Files
Nim/compiler/modulegraphs.nim

743 lines
28 KiB
Nim

#
#
# The Nim Compiler
# (c) Copyright 2017 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements the module graph data structure. The module graph
## represents a complete Nim project. Single modules can either be kept in RAM
## or stored in a rod-file.
import std/[intsets, tables, hashes, strtabs, os, strutils, parseutils]
import ../dist/checksums/src/checksums/md5
import ast, astalgo, options, lineinfos,idents, btrees, ropes, msgs, pathutils, packages, suggestsymdb
when not defined(nimKochBootstrap):
import ast2nif
import "../dist/nimony/src/lib" / [nifstreams, bitabs]
import typekeys
when defined(nimPreviewSlimSystem):
import std/assertions
type
SigHash* = distinct MD5Digest
Iface* = object ## data we don't want to store directly in the
## ast.PSym type for s.kind == skModule
module*: PSym ## module this "Iface" belongs to
converters*: seq[PSym]
patterns*: seq[PSym]
pureEnums*: seq[PSym]
interf: TStrTable
interfHidden: TStrTable
uniqueName*: Rope
Operators* = object
opNot*, opContains*, opLe*, opLt*, opAnd*, opOr*, opIsNil*, opEq*: PSym
opAdd*, opSub*, opMul*, opDiv*, opLen*: PSym
PipelinePass* = enum
NonePass
SemPass
JSgenPass
CgenPass
NifgenPass
EvalPass
InterpreterPass
GenDependPass
Docgen2TexPass
Docgen2JsonPass
Docgen2Pass
ModuleGraph* {.acyclic.} = ref object
ifaces*: seq[Iface] ## indexed by int32 fileIdx
typeInstCache*: Table[ItemId, seq[PType]] # A symbol's ItemId.
procInstCache*: Table[ItemId, seq[PInstantiation]] # A symbol's ItemId.
attachedOps*: array[TTypeAttachedOp, Table[ItemId, PSym]] # Type ID, destructors, etc.
loadedOps: array[TTypeAttachedOp, Table[string, PSym]] # This can later by unified with `attachedOps` once it's stable
opsLog*: seq[LogEntry]
methodsPerGenericType*: Table[ItemId, seq[(int, PSym)]] # Type ID, attached methods
memberProcsPerType*: Table[ItemId, seq[PSym]] # Type ID, attached member procs (only c++, virtual,member and ctor so far).
initializersPerType*: Table[ItemId, PNode] # Type ID, AST call to the default ctor (c++ only)
enumToStringProcs*: Table[ItemId, PSym]
emittedTypeInfo*: Table[string, FileIndex]
packageSyms*: TStrTable
deps*: IntSet # the dependency graph or potentially its transitive closure.
importDeps*: Table[FileIndex, seq[FileIndex]] # explicit import module dependencies
suggestMode*: bool # whether we are in nimsuggest mode or not.
invalidTransitiveClosure: bool
interactive*: bool
withinSystem*: bool # in system.nim or a module imported by system.nim
inclToMod*: Table[FileIndex, FileIndex] # mapping of include file to the
# first module that included it
importStack*: seq[FileIndex] # The current import stack. Used for detecting recursive
# module dependencies.
backend*: RootRef # minor hack so that a backend can extend this easily
config*: ConfigRef
cache*: IdentCache
vm*: RootRef # unfortunately the 'vm' state is shared project-wise, this will
# be clarified in later compiler implementations.
repl*: RootRef # REPL state is shared project-wise.
doStopCompile*: proc(): bool {.closure.}
usageSym*: PSym # for nimsuggest
owners*: seq[PSym]
suggestSymbols*: SuggestSymbolDatabase
suggestErrors*: Table[FileIndex, seq[Suggest]]
methods*: seq[tuple[methods: seq[PSym], dispatcher: PSym]] # needs serialization!
