Files
Nim/compiler/semcall.nim
metagn 74f4042f89 isolate and rematch generic converters to get bindings (#24867)
fixes #4554, fixes #10900, fixes #13843, fixes #19471, fixes #19517

Instead of matching generic converters to their arguments using the full
call match bindings, a new match is created for them (from which the
bindings are used to instantiate the converter return type). Then when
instantiating generic converters, they are matched to their argument
again to get their bindings again instead of using the call bindings.
This prevents generic converters which match more than once from
interfering with each other's bindings.

(cherry picked from commit 334f96c05a)
2025-04-14 10:52:56 +02:00

1065 lines
42 KiB
Nim

#
#
# The Nim Compiler
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements semantic checking for calls.
# included from sem.nim
from std/algorithm import sort
proc sameMethodDispatcher(a, b: PSym): bool =
result = false
if a.kind == skMethod and b.kind == skMethod:
var aa = lastSon(a.ast)
var bb = lastSon(b.ast)
if aa.kind == nkSym and bb.kind == nkSym:
if aa.sym == bb.sym:
result = true
else:
discard
# generics have no dispatcher yet, so we need to compare the method
# names; however, the names are equal anyway because otherwise we
# wouldn't even consider them to be overloaded. But even this does
# not work reliably! See tmultim6 for an example:
# method collide[T](a: TThing, b: TUnit[T]) is instantiated and not
# method collide[T](a: TUnit[T], b: TThing)! This means we need to
# *instantiate* every candidate! However, we don't keep more than 2-3
# candidates around so we cannot implement that for now. So in order
# to avoid subtle problems, the call remains ambiguous and needs to
# be disambiguated by the programmer; this way the right generic is
# instantiated.
proc determineType(c: PContext, s: PSym)
proc initCandidateSymbols(c: PContext, headSymbol: PNode,
initialBinding: PNode,
filter: TSymKinds,
best, alt: var TCandidate,
o: var TOverloadIter,
diagnostics: bool): seq[tuple[s: PSym, scope: int]] =
## puts all overloads into a seq and prepares best+alt
result = @[]
var symx = initOverloadIter(o, c, headSymbol)
while symx != nil:
if symx.kind in filter:
result.add((symx, o.lastOverloadScope))
elif symx.kind == skGenericParam:
#[
This code handles looking up a generic parameter when it's a static callable.
For instance:
proc name[T: static proc()]() = T()
name[proc() = echo"hello"]()
]#
for paramSym in searchScopesAll(c, symx.name, {skConst}):
let paramTyp = paramSym.typ
if paramTyp.n.kind == nkSym and paramTyp.n.sym.kind in filter:
result.add((paramTyp.n.sym, o.lastOverloadScope))
symx = nextOverloadIter(o, c, headSymbol)
if result.len > 0:
best = initCandidate(c, result[0].s, initialBinding,
result[0].scope, diagnostics)
alt = initCandidate(c, result[0].s, initialBinding,
result[0].scope, diagnostics)
best.state = csNoMatch
proc isAttachableRoutineTo(prc: PSym, arg: PType): bool =
result = false
if arg.owner != prc.owner: return false
for i in 1 ..< prc.typ.len:
if prc.typ.n[i].kind == nkSym and prc.typ.n[i].sym.ast != nil:
# has default value, parameter is not considered in type attachment
continue
let t = nominalRoot(prc.typ[i])
if t != nil and t.itemId == arg.itemId:
# parameter `i` is a nominal type in this module
# attachable if the nominal root `t` has the same id as `arg`
return true
proc addTypeBoundSymbols(graph: ModuleGraph, arg: PType, name: PIdent,
filter: TSymKinds, marker: var IntSet,
syms: var seq[tuple[s: PSym, scope: int]]) =
# add type bound ops for `name` based on the argument type `arg`
if arg != nil:
# argument must be typed first, meaning arguments always
# matching `untyped` are ignored
let t = nominalRoot(arg)
if t != nil and t.owner.kind == skModule:
# search module for routines attachable to `t`
let module = t.owner
var iter = default(ModuleIter)
var s = initModuleIter(iter, graph, module, name)
while s != nil:
if s.kind in filter and s.isAttachableRoutineTo(t) and
not containsOrIncl(marker, s.id):
# least priority scope, less than explicit imports:
syms.add((s, -2))
s = nextModuleIter(iter, graph)
proc pickBestCandidate(c: PContext, headSymbol: PNode,
n, orig: PNode,
initialBinding: PNode,
filter: TSymKinds,
best, alt: var TCandidate,
