mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 01:14:41 +00:00
1064 lines
37 KiB
Nim
1064 lines
37 KiB
Nim
#
|
|
#
|
|
# Nimrod's Runtime Library
|
|
# (c) Copyright 2013 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
# Garbage Collector
|
|
#
|
|
# The basic algorithm is *Deferred Reference Counting* with cycle detection.
|
|
# This is achieved by combining a Deutsch-Bobrow garbage collector
|
|
# together with Christoper's partial mark-sweep garbage collector.
|
|
#
|
|
# Special care has been taken to avoid recursion as far as possible to avoid
|
|
# stack overflows when traversing deep datastructures. It is well-suited
|
|
# for soft real time applications (like games).
|
|
{.push profiler:off.}
|
|
|
|
const
|
|
CycleIncrease = 2 # is a multiplicative increase
|
|
InitialCycleThreshold = 4*1024*1024 # X MB because cycle checking is slow
|
|
ZctThreshold = 500 # we collect garbage if the ZCT's size
|
|
# reaches this threshold
|
|
# this seems to be a good value
|
|
withRealTime = defined(useRealtimeGC)
|
|
useMarkForDebug = defined(gcGenerational)
|
|
useBackupGc = false # use a simple M&S GC to collect
|
|
# cycles instead of the complex
|
|
# algorithm
|
|
|
|
when withRealTime and not defined(getTicks):
|
|
include "system/timers"
|
|
when defined(memProfiler):
|
|
proc nimProfile(requestedSize: int)
|
|
|
|
const
|
|
rcIncrement = 0b1000 # so that lowest 3 bits are not touched
|
|
rcBlack = 0b000 # cell is colored black; in use or free
|
|
rcGray = 0b001 # possible member of a cycle
|
|
rcWhite = 0b010 # member of a garbage cycle
|
|
rcPurple = 0b011 # possible root of a cycle
|
|
ZctFlag = 0b100 # in ZCT
|
|
rcShift = 3 # shift by rcShift to get the reference counter
|
|
colorMask = 0b011
|
|
type
|
|
TWalkOp = enum
|
|
waMarkGlobal, # part of the backup/debug mark&sweep
|
|
waMarkPrecise, # part of the backup/debug mark&sweep
|
|
waZctDecRef, waPush, waCycleDecRef, waMarkGray, waScan, waScanBlack,
|
|
waCollectWhite,
|
|
|
|
TFinalizer {.compilerproc.} = proc (self: pointer) {.nimcall.}
|
|
# A ref type can have a finalizer that is called before the object's
|
|
# storage is freed.
|
|
|
|
TGcStat {.final, pure.} = object
|
|
stackScans: int # number of performed stack scans (for statistics)
|
|
cycleCollections: int # number of performed full collections
|
|
maxThreshold: int # max threshold that has been set
|
|
maxStackSize: int # max stack size
|
|
maxStackCells: int # max stack cells in ``decStack``
|
|
cycleTableSize: int # max entries in cycle table
|
|
maxPause: int64 # max measured GC pause in nanoseconds
|
|
|
|
TGcHeap {.final, pure.} = object # this contains the zero count and
|
|
# non-zero count table
|
|
stackBottom: pointer
|
|
cycleThreshold: int
|
|
zct: TCellSeq # the zero count table
|
|
decStack: TCellSeq # cells in the stack that are to decref again
|
|
cycleRoots: TCellSet
|
|
tempStack: TCellSeq # temporary stack for recursion elimination
|
|
recGcLock: int # prevent recursion via finalizers; no thread lock
|
|
when withRealTime:
|
|
maxPause: TNanos # max allowed pause in nanoseconds; active if > 0
|
|
region: TMemRegion # garbage collected region
|
|
stat: TGcStat
|
|
when useMarkForDebug or useBackupGc:
|
|
marked: TCellSet
|
|
|
|
var
|
|
gch {.rtlThreadVar.}: TGcHeap
|
|
|
|
when not defined(useNimRtl):
|
|
instantiateForRegion(gch.region)
|
|
|
|
template acquire(gch: TGcHeap) =
|
|
when hasThreadSupport and hasSharedHeap:
|
|
acquireSys(HeapLock)
|
|
|
|
template release(gch: TGcHeap) =
|
|
when hasThreadSupport and hasSharedHeap:
|
|
releaseSys(HeapLock)
|
|
|
|
template gcAssert(cond: bool, msg: string) =
|
|
when defined(useGcAssert):
|
|
if not cond:
|
|
echo "[GCASSERT] ", msg
|
|
GC_disable()
|
|
writeStackTrace()
|
|
quit 1
|
|
|
|
proc addZCT(s: var TCellSeq, c: PCell) {.noinline.} =
|
|
if (c.refcount and ZctFlag) == 0:
|
|
c.refcount = c.refcount or ZctFlag
|
|
add(s, c)
|
|
|
|
proc cellToUsr(cell: PCell): pointer {.inline.} =
|
|
# convert object (=pointer to refcount) to pointer to userdata
|
|
result = cast[pointer](cast[TAddress](cell)+%TAddress(sizeof(TCell)))
|
|
|
|
proc usrToCell(usr: pointer): PCell {.inline.} =
|
|
# convert pointer to userdata to object (=pointer to refcount)
|
|
result = cast[PCell](cast[TAddress](usr)-%TAddress(sizeof(TCell)))
|
|
|
|
proc canbeCycleRoot(c: PCell): bool {.inline.} =
|
|
result = ntfAcyclic notin c.typ.flags
|
|
|
|
proc extGetCellType(c: pointer): PNimType {.compilerproc.} =
|
|
# used for code generation concerning debugging
|
|
result = usrToCell(c).typ
|
|
|
|
proc internRefcount(p: pointer): int {.exportc: "getRefcount".} =
|
|
result = int(usrToCell(p).refcount) shr rcShift
|
|
|
|
# this that has to equals zero, otherwise we have to round up UnitsPerPage:
|
|
when BitsPerPage mod (sizeof(int)*8) != 0:
|
|
{.error: "(BitsPerPage mod BitsPerUnit) should be zero!".}
|
|
|
|
template color(c): expr = c.refCount and colorMask
|
|
template setColor(c, col) =
|
|
when col == rcBlack:
|
|
c.refcount = c.refcount and not colorMask
|
|
else:
|
|
c.refcount = c.refcount and not colorMask or col
|
|
|
|
proc writeCell(msg: cstring, c: PCell) =
|
|
var kind = -1
|
|
if c.typ != nil: kind = ord(c.typ.kind)
|
|
when leakDetector:
|
|
c_fprintf(c_stdout, "[GC] %s: %p %d rc=%ld from %s(%ld)\n",
|
|
msg, c, kind, c.refcount shr rcShift, c.filename, c.line)
|
|
else:
|
|
c_fprintf(c_stdout, "[GC] %s: %p %d rc=%ld; color=%ld\n",
|
|
msg, c, kind, c.refcount shr rcShift, c.color)
|
|
|
|
template gcTrace(cell, state: expr): stmt {.immediate.} =
|
|
when traceGC: traceCell(cell, state)
|
|
|
|
# forward declarations:
|
|
proc collectCT(gch: var TGcHeap)
|
|
proc isOnStack*(p: pointer): bool {.noinline.}
|
|
proc forAllChildren(cell: PCell, op: TWalkOp)
|
|
proc doOperation(p: pointer, op: TWalkOp)
|
|
proc forAllChildrenAux(dest: pointer, mt: PNimType, op: TWalkOp)
|
|
# we need the prototype here for debugging purposes
|
|
|
|
when hasThreadSupport and hasSharedHeap:
|
|
template `--`(x: expr): expr = atomicDec(x, rcIncrement) <% rcIncrement
|
|
template `++`(x: expr): stmt = discard atomicInc(x, rcIncrement)
|
|
else:
|
|
template `--`(x: expr): expr =
|
|
dec(x, rcIncrement)
|
|
x <% rcIncrement
|
|
template `++`(x: expr): stmt = inc(x, rcIncrement)
|
|
|
|
proc prepareDealloc(cell: PCell) =
|
|
when useMarkForDebug:
|
|
gcAssert(cell notin gch.marked, "Cell still alive!")