bucketTable*: CountTable[ItemId]
objectTree*: Table[ItemId, seq[tuple[depth: int, value: PType]]]
methodsPerType*: Table[ItemId, seq[PSym]]
dispatchers*: seq[PSym]
systemModule*: PSym
sysTypes*: array[TTypeKind, PType]
compilerprocs*: TStrTable
exposed*: TStrTable
packageTypes*: TStrTable
emptyNode*: PNode
canonTypes*: Table[SigHash, PType]
symBodyHashes*: Table[int, SigHash] # symId to digest mapping
importModuleCallback*: proc (graph: ModuleGraph; m: PSym, fileIdx: FileIndex): PSym {.nimcall.}
includeFileCallback*: proc (graph: ModuleGraph; m: PSym, fileIdx: FileIndex): PNode {.nimcall.}
cacheSeqs*: Table[string, PNode] # state that is shared to support the 'macrocache' API; IC: implemented
cacheCounters*: Table[string, BiggestInt] # IC: implemented
cacheTables*: Table[string, BTree[string, PNode]] # IC: implemented
passes*: seq[TPass]
pipelinePass*: PipelinePass
onDefinition*: proc (graph: ModuleGraph; s: PSym; info: TLineInfo) {.nimcall.}
onDefinitionResolveForward*: proc (graph: ModuleGraph; s: PSym; info: TLineInfo) {.nimcall.}
onUsage*: proc (graph: ModuleGraph; s: PSym; info: TLineInfo) {.nimcall.}
globalDestructors*: seq[PNode]
strongSemCheck*: proc (graph: ModuleGraph; owner: PSym; body: PNode) {.nimcall.}
compatibleProps*: proc (graph: ModuleGraph; formal, actual: PType): bool {.nimcall.}
idgen*: IdGenerator
operators*: Operators
cachedFiles*: StringTableRef
procGlobals*: seq[PNode]
nifReplayActions*: Table[int32, seq[PNode]] # module position -> replay actions for NIF
cachedMods: IntSet
TPassContext* = object of RootObj # the pass's context
idgen*: IdGenerator
PPassContext* = ref TPassContext
TPassOpen* = proc (graph: ModuleGraph; module: PSym; idgen: IdGenerator): PPassContext {.nimcall.}
TPassClose* = proc (graph: ModuleGraph; p: PPassContext, n: PNode): PNode {.nimcall.}
TPassProcess* = proc (p: PPassContext, topLevelStmt: PNode): PNode {.nimcall.}
TPass* = tuple[open: TPassOpen,
process: TPassProcess,
close: TPassClose,
isFrontend: bool]
proc resetForBackend*(g: ModuleGraph) =
g.compilerprocs = initStrTable()
g.typeInstCache.clear()
g.procInstCache.clear()
for a in mitems(g.attachedOps):
a.clear()
g.methodsPerGenericType.clear()
g.enumToStringProcs.clear()
g.dispatchers.setLen(0)
g.methodsPerType.clear()
for a in mitems(g.loadedOps):
a.clear()
g.opsLog.setLen(0)
const
cb64 = [
"A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N",
"O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z",
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n",
"o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z",
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9a",
"9b", "9c"]
proc toBase64a(s: cstring, len: int): string =
## encodes `s` into base64 representation.
result = newStringOfCap(((len + 2) div 3) * 4)
result.add "__"
var i = 0
while i < len - 2:
let a = ord(s[i])
let b = ord(s[i+1])
let c = ord(s[i+2])
result.add cb64[a shr 2]
result.add cb64[((a and 3) shl 4) or ((b and 0xF0) shr 4)]
result.add cb64[((b and 0x0F) shl 2) or ((c and 0xC0) shr 6)]
result.add cb64[c and 0x3F]
inc(i, 3)
if i < len-1:
let a = ord(s[i])
let b = ord(s[i+1])
result.add cb64[a shr 2]
result.add cb64[((a and 3) shl 4) or ((b and 0xF0) shr 4)]
result.add cb64[((b and 0x0F) shl 2)]
elif i < len:
let a = ord(s[i])
result.add cb64[a shr 2]
result.add cb64[(a and 3) shl 4]
template interfSelect(iface: Iface, importHidden: bool): TStrTable =
var ret = iface.interf.addr # without intermediate ptr, it creates a copy and compiler becomes 15x slower!