errors: var CandidateErrors,
diagnosticsFlag: bool,
errorsEnabled: bool, flags: TExprFlags) =
# `matches` may find new symbols, so keep track of count
var symCount = c.currentScope.symbols.counter
var o: TOverloadIter = default(TOverloadIter)
# https://github.com/nim-lang/Nim/issues/21272
# prevent mutation during iteration by storing them in a seq
# luckily `initCandidateSymbols` does just that
var syms = initCandidateSymbols(c, headSymbol, initialBinding, filter,
best, alt, o, diagnosticsFlag)
if len(syms) == 0:
return
let allowTypeBoundOps = typeBoundOps in c.features and
# qualified or bound symbols cannot refer to type bound ops
headSymbol.kind in {nkIdent, nkAccQuoted, nkOpenSymChoice, nkOpenSym}
var symMarker = initIntSet()
for s in syms:
symMarker.incl(s.s.id)
# current overload being considered
var sym = syms[0].s
let name = sym.name
var scope = syms[0].scope
if allowTypeBoundOps:
for a in 1 ..< n.len:
# for every already typed argument, add type bound ops
let arg = n[a]
addTypeBoundSymbols(c.graph, arg.typ, name, filter, symMarker, syms)
# starts at 1 because 0 is already done with setup, only needs checking
var nextSymIndex = 1
var z: TCandidate # current candidate
while true:
determineType(c, sym)
z = initCandidate(c, sym, initialBinding, scope, diagnosticsFlag)
# this is kinda backwards as without a check here the described
# problems in recalc would not happen, but instead it 100%
# does check forever in some cases
if c.currentScope.symbols.counter == symCount:
# may introduce new symbols with caveats described in recalc branch
matches(c, n, orig, z)
if allowTypeBoundOps:
# this match may have given some arguments new types,
# in which case add their type bound ops as well
# type bound ops of arguments always matching `untyped` are not considered
for x in z.newlyTypedOperands:
let arg = n[x]
addTypeBoundSymbols(c.graph, arg.typ, name, filter, symMarker, syms)
if z.state == csMatch:
# little hack so that iterators are preferred over everything else:
if sym.kind == skIterator:
if not (efWantIterator notin flags and efWantIterable in flags):
inc(z.exactMatches, 200)
else:
dec(z.exactMatches, 200)
case best.state
of csEmpty, csNoMatch: best = z
of csMatch:
var cmp = cmpCandidates(best, z)
if cmp < 0: best = z # x is better than the best so far
elif cmp == 0: alt = z # x is as good as the best so far
elif errorsEnabled or z.diagnosticsEnabled:
errors.add(CandidateError(
sym: sym,
firstMismatch: z.firstMismatch,
diagnostics: z.diagnostics))
else:
# this branch feels like a ticking timebomb
# one of two bad things could happen
# 1) new symbols are discovered but the loop ends before we recalc
# 2) new symbols are discovered and resemmed forever
# not 100% sure if these are possible though as they would rely
# on somehow introducing a new overload during overload resolution
# Symbol table has been modified. Restart and pre-calculate all syms
# before any further candidate init and compare. SLOW, but rare case.
syms = initCandidateSymbols(c, headSymbol, initialBinding, filter,
best, alt, o, diagnosticsFlag)
symMarker = initIntSet()
for s in syms:
symMarker.incl(s.s.id)
if allowTypeBoundOps:
for a in 1 ..< n.len:
# for every already typed argument, add type bound ops
let arg = n[a]
addTypeBoundSymbols(c.graph, arg.typ, name, filter, symMarker, syms)
# reset counter because syms may be in a new order
symCount = c.currentScope.symbols.counter
nextSymIndex = 0
# just in case, should be impossible though
if syms.len == 0:
break
if nextSymIndex > high(syms):
# we have reached the end
break
# advance to next sym
sym = syms[nextSymIndex].s
scope = syms[nextSymIndex].scope
inc(nextSymIndex)
proc effectProblem(f, a: PType; result: var string; c: PContext) =
if f.kind == tyProc and a.kind == tyProc:
if tfThread in f.flags and tfThread notin a.flags:
result.add "\n This expression is not GC-safe. Annotate the " &
"proc with {.gcsafe.} to get extended error information."
elif tfNoSideEffect in f.flags and tfNoSideEffect notin a.flags:
result.add "\n This expression can have side effects. Annotate the " &
"proc with {.noSideEffect.} to get extended error information."
else:
case compatibleEffects(f, a)
of efCompat: discard
of efRaisesDiffer:
result.add "\n The `.raises` requirements differ."