|
|
if cell.typ.finalizer != nil:
|
|
# the finalizer could invoke something that
|
|
# allocates memory; this could trigger a garbage
|
|
# collection. Since we are already collecting we
|
|
# prevend recursive entering here by a lock.
|
|
# XXX: we should set the cell's children to nil!
|
|
inc(gch.recGcLock)
|
|
(cast[TFinalizer](cell.typ.finalizer))(cellToUsr(cell))
|
|
dec(gch.recGcLock)
|
|
|
|
proc rtlAddCycleRoot(c: PCell) {.rtl, inl.} =
|
|
# we MUST access gch as a global here, because this crosses DLL boundaries!
|
|
when hasThreadSupport and hasSharedHeap:
|
|
acquireSys(HeapLock)
|
|
when cycleGC:
|
|
if c.color != rcPurple:
|
|
c.setColor(rcPurple)
|
|
incl(gch.cycleRoots, c)
|
|
when hasThreadSupport and hasSharedHeap:
|
|
releaseSys(HeapLock)
|
|
|
|
proc rtlAddZCT(c: PCell) {.rtl, inl.} =
|
|
# we MUST access gch as a global here, because this crosses DLL boundaries!
|
|
when hasThreadSupport and hasSharedHeap:
|
|
acquireSys(HeapLock)
|
|
addZCT(gch.zct, c)
|
|
when hasThreadSupport and hasSharedHeap:
|
|
releaseSys(HeapLock)
|
|
|
|
proc decRef(c: PCell) {.inline.} =
|
|
gcAssert(isAllocatedPtr(gch.region, c), "decRef: interiorPtr")
|
|
gcAssert(c.refcount >=% rcIncrement, "decRef")
|
|
if --c.refcount:
|
|
rtlAddZCT(c)
|
|
elif canbeCycleRoot(c):
|
|
# unfortunately this is necessary here too, because a cycle might just
|
|
# have been broken up and we could recycle it.
|
|
rtlAddCycleRoot(c)
|
|
#writeCell("decRef", c)
|
|
|
|
proc incRef(c: PCell) {.inline.} =
|
|
gcAssert(isAllocatedPtr(gch.region, c), "incRef: interiorPtr")
|
|
c.refcount = c.refcount +% rcIncrement
|
|
# and not colorMask
|
|
#writeCell("incRef", c)
|
|
if canbeCycleRoot(c):
|
|
rtlAddCycleRoot(c)
|
|
|
|
proc nimGCref(p: pointer) {.compilerProc, inline.} = incRef(usrToCell(p))
|
|
proc nimGCunref(p: pointer) {.compilerProc, inline.} = decRef(usrToCell(p))
|
|
|
|
proc GC_addCycleRoot*[T](p: ref T) {.inline.} =
|
|
## adds 'p' to the cycle candidate set for the cycle collector. It is
|
|
## necessary if you used the 'acyclic' pragma for optimization
|
|
## purposes and need to break cycles manually.
|
|
rtlAddCycleRoot(usrToCell(cast[pointer](p)))
|
|
|
|
proc nimGCunrefNoCycle(p: pointer) {.compilerProc, inline.} =
|
|
sysAssert(allocInv(gch.region), "begin nimGCunrefNoCycle")
|
|
var c = usrToCell(p)
|
|
gcAssert(isAllocatedPtr(gch.region, c), "nimGCunrefNoCycle: isAllocatedPtr")
|
|
if --c.refcount:
|
|
rtlAddZCT(c)
|
|
sysAssert(allocInv(gch.region), "end nimGCunrefNoCycle 2")
|
|
sysAssert(allocInv(gch.region), "end nimGCunrefNoCycle 5")
|
|
|
|
proc asgnRef(dest: PPointer, src: pointer) {.compilerProc, inline.} =
|
|
# the code generator calls this proc!
|
|
gcAssert(not isOnStack(dest), "asgnRef")
|
|
# BUGFIX: first incRef then decRef!
|
|
if src != nil: incRef(usrToCell(src))
|
|
if dest[] != nil: decRef(usrToCell(dest[]))
|
|
dest[] = src
|
|
|
|
proc asgnRefNoCycle(dest: PPointer, src: pointer) {.compilerProc, inline.} =
|
|
# the code generator calls this proc if it is known at compile time that no
|
|
# cycle is possible.
|
|
if src != nil:
|
|
var c = usrToCell(src)
|
|
++c.refcount
|
|
if dest[] != nil:
|
|
var c = usrToCell(dest[])
|
|
if --c.refcount:
|
|
rtlAddZCT(c)
|
|
dest[] = src
|
|
|
|
proc unsureAsgnRef(dest: PPointer, src: pointer) {.compilerProc.} =
|
|
# unsureAsgnRef updates the reference counters only if dest is not on the
|
|
# stack. It is used by the code generator if it cannot decide wether a
|
|
# reference is in the stack or not (this can happen for var parameters).
|
|
if not isOnStack(dest):
|
|
if src != nil: incRef(usrToCell(src))