if importHidden: ret = iface.interfHidden.addr
ret[]
template semtab(g: ModuleGraph, m: PSym): TStrTable =
g.ifaces[m.position].interf
template semtabAll*(g: ModuleGraph, m: PSym): TStrTable =
g.ifaces[m.position].interfHidden
proc initStrTables*(g: ModuleGraph, m: PSym) =
semtab(g, m) = initStrTable()
semtabAll(g, m) = initStrTable()
proc strTableAdds*(g: ModuleGraph, m: PSym, s: PSym) =
strTableAdd(semtab(g, m), s)
strTableAdd(semtabAll(g, m), s)
proc isCachedModule(g: ModuleGraph; module: int): bool {.inline.} =
result = module in g.cachedMods
proc isCachedModule*(g: ModuleGraph; m: PSym): bool {.inline.} =
isCachedModule(g, m.position)
type
ModuleIter* = object
modIndex: int
ti: TIdentIter
importHidden: bool
proc initModuleIter*(mi: var ModuleIter; g: ModuleGraph; m: PSym; name: PIdent): PSym =
assert m.kind == skModule
mi.modIndex = m.position
mi.importHidden = optImportHidden in m.options
result = initIdentIter(mi.ti, g.ifaces[mi.modIndex].interfSelect(mi.importHidden), name)
proc nextModuleIter*(mi: var ModuleIter; g: ModuleGraph): PSym =
result = nextIdentIter(mi.ti, g.ifaces[mi.modIndex].interfSelect(mi.importHidden))
iterator allSyms*(g: ModuleGraph; m: PSym): PSym =
let importHidden = optImportHidden in m.options
for s in g.ifaces[m.position].interfSelect(importHidden).data:
if s != nil:
yield s
proc someSym*(g: ModuleGraph; m: PSym; name: PIdent): PSym =
let importHidden = optImportHidden in m.options
result = strTableGet(g.ifaces[m.position].interfSelect(importHidden), name)
proc someSymAmb*(g: ModuleGraph; m: PSym; name: PIdent; amb: var bool): PSym =
let importHidden = optImportHidden in m.options
var ti: TIdentIter = default(TIdentIter)
result = initIdentIter(ti, g.ifaces[m.position].interfSelect(importHidden), name)
if result != nil and nextIdentIter(ti, g.ifaces[m.position].interfSelect(importHidden)) != nil:
# another symbol exists with same name
amb = true
proc systemModuleSym*(g: ModuleGraph; name: PIdent): PSym =
result = someSym(g, g.systemModule, name)
iterator systemModuleSyms*(g: ModuleGraph; name: PIdent): PSym =
var mi: ModuleIter = default(ModuleIter)
var r = initModuleIter(mi, g, g.systemModule, name)
while r != nil:
yield r
r = nextModuleIter(mi, g)
iterator typeInstCacheItems*(g: ModuleGraph; s: PSym): PType =
if g.typeInstCache.contains(s.itemId):
let x = addr(g.typeInstCache[s.itemId])
for t in mitems(x[]):
yield t
iterator procInstCacheItems*(g: ModuleGraph; s: PSym): PInstantiation =
if g.procInstCache.contains(s.itemId):
let x = addr(g.procInstCache[s.itemId])
for t in mitems(x[]):
yield t
proc getAttachedOp*(g: ModuleGraph; t: PType; op: TTypeAttachedOp): PSym =
## returns the requested attached operation for type `t`. Can return nil
## if no such operation exists.
if g.attachedOps[op].contains(t.itemId):
result = g.attachedOps[op][t.itemId]
elif g.config.cmd in {cmdNifC, cmdM}:
# Fall back to key-based lookup for NIF-loaded hooks
let key = typeKey(t, g.config, loadTypeCallback, loadSymCallback)
result = g.loadedOps[op].getOrDefault(key)
#echo "fallback ", key, " ", op, " ", result
else:
result = nil
proc setAttachedOp*(g: ModuleGraph; module: int; t: PType; op: TTypeAttachedOp; value: PSym) =
