n.typ.kind == tyStatic: n.typ
else: newTypeS(tyStatic, c, n.typ)
proc makeAndType*(c: PContext, t1, t2: PType): PType =
result = newTypeS(tyAnd, c)
result.rawAddSon t1
result.rawAddSon t2
propagateToOwner(result, t1)
propagateToOwner(result, t2)
result.flags.incl((t1.flags + t2.flags) * {tfHasStatic})
result.flags.incl tfHasMeta
proc makeOrType*(c: PContext, t1, t2: PType): PType =
if t1.kind != tyOr and t2.kind != tyOr:
result = newTypeS(tyOr, c)
result.rawAddSon t1
result.rawAddSon t2
else:
result = newTypeS(tyOr, c)
template addOr(t1) =
if t1.kind == tyOr:
for x in t1.kids: result.rawAddSon x
else:
result.rawAddSon t1
addOr(t1)
addOr(t2)
propagateToOwner(result, t1)
propagateToOwner(result, t2)
result.flags.incl((t1.flags + t2.flags) * {tfHasStatic})
result.flags.incl tfHasMeta
proc makeNotType*(c: PContext, t1: PType): PType =
result = newTypeS(tyNot, c, son = t1)
propagateToOwner(result, t1)
result.flags.incl(t1.flags * {tfHasStatic})
result.flags.incl tfHasMeta
proc nMinusOne(c: PContext; n: PNode): PNode =
result = newTreeI(nkCall, n.info, newSymNode(getSysMagic(c.graph, n.info, "pred", mPred)), n)
# Remember to fix the procs below this one when you make changes!
proc makeRangeWithStaticExpr*(c: PContext, n: PNode): PType =
let intType = getSysType(c.graph, n.info, tyInt)
result = newTypeS(tyRange, c, son = intType)
if n.typ != nil and n.typ.n == nil:
result.flags.incl tfUnresolved
result.n = newTreeI(nkRange, n.info, newIntTypeNode(0, intType),
makeStaticExpr(c, nMinusOne(c, n)))
template rangeHasUnresolvedStatic*(t: PType): bool =
tfUnresolved in t.flags
proc errorType*(c: PContext): PType =
## creates a type representing an error state
result = newTypeS(tyError, c)
result.flags.incl tfCheckedForDestructor
proc errorNode*(c: PContext, n: PNode): PNode =
result = newNodeI(nkEmpty, n.info)
result.typ() = errorType(c)
# These mimic localError
template localErrorNode*(c: PContext, n: PNode, info: TLineInfo, msg: TMsgKind, arg: string): PNode =
liMessage(c.config, info, msg, arg, doNothing, instLoc())
errorNode(c, n)
template localErrorNode*(c: PContext, n: PNode, info: TLineInfo, arg: string): PNode =
liMessage(c.config, info, errGenerated, arg, doNothing, instLoc())
errorNode(c, n)
template localErrorNode*(c: PContext, n: PNode, msg: TMsgKind, arg: string): PNode =
let n2 = n
liMessage(c.config, n2.info, msg, arg, doNothing, instLoc())
errorNode(c, n2)
template localErrorNode*(c: PContext, n: PNode, arg: string): PNode =
let n2 = n
liMessage(c.config, n2.info, errGenerated, arg, doNothing, instLoc())
errorNode(c, n2)
when false:
proc fillTypeS*(dest: PType, kind: TTypeKind, c: PContext) =
dest.kind = kind
dest.owner = getCurrOwner(c)
dest.size = - 1
proc makeRangeType*(c: PContext; first, last: BiggestInt;
info: TLineInfo; intType: PType = nil): PType =
let intType = if intType != nil: intType else: getSysType(c.graph, info, tyInt)
var n = newNodeI(nkRange, info)
n.add newIntTypeNode(first, intType)
n.add newIntTypeNode(last, intType)
result = newTypeS(tyRange, c)