|
|
# XXX finally use assembler for the stack checking instead!
|
|
# the test for '!= nil' is correct, but I got tired of the segfaults
|
|
# resulting from the crappy stack checking:
|
|
if cast[int](dest[]) >=% PageSize: decRef(usrToCell(dest[]))
|
|
else:
|
|
# can't be an interior pointer if it's a stack location!
|
|
gcAssert(interiorAllocatedPtr(gch.region, dest) == nil,
|
|
"stack loc AND interior pointer")
|
|
dest[] = src
|
|
|
|
proc initGC() =
|
|
when not defined(useNimRtl):
|
|
when traceGC:
|
|
for i in low(TCellState)..high(TCellState): init(states[i])
|
|
gch.cycleThreshold = InitialCycleThreshold
|
|
gch.stat.stackScans = 0
|
|
gch.stat.cycleCollections = 0
|
|
gch.stat.maxThreshold = 0
|
|
gch.stat.maxStackSize = 0
|
|
gch.stat.maxStackCells = 0
|
|
gch.stat.cycleTableSize = 0
|
|
# init the rt
|
|
init(gch.zct)
|
|
init(gch.tempStack)
|
|
init(gch.cycleRoots)
|
|
init(gch.decStack)
|
|
when useMarkForDebug or useBackupGc:
|
|
init(gch.marked)
|
|
|
|
when useMarkForDebug or useBackupGc:
|
|
type
|
|
TGlobalMarkerProc = proc () {.nimcall.}
|
|
var
|
|
globalMarkersLen: int
|
|
globalMarkers: array[0.. 7_000, TGlobalMarkerProc]
|
|
|
|
proc nimRegisterGlobalMarker(markerProc: TGlobalMarkerProc) {.compilerProc.} =
|
|
if globalMarkersLen <= high(globalMarkers):
|
|
globalMarkers[globalMarkersLen] = markerProc
|
|
inc globalMarkersLen
|
|
else:
|
|
echo "[GC] cannot register global variable; too many global variables"
|
|
quit 1
|
|
|
|
proc cellsetReset(s: var TCellSet) =
|
|
deinit(s)
|
|
init(s)
|
|
|
|
proc forAllSlotsAux(dest: pointer, n: ptr TNimNode, op: TWalkOp) =
|
|
var d = cast[TAddress](dest)
|
|
case n.kind
|
|
of nkSlot: forAllChildrenAux(cast[pointer](d +% n.offset), n.typ, op)
|
|
of nkList:
|
|
for i in 0..n.len-1:
|
|
# inlined for speed
|
|
if n.sons[i].kind == nkSlot:
|
|
if n.sons[i].typ.kind in {tyRef, tyString, tySequence}:
|
|
doOperation(cast[PPointer](d +% n.sons[i].offset)[], op)
|
|
else:
|
|
forAllChildrenAux(cast[pointer](d +% n.sons[i].offset),
|
|
n.sons[i].typ, op)
|
|
else:
|
|
forAllSlotsAux(dest, n.sons[i], op)
|
|
of nkCase:
|
|
var m = selectBranch(dest, n)
|
|
if m != nil: forAllSlotsAux(dest, m, op)
|
|
of nkNone: sysAssert(false, "forAllSlotsAux")
|
|
|
|
proc forAllChildrenAux(dest: pointer, mt: PNimType, op: TWalkOp) =
|
|
var d = cast[TAddress](dest)
|
|
if dest == nil: return # nothing to do
|
|
if ntfNoRefs notin mt.flags:
|
|
case mt.kind
|
|
of tyRef, tyString, tySequence: # leaf:
|
|
doOperation(cast[PPointer](d)[], op)
|
|
of tyObject, tyTuple:
|
|
forAllSlotsAux(dest, mt.node, op)
|
|
of tyArray, tyArrayConstr, tyOpenArray:
|
|
for i in 0..(mt.size div mt.base.size)-1:
|
|
forAllChildrenAux(cast[pointer](d +% i *% mt.base.size), mt.base, op)
|
|
else: discard
|
|
|
|
proc forAllChildren(cell: PCell, op: TWalkOp) =
|
|
gcAssert(cell != nil, "forAllChildren: 1")
|
|
gcAssert(isAllocatedPtr(gch.region, cell), "forAllChildren: 2")
|
|
gcAssert(cell.typ != nil, "forAllChildren: 3")
|
|
gcAssert cell.typ.kind in {tyRef, tySequence, tyString}, "forAllChildren: 4"
|
|
let marker = cell.typ.marker
|
|
if marker != nil:
|
|
marker(cellToUsr(cell), op.int)
|
|
else:
|
|
case cell.typ.kind
|
|
of tyRef: # common case
|
|
forAllChildrenAux(cellToUsr(cell), cell.typ.base, op)
|
|
of tySequence:
|
|
var d = cast[TAddress](cellToUsr(cell))
|
|
var s = cast[PGenericSeq](d)
|
|
if s != nil:
|
|
for i in 0..s.len-1:
|
|
forAllChildrenAux(cast[pointer](d +% i *% cell.typ.base.size +%
|
|
GenericSeqSize), cell.typ.base, op)