of efRaisesUnknown:
result.add "\n The `.raises` requirements differ. Annotate the " &
"proc with {.raises: [].} to get extended error information."
of efTagsDiffer:
result.add "\n The `.tags` requirements differ."
of efTagsUnknown:
result.add "\n The `.tags` requirements differ. Annotate the " &
"proc with {.tags: [].} to get extended error information."
of efEffectsDelayed:
result.add "\n The `.effectsOf` annotations differ."
of efTagsIllegal:
result.add "\n The `.forbids` requirements caught an illegal tag."
when defined(drnim):
if not c.graph.compatibleProps(c.graph, f, a):
result.add "\n The `.requires` or `.ensures` properties are incompatible."
proc presentFailedCandidates(c: PContext, n: PNode, errors: CandidateErrors):
(TPreferedDesc, string) =
var prefer = preferName
# to avoid confusing errors like:
# got (SslPtr, SocketHandle)
# but expected one of:
# openssl.SSL_set_fd(ssl: SslPtr, fd: SocketHandle): cint
# we do a pre-analysis. If all types produce the same string, we will add
# module information.
let proto = describeArgs(c, n, 1, preferName)
for err in errors:
var errProto = ""
let n = err.sym.typ.n
for i in 1..<n.len:
var p = n[i]
if p.kind == nkSym:
errProto.add(typeToString(p.sym.typ, preferName))
if i != n.len-1: errProto.add(", ")
# else: ignore internal error as we're already in error handling mode
if errProto == proto:
prefer = preferModuleInfo
break
# we pretend procs are attached to the type of the first
# argument in order to remove plenty of candidates. This is
# comparable to what C# does and C# is doing fine.
var filterOnlyFirst = false
if optShowAllMismatches notin c.config.globalOptions and verboseTypeMismatch in c.config.legacyFeatures:
for err in errors:
if err.firstMismatch.arg > 1:
filterOnlyFirst = true
break
var maybeWrongSpace = false
var candidatesAll: seq[string] = @[]
var candidates = ""
var skipped = 0
for err in errors:
candidates.setLen 0
if filterOnlyFirst and err.firstMismatch.arg == 1:
inc skipped
continue
if verboseTypeMismatch notin c.config.legacyFeatures:
candidates.add "[" & $err.firstMismatch.arg & "] "
if err.sym.kind in routineKinds and err.sym.ast != nil:
candidates.add(renderTree(err.sym.ast,
{renderNoBody, renderNoComments, renderNoPragmas}))
else:
candidates.add(getProcHeader(c.config, err.sym, prefer))
candidates.addDeclaredLocMaybe(c.config, err.sym)
candidates.add("\n")
const genericParamMismatches = {kGenericParamTypeMismatch, kExtraGenericParam, kMissingGenericParam}
let isGenericMismatch = err.firstMismatch.kind in genericParamMismatches
var argList = n
if isGenericMismatch and n[0].kind == nkBracketExpr:
argList = n[0]
let nArg =
if err.firstMismatch.arg < argList.len:
argList[err.firstMismatch.arg]
else:
nil
let nameParam = if err.firstMismatch.formal != nil: err.firstMismatch.formal.name.s else: ""
if n.len > 1:
if verboseTypeMismatch notin c.config.legacyFeatures:
case err.firstMismatch.kind
of kUnknownNamedParam:
if nArg == nil:
candidates.add(" unknown named parameter")
else:
candidates.add(" unknown named parameter: " & $nArg[0])
candidates.add "\n"
of kAlreadyGiven:
candidates.add(" named param already provided: " & $nArg[0])
candidates.add "\n"
of kPositionalAlreadyGiven:
candidates.add(" positional param was already given as named param")
candidates.add "\n"
of kExtraArg:
candidates.add(" extra argument given")
candidates.add "\n"
of kMissingParam:
candidates.add(" missing parameter: " & nameParam)
candidates.add "\n"
of kExtraGenericParam:
candidates.add(" extra generic param given")
candidates.add "\n"
of kMissingGenericParam:
candidates.add(" missing generic parameter: " & nameParam)
candidates.add "\n"
of kVarNeeded:
doAssert nArg != nil
doAssert err.firstMismatch.formal != nil
candidates.add " expression '"