## we also need to record this to the packed module.
if not g.attachedOps[op].contains(t.itemId):
let key = typeKey(t, g.config, loadTypeCallback, loadSymCallback)
# Use key-based deduplication for opsLog because different type objects
# (e.g. canon vs orig) can have different itemIds but same structural key
if key notin g.loadedOps[op]:
# Hooks should be written to the module where the type is defined,
# not the module that triggered the registration
let ownerModule = if t.sym != nil: t.sym.itemId.module.int else: module
g.opsLog.add LogEntry(kind: HookEntry, op: op, module: ownerModule, key: key, sym: value)
g.loadedOps[op][key] = value
g.attachedOps[op][t.itemId] = value
proc setAttachedOp*(g: ModuleGraph; module: int; typeId: ItemId; op: TTypeAttachedOp; value: PSym) =
## Overload that takes ItemId directly, useful for registering hooks from NIF index.
g.attachedOps[op][typeId] = value
proc setAttachedOpPartial*(g: ModuleGraph; module: int; t: PType; op: TTypeAttachedOp; value: PSym) =
## we also need to record this to the packed module.
g.attachedOps[op][t.itemId] = value
proc completePartialOp*(g: ModuleGraph; module: int; t: PType; op: TTypeAttachedOp; value: PSym) {.inline.} =
discard
iterator getDispatchers*(g: ModuleGraph): PSym =
for i in g.dispatchers.mitems:
yield i
proc addDispatchers*(g: ModuleGraph, value: PSym) =
# TODO: add it for packed modules
g.dispatchers.add value
iterator resolveLazySymSeq(g: ModuleGraph, list: var seq[PSym]): PSym =
for it in list.mitems:
yield it
proc setMethodsPerType*(g: ModuleGraph; id: ItemId, methods: seq[PSym]) =
# TODO: add it for packed modules
g.methodsPerType[id] = methods
proc addNifReplayAction*(g: ModuleGraph; module: int32; n: PNode) =
## Stores a replay action for NIF-based incremental compilation.
g.nifReplayActions.mgetOrPut(module, @[]).add n
iterator getMethodsPerType*(g: ModuleGraph; t: PType): PSym =
if g.methodsPerType.contains(t.itemId):
for it in mitems g.methodsPerType[t.itemId]:
yield it
proc getToStringProc*(g: ModuleGraph; t: PType): PSym =
result = g.enumToStringProcs[t.itemId]
assert result != nil
proc setToStringProc*(g: ModuleGraph; t: PType; value: PSym) =
g.enumToStringProcs[t.itemId] = value
let key = typeKey(t, g.config, loadTypeCallback, loadSymCallback)
let ownerModule = if t.sym != nil: t.sym.itemId.module.int else: value.itemId.module.int
g.opsLog.add LogEntry(kind: EnumToStrEntry, module: ownerModule, key: key, sym: value)
iterator methodsForGeneric*(g: ModuleGraph; t: PType): (int, PSym) =
if g.methodsPerGenericType.contains(t.itemId):
for it in mitems g.methodsPerGenericType[t.itemId]:
yield (it[0], it[1])
proc addMethodToGeneric*(g: ModuleGraph; module: int; t: PType; col: int; m: PSym) =
g.methodsPerGenericType.mgetOrPut(t.itemId, @[]).add (col, m)
let key = typeKey(t, g.config, loadTypeCallback, loadSymCallback)
let ownerModule = if t.sym != nil: t.sym.itemId.module.int else: module
g.opsLog.add LogEntry(kind: MethodEntry, module: ownerModule, key: key, sym: m)