|
|
else: discard
|
|
|
|
proc addNewObjToZCT(res: PCell, gch: var TGcHeap) {.inline.} =
|
|
# we check the last 8 entries (cache line) for a slot that could be reused.
|
|
# In 63% of all cases we succeed here! But we have to optimize the heck
|
|
# out of this small linear search so that ``newObj`` is not slowed down.
|
|
#
|
|
# Slots to try cache hit
|
|
# 1 32%
|
|
# 4 59%
|
|
# 8 63%
|
|
# 16 66%
|
|
# all slots 68%
|
|
var L = gch.zct.len
|
|
var d = gch.zct.d
|
|
when true:
|
|
# loop unrolled for performance:
|
|
template replaceZctEntry(i: expr) =
|
|
c = d[i]
|
|
if c.refcount >=% rcIncrement:
|
|
c.refcount = c.refcount and not ZctFlag
|
|
d[i] = res
|
|
return
|
|
if L > 8:
|
|
var c: PCell
|
|
replaceZctEntry(L-1)
|
|
replaceZctEntry(L-2)
|
|
replaceZctEntry(L-3)
|
|
replaceZctEntry(L-4)
|
|
replaceZctEntry(L-5)
|
|
replaceZctEntry(L-6)
|
|
replaceZctEntry(L-7)
|
|
replaceZctEntry(L-8)
|
|
add(gch.zct, res)
|
|
else:
|
|
d[L] = res
|
|
inc(gch.zct.len)
|
|
else:
|
|
for i in countdown(L-1, max(0, L-8)):
|
|
var c = d[i]
|
|
if c.refcount >=% rcIncrement:
|
|
c.refcount = c.refcount and not ZctFlag
|
|
d[i] = res
|
|
return
|
|
add(gch.zct, res)
|
|
|
|
{.push stackTrace: off, profiler:off.}
|
|
proc gcInvariant*() =
|
|
sysAssert(allocInv(gch.region), "injected")
|
|
when defined(markForDebug):
|
|
markForDebug(gch)
|
|
{.pop.}
|
|
|
|
proc rawNewObj(typ: PNimType, size: int, gch: var TGcHeap): pointer =
|
|
# generates a new object and sets its reference counter to 0
|
|
sysAssert(allocInv(gch.region), "rawNewObj begin")
|
|
acquire(gch)
|
|
gcAssert(typ.kind in {tyRef, tyString, tySequence}, "newObj: 1")
|
|
collectCT(gch)
|
|
var res = cast[PCell](rawAlloc(gch.region, size + sizeof(TCell)))
|
|
gcAssert((cast[TAddress](res) and (MemAlign-1)) == 0, "newObj: 2")
|
|
# now it is buffered in the ZCT
|
|
res.typ = typ
|
|
when leakDetector and not hasThreadSupport:
|
|
if framePtr != nil and framePtr.prev != nil:
|
|
res.filename = framePtr.prev.filename
|
|
res.line = framePtr.prev.line
|
|
# refcount is zero, color is black, but mark it to be in the ZCT
|
|
res.refcount = ZctFlag
|
|
sysAssert(isAllocatedPtr(gch.region, res), "newObj: 3")
|
|
# its refcount is zero, so add it to the ZCT:
|
|
addNewObjToZCT(res, gch)
|
|
when logGC: writeCell("new cell", res)
|
|
gcTrace(res, csAllocated)
|
|
release(gch)
|
|
result = cellToUsr(res)
|
|
sysAssert(allocInv(gch.region), "rawNewObj end")
|
|
|
|
{.pop.}
|
|
|
|
proc newObj(typ: PNimType, size: int): pointer {.compilerRtl.} =
|
|
result = rawNewObj(typ, size, gch)
|
|
zeroMem(result, size)
|
|
when defined(memProfiler): nimProfile(size)
|
|
|
|
proc newSeq(typ: PNimType, len: int): pointer {.compilerRtl.} =
|
|
# `newObj` already uses locks, so no need for them here.
|
|
let size = addInt(mulInt(len, typ.base.size), GenericSeqSize)
|
|
result = newObj(typ, size)
|
|
cast[PGenericSeq](result).len = len
|
|
cast[PGenericSeq](result).reserved = len
|
|
when defined(memProfiler): nimProfile(size)
|
|
|
|
proc newObjRC1(typ: PNimType, size: int): pointer {.compilerRtl.} =
|
|
# generates a new object and sets its reference counter to 1
|
|
sysAssert(allocInv(gch.region), "newObjRC1 begin")
|
|
acquire(gch)
|
|
gcAssert(typ.kind in {tyRef, tyString, tySequence}, "newObj: 1")
|
|
collectCT(gch)
|
|
sysAssert(allocInv(gch.region), "newObjRC1 after collectCT")
|
|
|
|
var res = cast[PCell](rawAlloc(gch.region, size + sizeof(TCell)))
|
|
sysAssert(allocInv(gch.region), "newObjRC1 after rawAlloc")
|
|
sysAssert((cast[TAddress](res) and (MemAlign-1)) == 0, "newObj: 2")
|
|
# now it is buffered in the ZCT
|
|
res.typ = typ
|
|
when leakDetector and not hasThreadSupport:
|
|
if framePtr != nil and framePtr.prev != nil:
|
|
res.filename = framePtr.prev.filename
|
|
res.line = framePtr.prev.line
|
|
res.refcount = rcIncrement # refcount is 1
|
|
sysAssert(isAllocatedPtr(gch.region, res), "newObj: 3")
|
|
when logGC: writeCell("new cell", res)
|
|
gcTrace(res, csAllocated)
|
|
release(gch)
|
|
result = cellToUsr(res)
|
|
zeroMem(result, size)
|
|
sysAssert(allocInv(gch.region), "newObjRC1 end")
|
|
when defined(memProfiler): nimProfile(size)
|
|
|
|
proc newSeqRC1(typ: PNimType, len: int): pointer {.compilerRtl.} =
|
|
let size = addInt(mulInt(len, typ.base.size), GenericSeqSize)
|
|
result = newObjRC1(typ, size)
|
|
cast[PGenericSeq](result).len = len
|
|
cast[PGenericSeq](result).reserved = len
|
|
when defined(memProfiler): nimProfile(size)
|
|
|
|
proc growObj(old: pointer, newsize: int, gch: var TGcHeap): pointer =
|
|
acquire(gch)
|
|
collectCT(gch)
|
|
var ol = usrToCell(old)
|
|
sysAssert(ol.typ != nil, "growObj: 1")
|
|
gcAssert(ol.typ.kind in {tyString, tySequence}, "growObj: 2")
|
|
sysAssert(allocInv(gch.region), "growObj begin")
|
|
|
|
var res = cast[PCell](rawAlloc(gch.region, newsize + sizeof(TCell)))
|
|
var elemSize = 1
|
|
if ol.typ.kind != tyString: elemSize = ol.typ.base.size
|
|
|
|
var oldsize = cast[PGenericSeq](old).len*elemSize + GenericSeqSize
|
|
copyMem(res, ol, oldsize + sizeof(TCell))
|
|
zeroMem(cast[pointer](cast[TAddress](res)+% oldsize +% sizeof(TCell)),
|
|
newsize-oldsize)
|
|
sysAssert((cast[TAddress](res) and (MemAlign-1)) == 0, "growObj: 3")
|
|
sysAssert(res.refcount shr rcShift <=% 1, "growObj: 4")
|
|
#if res.refcount <% rcIncrement:
|
|
# add(gch.zct, res)
|
|
#else: # XXX: what to do here?