candidates.add renderNotLValue(nArg)
candidates.add "' is immutable, not 'var'"
candidates.add "\n"
of kTypeMismatch:
doAssert nArg != nil
if nArg.kind in nkSymChoices:
candidates.add ambiguousIdentifierMsg(nArg, indent = 2)
let wanted = err.firstMismatch.formal.typ
doAssert err.firstMismatch.formal != nil
doAssert wanted != nil
let got = nArg.typ
if got != nil and got.kind == tyProc and wanted.kind == tyProc:
# These are proc mismatches so,
# add the extra explict detail of the mismatch
candidates.add " expression '"
candidates.add renderTree(nArg)
candidates.add "' is of type: "
candidates.addTypeDeclVerboseMaybe(c.config, got)
candidates.addPragmaAndCallConvMismatch(wanted, got, c.config)
effectProblem(wanted, got, candidates, c)
candidates.add "\n"
of kGenericParamTypeMismatch:
let pos = err.firstMismatch.arg
doAssert n[0].kind == nkBracketExpr and pos < n[0].len
let arg = n[0][pos]
doAssert arg != nil
var wanted = err.firstMismatch.formal.typ
if wanted.kind == tyGenericParam and wanted.genericParamHasConstraints:
wanted = wanted.genericConstraint
let got = arg.typ.skipTypes({tyTypeDesc})
doAssert err.firstMismatch.formal != nil
doAssert wanted != nil
doAssert got != nil
candidates.add " generic parameter mismatch, expected "
candidates.addTypeDeclVerboseMaybe(c.config, wanted)
candidates.add " but got '"
candidates.add renderTree(arg)
candidates.add "' of type: "
candidates.addTypeDeclVerboseMaybe(c.config, got)
if nArg.kind in nkSymChoices:
candidates.add "\n"
candidates.add ambiguousIdentifierMsg(nArg, indent = 2)
if got != nil and got.kind == tyProc and wanted.kind == tyProc:
# These are proc mismatches so,
# add the extra explict detail of the mismatch
candidates.addPragmaAndCallConvMismatch(wanted, got, c.config)
if got != nil:
effectProblem(wanted, got, candidates, c)
candidates.add "\n"
of kUnknown: discard "do not break 'nim check'"
else:
candidates.add(" first type mismatch at position: " & $err.firstMismatch.arg)
if err.firstMismatch.kind in genericParamMismatches:
candidates.add(" in generic parameters")
# candidates.add "\n reason: " & $err.firstMismatch.kind # for debugging
case err.firstMismatch.kind
of kUnknownNamedParam:
if nArg == nil:
candidates.add("\n unknown named parameter")
else:
candidates.add("\n unknown named parameter: " & $nArg[0])
of kAlreadyGiven: candidates.add("\n named param already provided: " & $nArg[0])
of kPositionalAlreadyGiven: candidates.add("\n positional param was already given as named param")
of kExtraArg: candidates.add("\n extra argument given")
of kMissingParam: candidates.add("\n missing parameter: " & nameParam)
of kExtraGenericParam:
candidates.add("\n extra generic param given")
of kMissingGenericParam:
candidates.add("\n missing generic parameter: " & nameParam)
of kTypeMismatch, kGenericParamTypeMismatch, kVarNeeded:
doAssert nArg != nil
var wanted = err.firstMismatch.formal.typ
if isGenericMismatch and wanted.kind == tyGenericParam and
wanted.genericParamHasConstraints:
wanted = wanted.genericConstraint
doAssert err.firstMismatch.formal != nil
candidates.add("\n required type for " & nameParam & ": ")
candidates.addTypeDeclVerboseMaybe(c.config, wanted)
candidates.add "\n but expression '"
if err.firstMismatch.kind == kVarNeeded:
candidates.add renderNotLValue(nArg)
candidates.add "' is immutable, not 'var'"
else:
candidates.add renderTree(nArg)
candidates.add "' is of type: "
var got = nArg.typ
if isGenericMismatch: got = got.skipTypes({tyTypeDesc})
candidates.addTypeDeclVerboseMaybe(c.config, got)
if nArg.kind in nkSymChoices:
candidates.add "\n"
candidates.add ambiguousIdentifierMsg(nArg, indent = 2)
doAssert wanted != nil
if got != nil:
if got.kind == tyProc and wanted.kind == tyProc:
# These are proc mismatches so,
# add the extra explict detail of the mismatch
candidates.addPragmaAndCallConvMismatch(wanted, got, c.config)
effectProblem(wanted, got, candidates, c)
of kUnknown: discard "do not break 'nim check'"
candidates.add "\n"
if err.firstMismatch.arg == 1 and nArg != nil and
nArg.kind == nkTupleConstr and n.kind == nkCommand:
maybeWrongSpace = true
for diag in err.diagnostics:
candidates.add(diag & "\n")
candidatesAll.add candidates
candidatesAll.sort # fix #13538
candidates = join(candidatesAll)
if skipped > 0:
candidates.add($skipped & " other mismatching symbols have been " &
"suppressed; compile with --showAllMismatches:on to see them\n")
if maybeWrongSpace:
candidates.add("maybe misplaced space between " & renderTree(n[0]) & " and '(' \n")
result = (prefer, candidates)
const
errTypeMismatch = "type mismatch: got <"
errButExpected = "but expected one of:"
errExpectedPosition = "Expected one of (first mismatch at [position]):"
errUndeclaredField = "undeclared field: '$1'"
errUndeclaredRoutine = "attempting to call undeclared routine: '$1'"
errBadRoutine = "attempting to call routine: '$1'$2"
errAmbiguousCallXYZ = "ambiguous call; both $1 and $2 match for: $3"
proc describeParamList(c: PContext, n: PNode, startIdx = 1; prefer = preferName): string =
result = "Expression: " & $n
for i in startIdx..<n.len:
result.add "\n [" & $i & "] " & renderTree(n[i]) & ": "
result.add describeArg(c, n, i, startIdx, prefer)
result.add "\n"
template legacynotFoundError(c: PContext, n: PNode, errors: CandidateErrors) =
let (prefer, candidates) = presentFailedCandidates(c, n, errors)
var result = errTypeMismatch
result.add(describeArgs(c, n, 1, prefer))
result.add('>')
if candidates != "":
result.add("\n" & errButExpected & "\n" & candidates)
localError(c.config, n.info, result & "\nexpression: " & $n)
proc notFoundError*(c: PContext, n: PNode, errors: CandidateErrors) =
# Gives a detailed error message; this is separated from semOverloadedCall,
# as semOverloadedCall is already pretty slow (and we need this information
# only in case of an error).
if c.config.m.errorOutputs == {}:
# fail fast:
globalError(c.config, n.info, "type mismatch")
return
# see getMsgDiagnostic:
if nfExplicitCall notin n.flags and {nfDotField, nfDotSetter} * n.flags != {}:
let ident = considerQuotedIdent(c, n[0], n).s
let sym = n[1].typ.typSym
var typeHint = ""
if sym == nil:
discard
else:
typeHint = " for type " & getProcHeader(c.config, sym)
localError(c.config, n.info, errUndeclaredField % ident & typeHint)
return
if errors.len == 0:
if n[0].kind in nkIdentKinds:
let ident = considerQuotedIdent(c, n[0], n).s
localError(c.config, n.info, errUndeclaredRoutine % ident)
else:
localError(c.config, n.info, "expression '$1' cannot be called" % n[0].renderTree)
return
if verboseTypeMismatch in c.config.legacyFeatures:
legacynotFoundError(c, n, errors)
else:
let (prefer, candidates) = presentFailedCandidates(c, n, errors)
var result = "type mismatch\n"
result.add describeParamList(c, n, 1, prefer)
if candidates != "":
result.add("\n" & errExpectedPosition & "\n" & candidates)
localError(c.config, n.info, result)
proc getMsgDiagnostic(c: PContext, flags: TExprFlags, n, f: PNode): string =
result = ""
if c.compilesContextId > 0:
# we avoid running more diagnostic when inside a `compiles(expr)`, to
# errors while running diagnostic (see test D20180828T234921), and
# also avoid slowdowns in evaluating `compiles(expr)`.
discard
else:
var o: TOverloadIter = default(TOverloadIter)
var sym = initOverloadIter(o, c, f)
while sym != nil:
result &= "\n found $1" % [getSymRepr(c.config, sym)]
sym = nextOverloadIter(o, c, f)
let ident = considerQuotedIdent(c, f, n).s
if nfExplicitCall notin n.flags and {nfDotField, nfDotSetter} * n.flags != {}:
let sym = n[1].typ.typSym
var typeHint = ""
if sym == nil:
# Perhaps we're in a `compiles(foo.bar)` expression, or
# in a concept, e.g.:
# ExplainedConcept {.explain.} = concept x
# x.foo is int
# We could use: `(c.config $ n[1].info)` to get more context.
discard
else:
typeHint = " for type " & getProcHeader(c.config, sym)
let suffix = if result.len > 0: " " & result else: ""
result = errUndeclaredField % ident & typeHint & suffix
else:
if result.len == 0: result = errUndeclaredRoutine % ident
else: result = errBadRoutine % [ident, result]
proc resolveOverloads(c: PContext, n, orig: PNode,
filter: TSymKinds, flags: TExprFlags,
errors: var CandidateErrors,
errorsEnabled: bool): TCandidate =
result = default(TCandidate)
var initialBinding: PNode
var alt: TCandidate = default(TCandidate)
var f = n[0]
if f.kind == nkBracketExpr:
# fill in the bindings:
semOpAux(c, f)
initialBinding = f
f = f[0]
else:
initialBinding = nil
pickBestCandidate(c, f, n, orig, initialBinding,
filter, result, alt, errors, efExplain in flags,
errorsEnabled, flags)
var dummyErrors: CandidateErrors = @[]
template pickSpecialOp(headSymbol) =
pickBestCandidate(c, headSymbol, n, orig, initialBinding,
filter, result, alt, dummyErrors, efExplain in flags,
false, flags)
let overloadsState = result.state
if overloadsState != csMatch:
if nfDotField in n.flags:
internalAssert c.config, f.kind == nkIdent and n.len >= 2
# leave the op head symbol empty,
# we are going to try multiple variants
n.sons[0..1] = [nil, n[1], f]
orig.sons[0..1] = [nil, orig[1], f]
template tryOp(x) =
let op = newIdentNode(getIdent(c.cache, x), n.info)
n[0] = op
orig[0] = op
pickSpecialOp(op)
if nfExplicitCall in n.flags:
tryOp ".()"
if result.state in {csEmpty, csNoMatch}:
tryOp "."
elif nfDotSetter in n.flags and f.kind == nkIdent and n.len == 3:
# we need to strip away the trailing '=' here:
let calleeName = newIdentNode(getIdent(c.cache, f.ident.s[0..^2]), n.info)
let callOp = newIdentNode(getIdent(c.cache, ".="), n.info)
n.sons[0..1] = [callOp, n[1], calleeName]
orig.sons[0..1] = [callOp, orig[1], calleeName]
pickSpecialOp(callOp)
if overloadsState == csEmpty and result.state == csEmpty:
if efNoUndeclared notin flags: # for tests/pragmas/tcustom_pragma.nim
result.state = csNoMatch
if c.inGenericContext > 0 and nfExprCall in n.flags:
# untyped expression calls end up here, see #24099
return
# xxx adapt/use errorUndeclaredIdentifierHint(c, n, f.ident)
localError(c.config, n.info, getMsgDiagnostic(c, flags, n, f))
return
elif result.state != csMatch:
if nfExprCall in n.flags:
localError(c.config, n.info, "expression '$1' cannot be called" %
renderTree(n, {renderNoComments}))
else:
if {nfDotField, nfDotSetter} * n.flags != {}:
# clean up the inserted ops
n.sons.delete(2)
n[0] = f
return
if alt.state == csMatch and cmpCandidates(result, alt) == 0 and
not sameMethodDispatcher(result.calleeSym, alt.calleeSym):
internalAssert c.config, result.state == csMatch
#writeMatches(result)
#writeMatches(alt)
if c.config.m.errorOutputs == {}:
# quick error message for performance of 'compiles' built-in:
globalError(c.config, n.info, errGenerated, "ambiguous call")
elif c.config.errorCounter == 0:
# don't cascade errors
var args = "("
for i in 1..<n.len:
if i > 1: args.add(", ")
args.add(typeToString(n[i].typ))
args.add(")")
localError(c.config, n.info, errAmbiguousCallXYZ % [
getProcHeader(c.config, result.calleeSym),
getProcHeader(c.config, alt.calleeSym),
args])
proc bracketNotFoundError(c: PContext; n: PNode; flags: TExprFlags) =
var errors: CandidateErrors = @[]
let headSymbol = n[0]
block:
# we build a closed symchoice of all `[]` overloads for their errors,
# except add a custom error for the magics which always match
var choice = newNodeIT(nkClosedSymChoice, headSymbol.info, newTypeS(tyNone, c))
var o: TOverloadIter = default(TOverloadIter)
var symx = initOverloadIter(o, c, headSymbol)
while symx != nil:
if symx.kind in routineKinds:
if symx.magic in {mArrGet, mArrPut}:
errors.add(CandidateError(sym: symx,