result.n = n
addSonSkipIntLit(result, intType, c.idgen) # basetype of range
proc isSelf*(t: PType): bool {.inline.} =
## Is this the magical 'Self' type from concepts?
t.kind == tyTypeDesc and tfPacked in t.flags
proc makeTypeDesc*(c: PContext, typ: PType): PType =
if typ.kind == tyTypeDesc and not isSelf(typ):
result = typ
else:
result = newTypeS(tyTypeDesc, c, skipIntLit(typ, c.idgen))
incl result.flags, tfCheckedForDestructor
proc symFromType*(c: PContext; t: PType, info: TLineInfo): PSym =
if t.sym != nil: return t.sym
result = newSym(skType, getIdent(c.cache, "AnonType"), c.idgen, t.owner, info)
result.flags.incl sfAnon
result.typ = t
proc symNodeFromType*(c: PContext, t: PType, info: TLineInfo): PNode =
result = newSymNode(symFromType(c, t, info), info)
result.typ() = makeTypeDesc(c, t)
proc markIndirect*(c: PContext, s: PSym) {.inline.} =
if s.kind in {skProc, skFunc, skConverter, skMethod, skIterator}:
incl(s.flags, sfAddrTaken)
# XXX add to 'c' for global analysis
proc illFormedAst*(n: PNode; conf: ConfigRef) =
globalError(conf, n.info, errIllFormedAstX, renderTree(n, {renderNoComments}))
proc illFormedAstLocal*(n: PNode; conf: ConfigRef) =
localError(conf, n.info, errIllFormedAstX, renderTree(n, {renderNoComments}))
proc checkSonsLen*(n: PNode, length: int; conf: ConfigRef) =
if n.len != length: illFormedAst(n, conf)
proc checkMinSonsLen*(n: PNode, length: int; conf: ConfigRef) =
if n.len < length: illFormedAst(n, conf)
proc isTopLevel*(c: PContext): bool {.inline.} =
result = c.currentScope.depthLevel <= 2
proc isTopLevelInsideDeclaration*(c: PContext, sym: PSym): bool {.inline.} =
# for routeKinds the scope isn't closed yet:
c.currentScope.depthLevel <= 2 + ord(sym.kind in routineKinds)
proc pushCaseContext*(c: PContext, caseNode: PNode) =
c.p.caseContext.add((caseNode, 0))
proc popCaseContext*(c: PContext) =
discard pop(c.p.caseContext)
proc setCaseContextIdx*(c: PContext, idx: int) =
c.p.caseContext[^1].idx = idx
template addExport*(c: PContext; s: PSym) =
## convenience to export a symbol from the current module
addExport(c.graph, c.module, s)
proc storeRodNode*(c: PContext, n: PNode) =
if c.config.symbolFiles != disabledSf:
toPackedNodeTopLevel(n, c.encoder, c.packedRepr)
proc addToGenericProcCache*(c: PContext; s: PSym; inst: PInstantiation) =
c.graph.procInstCache.mgetOrPut(s.itemId, @[]).add LazyInstantiation(module: c.module.position, inst: inst)
if c.config.symbolFiles != disabledSf:
storeInstantiation(c.encoder, c.packedRepr, s, inst)
proc addToGenericCache*(c: PContext; s: PSym; inst: PType) =
c.graph.typeInstCache.mgetOrPut(s.itemId, @[]).add LazyType(typ: inst)
if c.config.symbolFiles != disabledSf:
storeTypeInst(c.encoder, c.packedRepr, s, inst)
proc sealRodFile*(c: PContext) =
if c.config.symbolFiles != disabledSf:
if c.graph.vm != nil:
for (m, n) in PCtx(c.graph.vm).vmstateDiff:
if m == c.module:
addPragmaComputation(c, n)