|
|
# decRef(ol)
|
|
if (ol.refcount and ZctFlag) != 0:
|
|
var j = gch.zct.len-1
|
|
var d = gch.zct.d
|
|
while j >= 0:
|
|
if d[j] == ol:
|
|
d[j] = res
|
|
break
|
|
dec(j)
|
|
if canbeCycleRoot(ol): excl(gch.cycleRoots, ol)
|
|
when logGC:
|
|
writeCell("growObj old cell", ol)
|
|
writeCell("growObj new cell", res)
|
|
gcTrace(ol, csZctFreed)
|
|
gcTrace(res, csAllocated)
|
|
when reallyDealloc:
|
|
sysAssert(allocInv(gch.region), "growObj before dealloc")
|
|
rawDealloc(gch.region, ol)
|
|
else:
|
|
sysAssert(ol.typ != nil, "growObj: 5")
|
|
zeroMem(ol, sizeof(TCell))
|
|
release(gch)
|
|
result = cellToUsr(res)
|
|
sysAssert(allocInv(gch.region), "growObj end")
|
|
when defined(memProfiler): nimProfile(newsize-oldsize)
|
|
|
|
proc growObj(old: pointer, newsize: int): pointer {.rtl.} =
|
|
result = growObj(old, newsize, gch)
|
|
|
|
{.push profiler:off.}
|
|
|
|
# ---------------- cycle collector -------------------------------------------
|
|
|
|
proc freeCyclicCell(gch: var TGcHeap, c: PCell) =
|
|
prepareDealloc(c)
|
|
gcTrace(c, csCycFreed)
|
|
when logGC: writeCell("cycle collector dealloc cell", c)
|
|
when reallyDealloc:
|
|
sysAssert(allocInv(gch.region), "free cyclic cell")
|
|
rawDealloc(gch.region, c)
|
|
else:
|
|
gcAssert(c.typ != nil, "freeCyclicCell")
|
|
zeroMem(c, sizeof(TCell))
|
|
|
|
proc markGray(s: PCell) =
|
|
if s.color != rcGray:
|
|
setColor(s, rcGray)
|
|
forAllChildren(s, waMarkGray)
|
|
|
|
proc scanBlack(s: PCell) =
|
|
s.setColor(rcBlack)
|
|
forAllChildren(s, waScanBlack)
|
|
|
|
proc scan(s: PCell) =
|
|
if s.color == rcGray:
|
|
if s.refcount >=% rcIncrement:
|
|
scanBlack(s)
|
|
else:
|
|
s.setColor(rcWhite)
|
|
forAllChildren(s, waScan)
|
|
|
|
proc collectWhite(s: PCell) =
|
|
if s.color == rcWhite and s notin gch.cycleRoots:
|
|
s.setColor(rcBlack)
|
|
forAllChildren(s, waCollectWhite)
|
|
freeCyclicCell(gch, s)
|
|
|
|
proc markRoots(gch: var TGcHeap) =
|
|
var tabSize = 0
|
|
for s in elements(gch.cycleRoots):
|
|
#writeCell("markRoot", s)
|
|
inc tabSize
|
|
if s.color == rcPurple and s.refcount >=% rcIncrement:
|
|
markGray(s)
|
|
else:
|
|
excl(gch.cycleRoots, s)
|
|
# (s.color == rcBlack and rc == 0) as 1 condition:
|
|
if s.refcount == 0:
|
|
freeCyclicCell(gch, s)
|
|
gch.stat.cycleTableSize = max(gch.stat.cycleTableSize, tabSize)
|
|
|
|
when useBackupGc:
|
|
proc sweep(gch: var TGcHeap) =
|
|
for x in allObjects(gch.region):
|
|
if isCell(x):
|
|
# cast to PCell is correct here:
|
|
var c = cast[PCell](x)
|
|
if c notin gch.marked: freeCyclicCell(gch, c)
|
|
|
|
when useMarkForDebug or useBackupGc:
|
|
proc markS(gch: var TGcHeap, c: PCell) =
|
|
incl(gch.marked, c)
|
|
gcAssert gch.tempStack.len == 0, "stack not empty!"
|
|
forAllChildren(c, waMarkPrecise)
|
|
while gch.tempStack.len > 0:
|
|
dec gch.tempStack.len
|
|
var d = gch.tempStack.d[gch.tempStack.len]
|
|
if not containsOrIncl(gch.marked, d):
|
|
forAllChildren(d, waMarkPrecise)
|
|
|
|
proc markGlobals(gch: var TGcHeap) =
|
|
for i in 0 .. < globalMarkersLen: globalMarkers[i]()
|
|
|
|
proc stackMarkS(gch: var TGcHeap, p: pointer) {.inline.} =
|
|
# the addresses are not as cells on the stack, so turn them to cells:
|
|
var cell = usrToCell(p)
|
|
var c = cast[TAddress](cell)
|
|
if c >% PageSize:
|
|
# fast check: does it look like a cell?
|
|
var objStart = cast[PCell](interiorAllocatedPtr(gch.region, cell))
|
|
if objStart != nil:
|
|
markS(gch, objStart)
|
|
|
|
proc doOperation(p: pointer, op: TWalkOp) =
|
|
if p == nil: return
|
|
var c: PCell = usrToCell(p)
|
|
gcAssert(c != nil, "doOperation: 1")
|
|
# the 'case' should be faster than function pointers because of easy
|
|
# prediction:
|
|
case op
|
|
of waZctDecRef:
|
|
#if not isAllocatedPtr(gch.region, c):
|
|
# c_fprintf(c_stdout, "[GC] decref bug: %p", c)
|
|
gcAssert(isAllocatedPtr(gch.region, c), "decRef: waZctDecRef")
|
|
gcAssert(c.refcount >=% rcIncrement, "doOperation 2")
|
|
#c.refcount = c.refcount -% rcIncrement
|
|
when logGC: writeCell("decref (from doOperation)", c)
|
|
decRef(c)
|
|
#if c.refcount <% rcIncrement: addZCT(gch.zct, c)
|
|
of waPush:
|
|
add(gch.tempStack, c)
|
|
of waCycleDecRef:
|
|
gcAssert(c.refcount >=% rcIncrement, "doOperation 3")
|
|
c.refcount = c.refcount -% rcIncrement
|
|
of waMarkGray:
|
|
gcAssert(c.refcount >=% rcIncrement, "waMarkGray")
|
|
c.refcount = c.refcount -% rcIncrement
|
|
markGray(c)
|
|
of waScan: scan(c)
|
|
of waScanBlack:
|
|
c.refcount = c.refcount +% rcIncrement
|
|
if c.color != rcBlack:
|
|
scanBlack(c)
|
|
of waCollectWhite: collectWhite(c)
|
|
of waMarkGlobal:
|
|
when useMarkForDebug or useBackupGc:
|
|
when hasThreadSupport:
|
|
# could point to a cell which we don't own and don't want to touch/trace
|
|
if isAllocatedPtr(gch.region, c):