proc logGenericInstance*(g: ModuleGraph; inst: PSym) =
## Log a generic instance so it gets written to the NIF file.
## This is needed when generic instances are created during compile-time
## evaluation and may be referenced from other modules compiled in the same run.
if g.config.cmd in {cmdNifC, cmdM}:
let ownerModule = inst.itemId.module.int
g.opsLog.add LogEntry(kind: GenericInstEntry, module: ownerModule, sym: inst)
proc hasDisabledAsgn*(g: ModuleGraph; t: PType): bool =
let op = getAttachedOp(g, t, attachedAsgn)
result = op != nil and sfError in op.flags
proc copyTypeProps*(g: ModuleGraph; module: int; dest, src: PType) =
for k in low(TTypeAttachedOp)..high(TTypeAttachedOp):
let op = getAttachedOp(g, src, k)
if op != nil:
setAttachedOp(g, module, dest, k, op)
proc loadCompilerProc*(g: ModuleGraph; name: string): PSym =
result = nil
if g.config.symbolFiles == disabledSf and optWithinConfigSystem notin g.config.globalOptions:
# For NIF-based compilation, search in loaded NIF modules
when not defined(nimKochBootstrap):
# Try to resolve from NIF for both cmdNifC and cmdM (which uses NIF files)
if g.config.cmd in {cmdNifC, cmdM}:
# First try system module (most compilerprocs are there)
let systemFileIdx = g.config.m.systemFileIdx
if systemFileIdx != InvalidFileIdx and not g.withinSystem:
# Only try to load from NIF if the file exists (it may not during initial ic build)
result = tryResolveCompilerProc(ast.program, name, systemFileIdx)
if result != nil:
strTableAdd(g.compilerprocs, result)
return result
# Try threadpool module (some compilerprocs like FlowVar are there)
# Find threadpool module by searching loaded modules
for moduleIdx in 0..<g.ifaces.len:
let module = g.ifaces[moduleIdx].module
if module != nil and module.name.s == "threadpool":
let threadpoolFileIdx = module.position.FileIndex
result = tryResolveCompilerProc(ast.program, name, threadpoolFileIdx)
if result != nil:
strTableAdd(g.compilerprocs, result)
return result
return nil
proc `$`*(u: SigHash): string =
toBase64a(cast[cstring](unsafeAddr u), sizeof(u))
proc `==`*(a, b: SigHash): bool =
result = equalMem(unsafeAddr a, unsafeAddr b, sizeof(a))
proc hash*(u: SigHash): Hash =
result = 0
for x in 0..3:
result = (result shl 8) or u.MD5Digest[x].int
proc hash*(x: FileIndex): Hash {.borrow.}
template getPContext(): untyped =
when c is PContext: c
else: c.c
when defined(nimsuggest):
template onUse*(info: TLineInfo; s: PSym; isGenericInstance = false) = discard
template onDefResolveForward*(info: TLineInfo; s: PSym) = discard
else:
template onUse*(info: TLineInfo; s: PSym; isGenericInstance = false) = discard
template onDef*(info: TLineInfo; s: PSym) = discard
template onDefResolveForward*(info: TLineInfo; s: PSym) = discard
proc stopCompile*(g: ModuleGraph): bool {.inline.} =
result = g.doStopCompile != nil and g.doStopCompile()
proc createMagic*(g: ModuleGraph; idgen: IdGenerator; name: string, m: TMagic): PSym =
result = newSym(skProc, getIdent(g.cache, name), idgen, nil, unknownLineInfo, {})
result.magic = m
result.flags = {sfNeverRaises}
proc createMagic(g: ModuleGraph; name: string, m: TMagic): PSym =
result = createMagic(g, g.idgen, name, m)