c.idgen.sealed = true # no further additions are allowed
proc rememberExpansion*(c: PContext; info: TLineInfo; expandedSym: PSym) =
## Templates and macros are very special in Nim; these have
## inlining semantics so after semantic checking they leave no trace
## in the sem'checked AST. This is very bad for IDE-like tooling
## ("find all usages of this template" would not work). We need special
## logic to remember macro/template expansions. This is done here and
## delegated to the "rod" file mechanism.
if c.config.symbolFiles != disabledSf:
storeExpansion(c.encoder, c.packedRepr, info, expandedSym)
const
errVarForOutParamNeededX = "for a 'var' type a variable needs to be passed; but '$1' is immutable"
errXStackEscape = "address of '$1' may not escape its stack frame"
proc renderNotLValue*(n: PNode): string =
result = $n
let n = if n.kind == nkHiddenDeref: n[0] else: n
if n.kind == nkHiddenCallConv and n.len > 1:
result = $n[0] & "(" & result & ")"
elif n.kind in {nkHiddenStdConv, nkHiddenSubConv} and n.len == 2:
result = typeToString(n.typ.skipTypes(abstractVar)) & "(" & result & ")"
proc isAssignable(c: PContext, n: PNode): TAssignableResult =
result = parampatterns.isAssignable(c.p.owner, n)
proc newHiddenAddrTaken(c: PContext, n: PNode, isOutParam: bool): PNode =
if n.kind == nkHiddenDeref and not (c.config.backend == backendCpp or
sfCompileToCpp in c.module.flags):
checkSonsLen(n, 1, c.config)
result = n[0]
else:
result = newNodeIT(nkHiddenAddr, n.info, makeVarType(c, n.typ))
result.add n
let aa = isAssignable(c, n)
let sym = getRoot(n)
if aa notin {arLValue, arLocalLValue}:
if aa == arDiscriminant and c.inUncheckedAssignSection > 0:
discard "allow access within a cast(unsafeAssign) section"
elif strictDefs in c.features and aa == arAddressableConst and
sym != nil and sym.kind == skLet and isOutParam:
discard "allow let varaibles to be passed to out parameters"
else:
localError(c.config, n.info, errVarForOutParamNeededX % renderNotLValue(n))
proc analyseIfAddressTaken(c: PContext, n: PNode, isOutParam: bool): PNode =
result = n
case n.kind
of nkSym:
# n.sym.typ can be nil in 'check' mode ...
if n.sym.typ != nil and
skipTypes(n.sym.typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
incl(n.sym.flags, sfAddrTaken)
result = newHiddenAddrTaken(c, n, isOutParam)
of nkDotExpr:
checkSonsLen(n, 2, c.config)
if n[1].kind != nkSym:
internalError(c.config, n.info, "analyseIfAddressTaken")
return
if skipTypes(n[1].sym.typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
incl(n[1].sym.flags, sfAddrTaken)
result = newHiddenAddrTaken(c, n, isOutParam)
of nkBracketExpr:
checkMinSonsLen(n, 1, c.config)
if skipTypes(n[0].typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
if n[0].kind == nkSym: incl(n[0].sym.flags, sfAddrTaken)
result = newHiddenAddrTaken(c, n, isOutParam)
else:
result = newHiddenAddrTaken(c, n, isOutParam)
proc analyseIfAddressTakenInCall*(c: PContext, n: PNode, isConverter = false) =
checkMinSonsLen(n, 1, c.config)
if n[0].typ == nil:
# n[0] might be erroring node in nimsuggest
return
const
FakeVarParams = {mNew, mNewFinalize, mInc, ast.mDec, mIncl, mExcl,
mSetLengthStr, mSetLengthSeq, mAppendStrCh, mAppendStrStr, mSwap,
mAppendSeqElem, mNewSeq, mShallowCopy, mDeepCopy, mMove, mWasMoved}
template checkIfConverterCalled(c: PContext, n: PNode) =
## Checks if there is a converter call which wouldn't be checked otherwise
# Call can sometimes be wrapped in a deref
let node = if n.kind == nkHiddenDeref: n[0] else: n
if node.kind == nkHiddenCallConv:
analyseIfAddressTakenInCall(c, node, true)
# get the real type of the callee
# it may be a proc var with a generic alias type, so we skip over them
var t = n[0].typ.skipTypes({tyGenericInst, tyAlias, tySink})
if n[0].kind == nkSym and n[0].sym.magic in FakeVarParams:
# BUGFIX: check for L-Value still needs to be done for the arguments!
# note sometimes this is eval'ed twice so we check for nkHiddenAddr here:
for i in 1..<n.len:
if i < t.len and t[i] != nil and
skipTypes(t[i], abstractInst-{tyTypeDesc}).kind in {tyVar}:
let it = n[i]
let aa = isAssignable(c, it)
if aa notin {arLValue, arLocalLValue}:
if it.kind != nkHiddenAddr:
if aa == arDiscriminant and c.inUncheckedAssignSection > 0:
discard "allow access within a cast(unsafeAssign) section"
else:
localError(c.config, it.info, errVarForOutParamNeededX % $it)
# Make sure to still check arguments for converters
c.checkIfConverterCalled(n[i])
# bug #5113: disallow newSeq(result) where result is a 'var T':
if n[0].sym.magic in {mNew, mNewFinalize, mNewSeq}:
var arg = n[1] #.skipAddr
if arg.kind == nkHiddenDeref: arg = arg[0]
if arg.kind == nkSym and arg.sym.kind == skResult and
arg.typ.skipTypes(abstractInst).kind in {tyVar, tyLent}:
localError(c.config, n.info, errXStackEscape % renderTree(n[1], {renderNoComments}))
return
for i in 1..<n.len:
let n = if n.kind == nkHiddenDeref: n[0] else: n
c.checkIfConverterCalled(n[i])
if i < t.len and
skipTypes(t[i], abstractInst-{tyTypeDesc}).kind in {tyVar}:
# Converters wrap var parameters in nkHiddenAddr but they haven't been analysed yet.
# So we need to make sure we are checking them still when in a converter call
if n[i].kind != nkHiddenAddr or isConverter:
n[i] = analyseIfAddressTaken(c, n[i].skipAddr(), isOutParam(skipTypes(t[i], abstractInst-{tyTypeDesc})))
proc replaceHookMagic*(c: PContext, n: PNode, kind: TTypeAttachedOp): PNode =
## Replaces builtin generic hooks with lifted hooks.
case kind
of attachedDestructor:
result = n
let t = n[1].typ.skipTypes(abstractVar)
let op = getAttachedOp(c.graph, t, attachedDestructor)
if op != nil:
result[0] = newSymNode(op)
if op.typ != nil and op.typ.len == 2 and op.typ.firstParamType.kind != tyVar:
if n[1].kind == nkSym and n[1].sym.kind == skParam and
n[1].typ.kind == tyVar:
result[1] = genDeref(n[1])
else:
result[1] = skipAddr(n[1])
of attachedTrace:
result = n
let t = n[1].typ.skipTypes(abstractVar)
let op = getAttachedOp(c.graph, t, attachedTrace)
if op != nil:
result[0] = newSymNode(op)
of attachedDup:
result = n
let t = n[1].typ.skipTypes(abstractVar)
let op = getAttachedOp(c.graph, t, attachedDup)
if op != nil:
result[0] = newSymNode(op)
if op.typ.len == 3:
let boolLit = newIntLit(c.graph, n.info, 1)
boolLit.typ() = getSysType(c.graph, n.info, tyBool)
result.add boolLit
of attachedWasMoved:
result = n
let t = n[1].typ.skipTypes(abstractVar)
let op = getAttachedOp(c.graph, t, attachedWasMoved)
if op != nil:
result[0] = newSymNode(op)
analyseIfAddressTakenInCall(c, result, false)
of attachedSink:
result = c.semAsgnOpr(c, n, nkSinkAsgn)
of attachedAsgn:
result = c.semAsgnOpr(c, n, nkAsgn)
of attachedDeepCopy:
result = n
let t = n[1].typ.skipTypes(abstractVar)
let op = getAttachedOp(c.graph, t, kind)
if op != nil:
result[0] = newSymNode(op)