|
|
markS(gch, c)
|
|
else:
|
|
markS(gch, c)
|
|
of waMarkPrecise:
|
|
when useMarkForDebug or useBackupGc:
|
|
add(gch.tempStack, c)
|
|
|
|
proc nimGCvisit(d: pointer, op: int) {.compilerRtl.} =
|
|
doOperation(d, TWalkOp(op))
|
|
|
|
proc collectZCT(gch: var TGcHeap): bool
|
|
|
|
when useMarkForDebug or useBackupGc:
|
|
proc markStackAndRegistersForSweep(gch: var TGcHeap) {.noinline, cdecl.}
|
|
|
|
proc collectRoots(gch: var TGcHeap) =
|
|
for s in elements(gch.cycleRoots):
|
|
excl(gch.cycleRoots, s)
|
|
collectWhite(s)
|
|
|
|
proc collectCycles(gch: var TGcHeap) =
|
|
# ensure the ZCT 'color' is not used:
|
|
while gch.zct.len > 0: discard collectZCT(gch)
|
|
when useBackupGc:
|
|
cellsetReset(gch.marked)
|
|
markStackAndRegistersForSweep(gch)
|
|
markGlobals(gch)
|
|
sweep(gch)
|
|
else:
|
|
markRoots(gch)
|
|
# scanRoots:
|
|
for s in elements(gch.cycleRoots): scan(s)
|
|
collectRoots(gch)
|
|
|
|
cellsetReset(gch.cycleRoots)
|
|
# alive cycles need to be kept in 'cycleRoots' if they are referenced
|
|
# from the stack; otherwise the write barrier will add the cycle root again
|
|
# anyway:
|
|
when false:
|
|
var d = gch.decStack.d
|
|
var cycleRootsLen = 0
|
|
for i in 0..gch.decStack.len-1:
|
|
var c = d[i]
|
|
gcAssert isAllocatedPtr(gch.region, c), "addBackStackRoots"
|
|
gcAssert c.refcount >=% rcIncrement, "addBackStackRoots: dead cell"
|
|
if canBeCycleRoot(c):
|
|
#if c notin gch.cycleRoots:
|
|
inc cycleRootsLen
|
|
incl(gch.cycleRoots, c)
|
|
gcAssert c.typ != nil, "addBackStackRoots 2"
|
|
if cycleRootsLen != 0:
|
|
cfprintf(cstdout, "cycle roots: %ld\n", cycleRootsLen)
|
|
|
|
proc gcMark(gch: var TGcHeap, p: pointer) {.inline.} =
|
|
# the addresses are not as cells on the stack, so turn them to cells:
|
|
sysAssert(allocInv(gch.region), "gcMark begin")
|
|
var cell = usrToCell(p)
|
|
var c = cast[TAddress](cell)
|
|
if c >% PageSize:
|
|
# fast check: does it look like a cell?
|
|
var objStart = cast[PCell](interiorAllocatedPtr(gch.region, cell))
|
|
if objStart != nil:
|
|
# mark the cell:
|
|
objStart.refcount = objStart.refcount +% rcIncrement
|
|
add(gch.decStack, objStart)
|
|
when false:
|
|
if isAllocatedPtr(gch.region, cell):
|
|
sysAssert false, "allocated pointer but not interior?"
|
|
# mark the cell:
|
|
cell.refcount = cell.refcount +% rcIncrement
|
|
add(gch.decStack, cell)
|
|
sysAssert(allocInv(gch.region), "gcMark end")
|
|
|
|
proc markThreadStacks(gch: var TGcHeap) =
|
|
when hasThreadSupport and hasSharedHeap:
|
|
{.error: "not fully implemented".}
|
|
var it = threadList
|
|
while it != nil:
|
|
# mark registers:
|
|
for i in 0 .. high(it.registers): gcMark(gch, it.registers[i])
|
|
var sp = cast[TAddress](it.stackBottom)
|
|
var max = cast[TAddress](it.stackTop)
|
|
# XXX stack direction?
|
|
# XXX unroll this loop:
|
|
while sp <=% max:
|
|
gcMark(gch, cast[ppointer](sp)[])
|
|
sp = sp +% sizeof(pointer)
|
|
it = it.next
|
|
|
|
# ----------------- stack management --------------------------------------
|
|
# inspired from Smart Eiffel
|
|
|
|
when defined(sparc):
|
|
const stackIncreases = false
|
|
elif defined(hppa) or defined(hp9000) or defined(hp9000s300) or
|
|
defined(hp9000s700) or defined(hp9000s800) or defined(hp9000s820):
|
|
const stackIncreases = true
|
|
else:
|
|
const stackIncreases = false
|
|
|
|
when not defined(useNimRtl):
|
|
{.push stack_trace: off.}
|
|
proc setStackBottom(theStackBottom: pointer) =
|
|
#c_fprintf(c_stdout, "stack bottom: %p;\n", theStackBottom)
|
|
# the first init must be the one that defines the stack bottom:
|
|
if gch.stackBottom == nil: gch.stackBottom = theStackBottom
|
|
else:
|
|
var a = cast[TAddress](theStackBottom) # and not PageMask - PageSize*2
|
|
var b = cast[TAddress](gch.stackBottom)
|
|
#c_fprintf(c_stdout, "old: %p new: %p;\n",gch.stackBottom,theStackBottom)
|
|
when stackIncreases:
|
|
gch.stackBottom = cast[pointer](min(a, b))
|
|
else:
|
|
gch.stackBottom = cast[pointer](max(a, b))
|
|
{.pop.}
|
|
|
|
proc stackSize(): int {.noinline.} =
|
|
var stackTop {.volatile.}: pointer
|
|
result = abs(cast[int](addr(stackTop)) - cast[int](gch.stackBottom))
|
|
|
|
when defined(sparc): # For SPARC architecture.
|
|
proc isOnStack(p: pointer): bool =
|
|
var stackTop {.volatile.}: pointer
|
|
stackTop = addr(stackTop)
|
|
var b = cast[TAddress](gch.stackBottom)
|
|
var a = cast[TAddress](stackTop)
|
|
var x = cast[TAddress](p)
|
|
result = a <=% x and x <=% b
|
|
|
|
template forEachStackSlot(gch, gcMark: expr) {.immediate, dirty.} =
|
|
when defined(sparcv9):
|
|
asm """"flushw \n" """
|
|
else:
|
|
asm """"ta 0x3 ! ST_FLUSH_WINDOWS\n" """
|
|
|
|
var
|
|
max = gch.stackBottom
|
|
sp: PPointer
|
|
stackTop: array[0..1, pointer]
|
|
sp = addr(stackTop[0])