proc uniqueModuleName*(conf: ConfigRef; m: PSym): string =
## The unique module name is guaranteed to only contain {'A'..'Z', 'a'..'z', '0'..'9', '_'}
## so that it is useful as a C identifier snippet.
let fid = FileIndex(m.position)
let path = AbsoluteFile toFullPath(conf, fid)
var isLib = false
var rel = ""
if path.string.startsWith(conf.libpath.string):
isLib = true
rel = relativeTo(path, conf.libpath).string
else:
rel = relativeTo(path, conf.projectPath).string
if not isLib and not belongsToProjectPackage(conf, m):
# special handlings for nimble packages
when DirSep == '\\':
let rel2 = replace(rel, '\\', '/')
else:
let rel2 = rel
const pkgs2 = "pkgs2/"
var start = rel2.find(pkgs2)
if start >= 0:
start += pkgs2.len
start += skipUntil(rel2, {'/'}, start)
if start+1 < rel2.len:
rel = "pkg/" & rel2[start+1..<rel.len] # strips paths
let trunc = if rel.endsWith(".nim"): rel.len - len(".nim") else: rel.len
result = newStringOfCap(trunc)
for i in 0..<trunc:
let c = rel[i]
case c
of 'a'..'z', '0'..'9':
result.add c
of {os.DirSep, os.AltSep}:
result.add 'Z' # because it looks a bit like '/'
of '.':
result.add 'O' # a circle
else:
# We mangle upper letters too so that there cannot
# be clashes with our special meanings of 'Z' and 'O'
result.addInt ord(c)
proc registerModule*(g: ModuleGraph; m: PSym) =
assert m != nil
assert m.kind == skModule
if m.position >= g.ifaces.len:
setLen(g.ifaces, m.position + 1)
if g.ifaces[m.position].module == nil:
g.ifaces[m.position] = Iface(module: m, converters: @[], patterns: @[],
uniqueName: rope(uniqueModuleName(g.config, m)))
initStrTables(g, m)
proc registerModuleById*(g: ModuleGraph; m: FileIndex) =
registerModule(g, g.ifaces[int m].module)
proc initOperators*(g: ModuleGraph): Operators =
# These are safe for IC.
# Public because it's used by DrNim.
result = Operators(
opLe: createMagic(g, "<=", mLeI),
opLt: createMagic(g, "<", mLtI),
opAnd: createMagic(g, "and", mAnd),
opOr: createMagic(g, "or", mOr),
opIsNil: createMagic(g, "isnil", mIsNil),
opEq: createMagic(g, "==", mEqI),
opAdd: createMagic(g, "+", mAddI),
opSub: createMagic(g, "-", mSubI),
opMul: createMagic(g, "*", mMulI),
opDiv: createMagic(g, "div", mDivI),
opLen: createMagic(g, "len", mLengthSeq),
opNot: createMagic(g, "not", mNot),
opContains: createMagic(g, "contains", mInSet)
)
proc initModuleGraphFields(result: ModuleGraph) =
# A module ID of -1 means that the symbol is not attached to a module at all,
# but to the module graph:
result.idgen = IdGenerator(module: -1'i32, symId: 0'i32, typeId: 0'i32)
result.packageSyms = initStrTable()
result.deps = initIntSet()
result.importDeps = initTable[FileIndex, seq[FileIndex]]()
result.ifaces = @[]
result.importStack = @[]
result.inclToMod = initTable[FileIndex, FileIndex]()
result.owners = @[]
result.suggestSymbols = initTable[FileIndex, SuggestFileSymbolDatabase]()
result.suggestErrors = initTable[FileIndex, seq[Suggest]]()
result.methods = @[]
result.compilerprocs = initStrTable()
result.exposed = initStrTable()
result.packageTypes = initStrTable()
result.emptyNode = newNode(nkEmpty)
result.cacheSeqs = initTable[string, PNode]()
result.cacheCounters = initTable[string, BiggestInt]()
result.cacheTables = initTable[string, BTree[string, PNode]]()
result.canonTypes = initTable[SigHash, PType]()
result.symBodyHashes = initTable[int, SigHash]()
result.operators = initOperators(result)
result.emittedTypeInfo = initTable[string, FileIndex]()
result.cachedFiles = newStringTable()
result.cachedMods = initIntSet()
proc newModuleGraph*(cache: IdentCache; config: ConfigRef): ModuleGraph =
result = ModuleGraph()
result.config = config
result.cache = cache
initModuleGraphFields(result)
ast.setupProgram(config, cache)
proc resetAllModules*(g: ModuleGraph) =
g.packageSyms = initStrTable()
g.deps = initIntSet()
g.ifaces = @[]
g.importStack = @[]
g.inclToMod = initTable[FileIndex, FileIndex]()
g.usageSym = nil
g.owners = @[]
g.methods = @[]
g.compilerprocs = initStrTable()
g.exposed = initStrTable()
initModuleGraphFields(g)
proc getModule*(g: ModuleGraph; fileIdx: FileIndex): PSym =
if fileIdx.int32 >= 0 and fileIdx.int32 < g.ifaces.len:
result = g.ifaces[fileIdx.int32].module
else:
result = nil
proc moduleOpenForCodegen*(g: ModuleGraph; m: FileIndex): bool {.inline.} =
result = true
proc dependsOn(a, b: int): int {.inline.} = (a shl 15) + b
proc addDep*(g: ModuleGraph; m: PSym, dep: FileIndex) =
assert m.position == m.info.fileIndex.int32
if g.suggestMode:
g.deps.incl m.position.dependsOn(dep.int)