|
|
# Addresses decrease as the stack grows.
|
|
while sp <= max:
|
|
gcMark(gch, sp[])
|
|
sp = cast[PPointer](cast[TAddress](sp) +% sizeof(pointer))
|
|
|
|
elif defined(ELATE):
|
|
{.error: "stack marking code is to be written for this architecture".}
|
|
|
|
elif stackIncreases:
|
|
# ---------------------------------------------------------------------------
|
|
# Generic code for architectures where addresses increase as the stack grows.
|
|
# ---------------------------------------------------------------------------
|
|
proc isOnStack(p: pointer): bool =
|
|
var stackTop {.volatile.}: pointer
|
|
stackTop = addr(stackTop)
|
|
var a = cast[TAddress](gch.stackBottom)
|
|
var b = cast[TAddress](stackTop)
|
|
var x = cast[TAddress](p)
|
|
result = a <=% x and x <=% b
|
|
|
|
var
|
|
jmpbufSize {.importc: "sizeof(jmp_buf)", nodecl.}: int
|
|
# a little hack to get the size of a TJmpBuf in the generated C code
|
|
# in a platform independant way
|
|
|
|
template forEachStackSlot(gch, gcMark: expr) {.immediate, dirty.} =
|
|
var registers: C_JmpBuf
|
|
if c_setjmp(registers) == 0'i32: # To fill the C stack with registers.
|
|
var max = cast[TAddress](gch.stackBottom)
|
|
var sp = cast[TAddress](addr(registers)) +% jmpbufSize -% sizeof(pointer)
|
|
# sp will traverse the JMP_BUF as well (jmp_buf size is added,
|
|
# otherwise sp would be below the registers structure).
|
|
while sp >=% max:
|
|
gcMark(gch, cast[ppointer](sp)[])
|
|
sp = sp -% sizeof(pointer)
|
|
|
|
else:
|
|
# ---------------------------------------------------------------------------
|
|
# Generic code for architectures where addresses decrease as the stack grows.
|
|
# ---------------------------------------------------------------------------
|
|
proc isOnStack(p: pointer): bool =
|
|
var stackTop {.volatile.}: pointer
|
|
stackTop = addr(stackTop)
|
|
var b = cast[TAddress](gch.stackBottom)
|
|
var a = cast[TAddress](stackTop)
|
|
var x = cast[TAddress](p)
|
|
result = a <=% x and x <=% b
|
|
|
|
template forEachStackSlot(gch, gcMark: expr) {.immediate, dirty.} =
|
|
# We use a jmp_buf buffer that is in the C stack.
|
|
# Used to traverse the stack and registers assuming
|
|
# that 'setjmp' will save registers in the C stack.
|
|
type PStackSlice = ptr array [0..7, pointer]
|
|
var registers {.noinit.}: C_JmpBuf
|
|
if c_setjmp(registers) == 0'i32: # To fill the C stack with registers.
|
|
var max = cast[TAddress](gch.stackBottom)
|
|
var sp = cast[TAddress](addr(registers))
|
|
# loop unrolled:
|
|
while sp <% max - 8*sizeof(pointer):
|
|
gcMark(gch, cast[PStackSlice](sp)[0])
|
|
gcMark(gch, cast[PStackSlice](sp)[1])
|
|
gcMark(gch, cast[PStackSlice](sp)[2])
|
|
gcMark(gch, cast[PStackSlice](sp)[3])
|
|
gcMark(gch, cast[PStackSlice](sp)[4])
|
|
gcMark(gch, cast[PStackSlice](sp)[5])
|
|
gcMark(gch, cast[PStackSlice](sp)[6])
|
|
gcMark(gch, cast[PStackSlice](sp)[7])
|
|
sp = sp +% sizeof(pointer)*8
|
|
# last few entries:
|
|
while sp <=% max:
|
|
gcMark(gch, cast[PPointer](sp)[])
|
|
sp = sp +% sizeof(pointer)
|
|
|
|
proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} =
|
|
forEachStackSlot(gch, gcMark)
|
|
|
|
when useMarkForDebug or useBackupGc:
|
|
proc markStackAndRegistersForSweep(gch: var TGcHeap) =
|
|
forEachStackSlot(gch, stackMarkS)
|
|
|
|
# ----------------------------------------------------------------------------
|
|
# end of non-portable code
|
|
# ----------------------------------------------------------------------------
|
|
|
|
proc collectZCT(gch: var TGcHeap): bool =
|
|
# Note: Freeing may add child objects to the ZCT! So essentially we do
|
|
# deep freeing, which is bad for incremental operation. In order to
|
|
# avoid a deep stack, we move objects to keep the ZCT small.
|
|
# This is performance critical!
|
|
const workPackage = 100
|
|
var L = addr(gch.zct.len)
|
|
|
|
when withRealTime:
|
|
var steps = workPackage
|
|
var t0: TTicks
|
|
if gch.maxPause > 0: t0 = getticks()
|
|
while L[] > 0:
|
|
var c = gch.zct.d[0]
|
|
sysAssert(isAllocatedPtr(gch.region, c), "CollectZCT: isAllocatedPtr")
|
|
# remove from ZCT:
|
|
gcAssert((c.refcount and ZctFlag) == ZctFlag, "collectZCT")
|
|
|
|
c.refcount = c.refcount and not ZctFlag
|
|
gch.zct.d[0] = gch.zct.d[L[] - 1]
|
|
dec(L[])
|
|
when withRealTime: dec steps
|
|
if c.refcount <% rcIncrement:
|
|
# It may have a RC > 0, if it is in the hardware stack or
|
|
# it has not been removed yet from the ZCT. This is because
|
|
# ``incref`` does not bother to remove the cell from the ZCT
|
|
# as this might be too slow.
|
|
# In any case, it should be removed from the ZCT. But not
|
|
# freed. **KEEP THIS IN MIND WHEN MAKING THIS INCREMENTAL!**
|
|
when cycleGC:
|
|
if canbeCycleRoot(c): excl(gch.cycleRoots, c)
|
|
when logGC: writeCell("zct dealloc cell", c)
|
|
gcTrace(c, csZctFreed)
|
|
# We are about to free the object, call the finalizer BEFORE its
|
|
# children are deleted as well, because otherwise the finalizer may
|
|
# access invalid memory. This is done by prepareDealloc():
|
|
prepareDealloc(c)
|
|
forAllChildren(c, waZctDecRef)
|
|
when reallyDealloc:
|
|
sysAssert(allocInv(gch.region), "collectZCT: rawDealloc")
|
|
rawDealloc(gch.region, c)
|
|
else:
|
|
sysAssert(c.typ != nil, "collectZCT 2")
|
|
zeroMem(c, sizeof(TCell))
|
|
when withRealTime:
|
|
if steps == 0:
|
|
steps = workPackage
|
|
if gch.maxPause > 0:
|
|
let duration = getticks() - t0
|
|
# the GC's measuring is not accurate and needs some cleanup actions
|
|
# (stack unmarking), so subtract some short amount of time in
|
|
# order to miss deadlines less often:
|
|
if duration >= gch.maxPause - 50_000:
|
|
return false
|
|
result = true
|
|
|
|
proc unmarkStackAndRegisters(gch: var TGcHeap) =
|
|
var d = gch.decStack.d
|
|
for i in 0..gch.decStack.len-1:
|
|
sysAssert isAllocatedPtr(gch.region, d[i]), "unmarkStackAndRegisters"
|
|
decRef(d[i])
|
|
#var c = d[i]
|
|
# XXX no need for an atomic dec here:
|
|
#if --c.refcount:
|
|
# addZCT(gch.zct, c)
|
|
#sysAssert c.typ != nil, "unmarkStackAndRegisters 2"
|
|
gch.decStack.len = 0
|
|
|
|
proc collectCTBody(gch: var TGcHeap) =
|
|
when withRealTime:
|
|
let t0 = getticks()
|
|
sysAssert(allocInv(gch.region), "collectCT: begin")
|
|
|
|
gch.stat.maxStackSize = max(gch.stat.maxStackSize, stackSize())
|
|
sysAssert(gch.decStack.len == 0, "collectCT")
|
|
prepareForInteriorPointerChecking(gch.region)
|
|
markStackAndRegisters(gch)
|
|
markThreadStacks(gch)
|
|
gch.stat.maxStackCells = max(gch.stat.maxStackCells, gch.decStack.len)
|
|
inc(gch.stat.stackScans)
|
|
if collectZCT(gch):
|
|
when cycleGC:
|
|
if getOccupiedMem(gch.region) >= gch.cycleThreshold or alwaysCycleGC:
|
|
collectCycles(gch)
|
|
#discard collectZCT(gch)
|
|
inc(gch.stat.cycleCollections)
|
|
gch.cycleThreshold = max(InitialCycleThreshold, getOccupiedMem() *
|
|
CycleIncrease)
|
|
gch.stat.maxThreshold = max(gch.stat.maxThreshold, gch.cycleThreshold)
|
|
unmarkStackAndRegisters(gch)
|
|
sysAssert(allocInv(gch.region), "collectCT: end")
|
|
|
|
when withRealTime:
|
|
let duration = getticks() - t0
|
|
gch.stat.maxPause = max(gch.stat.maxPause, duration)
|
|
when defined(reportMissedDeadlines):
|
|
if gch.maxPause > 0 and duration > gch.maxPause:
|
|
c_fprintf(c_stdout, "[GC] missed deadline: %ld\n", duration)
|
|
|
|
when useMarkForDebug or useBackupGc:
|
|
proc markForDebug(gch: var TGcHeap) =
|
|
markStackAndRegistersForSweep(gch)
|
|
markGlobals(gch)
|
|
|
|
proc collectCT(gch: var TGcHeap) =
|
|
if (gch.zct.len >= ZctThreshold or (cycleGC and
|
|
getOccupiedMem(gch.region)>=gch.cycleThreshold) or alwaysGC) and
|
|
gch.recGcLock == 0:
|
|
when useMarkForDebug:
|
|
prepareForInteriorPointerChecking(gch.region)
|
|
cellsetReset(gch.marked)
|
|
markForDebug(gch)
|
|
collectCTBody(gch)
|
|
|
|
when withRealTime:
|
|
proc toNano(x: int): TNanos {.inline.} =
|
|
result = x * 1000
|
|
|
|
proc GC_setMaxPause*(MaxPauseInUs: int) =
|
|
gch.maxPause = MaxPauseInUs.toNano
|
|
|
|
proc GC_step(gch: var TGcHeap, us: int, strongAdvice: bool) =
|
|
acquire(gch)
|
|
gch.maxPause = us.toNano
|
|
if (gch.zct.len >= ZctThreshold or (cycleGC and
|
|
getOccupiedMem(gch.region)>=gch.cycleThreshold) or alwaysGC) or
|
|
strongAdvice:
|
|
collectCTBody(gch)
|
|
release(gch)
|
|
|
|
proc GC_step*(us: int, strongAdvice = false) = GC_step(gch, us, strongAdvice)
|
|
|
|
when not defined(useNimRtl):
|
|
proc GC_disable() =
|
|
when hasThreadSupport and hasSharedHeap:
|
|
discard atomicInc(gch.recGcLock, 1)
|
|
else:
|
|
inc(gch.recGcLock)
|
|
proc GC_enable() =
|
|
if gch.recGcLock > 0:
|
|
when hasThreadSupport and hasSharedHeap:
|
|
discard atomicDec(gch.recGcLock, 1)
|
|
else:
|
|
dec(gch.recGcLock)
|
|
|
|
proc GC_setStrategy(strategy: TGC_Strategy) =
|
|
discard
|
|
|
|
proc GC_enableMarkAndSweep() =
|
|
gch.cycleThreshold = InitialCycleThreshold
|
|
|
|
proc GC_disableMarkAndSweep() =
|
|
gch.cycleThreshold = high(gch.cycleThreshold)-1
|
|
# set to the max value to suppress the cycle detector
|
|
|
|
proc GC_fullCollect() =
|
|
acquire(gch)
|
|
var oldThreshold = gch.cycleThreshold
|
|
gch.cycleThreshold = 0 # forces cycle collection
|
|
collectCT(gch)
|
|
gch.cycleThreshold = oldThreshold
|
|
release(gch)
|
|
|
|
proc GC_getStatistics(): string =
|
|
GC_disable()
|
|
result = "[GC] total memory: " & $(getTotalMem()) & "\n" &
|
|
"[GC] occupied memory: " & $(getOccupiedMem()) & "\n" &
|
|
"[GC] stack scans: " & $gch.stat.stackScans & "\n" &
|
|
"[GC] stack cells: " & $gch.stat.maxStackCells & "\n" &
|
|
"[GC] cycle collections: " & $gch.stat.cycleCollections & "\n" &
|
|
"[GC] max threshold: " & $gch.stat.maxThreshold & "\n" &
|
|
"[GC] zct capacity: " & $gch.zct.cap & "\n" &
|
|
"[GC] max cycle table size: " & $gch.stat.cycleTableSize & "\n" &
|
|
"[GC] max stack size: " & $gch.stat.maxStackSize & "\n" &
|
|
"[GC] max pause time [ms]: " & $(gch.stat.maxPause div 1000_000)
|
|
GC_enable()
|
|
|
|
{.pop.}
|