# we compute the transitive closure later when querying the graph lazily.
# this improves efficiency quite a lot:
#invalidTransitiveClosure = true
proc addIncludeDep*(g: ModuleGraph; module, includeFile: FileIndex) =
discard hasKeyOrPut(g.inclToMod, includeFile, module)
proc parentModule*(g: ModuleGraph; fileIdx: FileIndex): FileIndex =
## returns 'fileIdx' if the file belonging to this index is
## directly used as a module or else the module that first
## references this include file.
if fileIdx.int32 >= 0 and fileIdx.int32 < g.ifaces.len and g.ifaces[fileIdx.int32].module != nil:
result = fileIdx
else:
result = g.inclToMod.getOrDefault(fileIdx)
proc transitiveClosure(g: var IntSet; n: int) =
# warshall's algorithm
for k in 0..<n:
for i in 0..<n:
for j in 0..<n:
if i != j and not g.contains(i.dependsOn(j)):
if g.contains(i.dependsOn(k)) and g.contains(k.dependsOn(j)):
g.incl i.dependsOn(j)
proc markDirty*(g: ModuleGraph; fileIdx: FileIndex) =
let m = g.getModule fileIdx
if m != nil:
g.suggestSymbols.del(fileIdx)
g.suggestErrors.del(fileIdx)
incl m.flagsImpl, sfDirty
proc unmarkAllDirty*(g: ModuleGraph) =
for i in 0i32..<g.ifaces.len.int32:
let m = g.ifaces[i].module
if m != nil:
m.flagsImpl.excl sfDirty
proc isDirty*(g: ModuleGraph; m: PSym): bool =
result = g.suggestMode and sfDirty in m.flags
proc markClientsDirty*(g: ModuleGraph; fileIdx: FileIndex) =
# we need to mark its dependent modules D as dirty right away because after
# nimsuggest is done with this module, the module's dirty flag will be
# cleared but D still needs to be remembered as 'dirty'.
if g.invalidTransitiveClosure:
g.invalidTransitiveClosure = false
transitiveClosure(g.deps, g.ifaces.len)
# every module that *depends* on this file is also dirty:
for i in 0i32..<g.ifaces.len.int32:
if g.deps.contains(i.dependsOn(fileIdx.int)):
g.markDirty(FileIndex(i))
proc needsCompilation*(g: ModuleGraph): bool =
# every module that *depends* on this file is also dirty:
result = false
for i in 0i32..<g.ifaces.len.int32:
let m = g.ifaces[i].module
if m != nil:
if sfDirty in m.flags:
return true
proc needsCompilation*(g: ModuleGraph, fileIdx: FileIndex): bool =
result = false
let module = g.getModule(fileIdx)
if module != nil and g.isDirty(module):
return true
for i in 0i32..<g.ifaces.len.int32:
let m = g.ifaces[i].module
if m != nil and g.isDirty(m) and g.deps.contains(fileIdx.int32.dependsOn(i)):
return true
proc getBody*(g: ModuleGraph; s: PSym): PNode {.inline.} =
result = s.ast[bodyPos]
assert result != nil
when not defined(nimKochBootstrap):
proc moduleFromNifFile*(g: ModuleGraph; fileIdx: FileIndex;
flags: set[LoadFlag] = {}): PrecompiledModule =
## Returns 'nil' if the module needs to be recompiled.
## Loads module from NIF file when optCompress is enabled.
## When loadFullAst is true, loads the complete module AST for code generation.
if not fileExists(toNifFilename(g.config, fileIdx)):
return PrecompiledModule(module: nil)
# Create module symbol
let filename = AbsoluteFile toFullPath(g.config, fileIdx)
let m = PSym(
kindImpl: skModule,
itemId: ItemId(module: int32(fileIdx), item: 0'i32),
name: getIdent(g.cache, splitFile(filename).name),
infoImpl: newLineInfo(fileIdx, 1, 1),
positionImpl: int(fileIdx))
setOwner(m, getPackage(g.config, g.cache, fileIdx))
# Register module in graph
registerModule(g, m)
result = loadNifModule(ast.program, fileIdx,
g.ifaces[fileIdx.int].interf,
g.ifaces[fileIdx.int].interfHidden, flags)
result.module = m
# Mark module as cached
g.cachedMods.incl fileIdx.int
# Register hooks from NIF index with the module graph
for x in result.logOps:
case x.kind
of HookEntry:
g.loadedOps[x.op][x.key] = x.sym
of ConverterEntry:
g.ifaces[fileIdx.int].converters.add x.sym
of MethodEntry:
discard "todo"
of EnumToStrEntry:
discard "todo"
of GenericInstEntry:
raiseAssert "GenericInstEntry should not be in the NIF index"
# Register methods per type from NIF index
discard "todo"
proc configComplete*(g: ModuleGraph) =
#rememberStartupConfig(g.startupPackedConfig, g.config)
discard
proc onProcessing*(graph: ModuleGraph, fileIdx: FileIndex, moduleStatus: string, fromModule: PSym) =
let conf = graph.config
let isNimscript = conf.isDefined("nimscript")
if (not isNimscript) or hintProcessing in conf.cmdlineNotes:
let path = toFilenameOption(conf, fileIdx, conf.filenameOption)
let indent = ">".repeat(graph.importStack.len)
let fromModule2 = if fromModule != nil: $fromModule.name.s else: "(toplevel)"
let mode = if isNimscript: "(nims) " else: ""
rawMessage(conf, hintProcessing, "$#$# $#: $#: $#" % [mode, indent, fromModule2, moduleStatus, path])
proc getPackage*(graph: ModuleGraph; fileIdx: FileIndex): PSym =
## Returns a package symbol for yet to be defined module for fileIdx.
## The package symbol is added to the graph if it doesn't exist.
let pkgSym = getPackage(graph.config, graph.cache, fileIdx)
# check if the package is already in the graph
result = graph.packageSyms.strTableGet(pkgSym.name)
if result == nil:
# the package isn't in the graph, so create and add it
result = pkgSym
graph.packageSyms.strTableAdd(pkgSym)
proc belongsToStdlib*(graph: ModuleGraph, sym: PSym): bool =
## Check if symbol belongs to the 'stdlib' package.
sym.getPackageSymbol.getPackageId == graph.systemModule.getPackageId
proc fileSymbols*(graph: ModuleGraph, fileIdx: FileIndex): SuggestFileSymbolDatabase =
result = graph.suggestSymbols.getOrDefault(fileIdx, newSuggestFileSymbolDatabase(fileIdx, optIdeExceptionInlayHints in graph.config.globalOptions))
doAssert(result.fileIndex == fileIdx)
iterator suggestSymbolsIter*(g: ModuleGraph): SymInfoPair =
for xs in g.suggestSymbols.values:
for i in xs.lineInfo.low..xs.lineInfo.high:
yield xs.getSymInfoPair(i)
iterator suggestErrorsIter*(g: ModuleGraph): Suggest =
for xs in g.suggestErrors.values:
for x in xs:
yield x