firstMismatch: MismatchInfo(),
diagnostics: @[],
enabled: false))
else:
choice.add newSymNode(symx, headSymbol.info)
symx = nextOverloadIter(o, c, headSymbol)
n[0] = choice
# copied from semOverloadedCallAnalyzeEffects, might be overkill:
const baseFilter = {skProc, skFunc, skMethod, skConverter, skMacro, skTemplate}
let filter =
if flags*{efInTypeof, efWantIterator, efWantIterable} != {}:
baseFilter + {skIterator}
else: baseFilter
# this will add the errors:
var r = resolveOverloads(c, n, n, filter, flags, errors, true)
if errors.len == 0:
localError(c.config, n.info, "could not resolve: " & $n)
else:
notFoundError(c, n, errors)
proc instGenericConvertersArg*(c: PContext, a: PNode, x: TCandidate) =
let a = if a.kind == nkHiddenDeref: a[0] else: a
if a.kind == nkHiddenCallConv and a[0].kind == nkSym:
let s = a[0].sym
if s.isGenericRoutineStrict:
var src = s.typ.firstParamType
var convMatch = newCandidate(c, src)
let srca = typeRel(convMatch, src, a[1].typ)
if srca notin {isEqual, isGeneric, isSubtype}:
internalError(c.config, a.info, "generic converter failed rematch")
let finalCallee = generateInstance(c, s, convMatch.bindings, a.info)
a[0].sym = finalCallee
a[0].typ() = finalCallee.typ
#a.typ = finalCallee.typ.returnType
proc instGenericConvertersSons*(c: PContext, n: PNode, x: TCandidate) =
assert n.kind in nkCallKinds
if x.genericConverter:
for i in 1..<n.len:
instGenericConvertersArg(c, n[i], x)
proc markConvertersUsed*(c: PContext, n: PNode) =
assert n.kind in nkCallKinds
for i in 1..<n.len:
var a = n[i]
if a == nil: continue
if a.kind == nkHiddenDeref: a = a[0]
if a.kind == nkHiddenCallConv and a[0].kind == nkSym:
markUsed(c, a.info, a[0].sym)
proc indexTypesMatch(c: PContext, f, a: PType, arg: PNode): PNode =
var m = newCandidate(c, f)
result = paramTypesMatch(m, f, a, arg, nil)
if m.genericConverter and result != nil:
instGenericConvertersArg(c, result, m)
proc inferWithMetatype(c: PContext, formal: PType,
arg: PNode, coerceDistincts = false): PNode =
var m = newCandidate(c, formal)
m.coerceDistincts = coerceDistincts
result = paramTypesMatch(m, formal, arg.typ, arg, nil)
if m.genericConverter and result != nil:
instGenericConvertersArg(c, result, m)
if result != nil:
# This almost exactly replicates the steps taken by the compiler during
# param matching. It performs an embarrassing amount of back-and-forth
# type jugling, but it's the price to pay for consistency and correctness
result.typ() = generateTypeInstance(c, m.bindings, arg.info,
formal.skipTypes({tyCompositeTypeClass}))
else:
typeMismatch(c.config, arg.info, formal, arg.typ, arg)
# error correction:
result = copyTree(arg)
result.typ() = formal
proc updateDefaultParams(c: PContext, call: PNode) =
# In generic procs, the default parameter may be unique for each
# instantiation (see tlateboundgenericparams).
# After a call is resolved, we need to re-assign any default value
# that was used during sigmatch. sigmatch is responsible for marking
# the default params with `nfDefaultParam` and `instantiateProcType`
# computes correctly the default values for each instantiation.
let calleeParams = call[0].sym.typ.n
for i in 1..<call.len:
if nfDefaultParam in call[i].flags:
let formal = calleeParams[i].sym
let def = formal.ast
if nfDefaultRefsParam in def.flags: call.flags.incl nfDefaultRefsParam
# mirrored with sigmatch:
if def.kind == nkEmpty:
# The default param value is set to empty in `instantiateProcType`
# when the type of the default expression doesn't match the type
# of the instantiated proc param:
pushInfoContext(c.config, call.info, call[0].sym.detailedInfo)
typeMismatch(c.config, def.info, formal.typ, def.typ, formal.ast)
popInfoContext(c.config)
def.typ() = errorType(c)
call[i] = def
proc getCallLineInfo(n: PNode): TLineInfo =
case n.kind
of nkAccQuoted, nkBracketExpr, nkCall, nkCallStrLit, nkCommand:
if len(n) > 0:
return getCallLineInfo(n[0])
of nkDotExpr:
if len(n) > 1:
return getCallLineInfo(n[1])
else:
discard
result = n.info
proc inheritBindings(c: PContext, x: var TCandidate, expectedType: PType) =
## Helper proc to inherit bound generic parameters from expectedType into x.
## Does nothing if 'inferGenericTypes' isn't in c.features.
if inferGenericTypes notin c.features: return
if expectedType == nil or x.callee.returnType == nil: return # required for inference
var
flatUnbound: seq[PType] = @[]
flatBound: seq[PType] = @[]
# seq[(result type, expected type)]
var typeStack = newSeq[(PType, PType)]()
template stackPut(a, b) =
## skips types and puts the skipped version on stack
# It might make sense to skip here one by one. It's not part of the main
# type reduction because the right side normally won't be skipped
const toSkip = {tyVar, tyLent, tyStatic, tyCompositeTypeClass, tySink}
let
x = a.skipTypes(toSkip)
y = if a.kind notin toSkip: b
else: b.skipTypes(toSkip)
typeStack.add((x, y))
stackPut(x.callee.returnType, expectedType)
while typeStack.len() > 0:
let (t, u) = typeStack.pop()
if t == u or t == nil or u == nil or t.kind == tyAnything or u.kind == tyAnything:
continue
case t.kind
of ConcreteTypes, tyGenericInvocation, tyUncheckedArray:
# XXX This logic makes no sense for `tyUncheckedArray`
# nested, add all the types to stack
let
startIdx = if u.kind in ConcreteTypes: 0 else: 1
endIdx = min(u.kidsLen() - startIdx, t.kidsLen())
for i in startIdx ..< endIdx:
# early exit with current impl
if t[i] == nil or u[i] == nil: return
stackPut(t[i], u[i])
of tyGenericParam:
let prebound = x.bindings.lookup(t)
if prebound != nil:
continue # Skip param, already bound
# fully reduced generic param, bind it
if t notin flatUnbound:
flatUnbound.add(t)
flatBound.add(u)
else:
discard
# update bindings
for i in 0 ..< flatUnbound.len():
x.bindings.put(flatUnbound[i], flatBound[i])
proc semResolvedCall(c: PContext, x: var TCandidate,
n: PNode, flags: TExprFlags;
expectedType: PType = nil): PNode =
assert x.state == csMatch
var finalCallee = x.calleeSym
let info = getCallLineInfo(n)
markUsed(c, info, finalCallee)
onUse(info, finalCallee)
assert finalCallee.ast != nil
if x.matchedErrorType:
result = x.call
result[0] = newSymNode(finalCallee, getCallLineInfo(result[0]))
if containsGenericType(result.typ):
result.typ() = newTypeS(tyError, c)
incl result.typ.flags, tfCheckedForDestructor
return
let gp = finalCallee.ast[genericParamsPos]
if gp.isGenericParams:
if x.calleeSym.kind notin {skMacro, skTemplate}:
if x.calleeSym.magic in {mArrGet, mArrPut}:
finalCallee = x.calleeSym
else:
c.inheritBindings(x, expectedType)
finalCallee = generateInstance(c, x.calleeSym, x.bindings, n.info)
else:
# For macros and templates, the resolved generic params
# are added as normal params.
c.inheritBindings(x, expectedType)
for s in instantiateGenericParamList(c, gp, x.bindings):
case s.kind
of skConst:
if not s.astdef.isNil:
x.call.add s.astdef
else:
x.call.add c.graph.emptyNode
of skType:
var tn = newSymNode(s, n.info)
# this node will be used in template substitution,
# pretend this is an untyped node and let regular sem handle the type
# to prevent problems where a generic parameter is treated as a value
tn.typ() = nil
x.call.add tn
else:
internalAssert c.config, false
result = x.call
instGenericConvertersSons(c, result, x)
markConvertersUsed(c, result)
result[0] = newSymNode(finalCallee, getCallLineInfo(result[0]))
if finalCallee.magic notin {mArrGet, mArrPut}:
result.typ() = finalCallee.typ.returnType
updateDefaultParams(c, result)
proc canDeref(n: PNode): bool {.inline.} =
result = n.len >= 2 and (let t = n[1].typ;
t != nil and t.skipTypes({tyGenericInst, tyAlias, tySink}).kind in {tyPtr, tyRef})
proc tryDeref(n: PNode): PNode =
result = newNodeI(nkHiddenDeref, n.info)
result.typ() = n.typ.skipTypes(abstractInst)[0]
result.add n
proc semOverloadedCall(c: PContext, n, nOrig: PNode,
filter: TSymKinds, flags: TExprFlags;
expectedType: PType = nil): PNode =
var errors: CandidateErrors = @[] # if efExplain in flags: @[] else: nil
var r = resolveOverloads(c, n, nOrig, filter, flags, errors, efExplain in flags)
if r.state == csMatch:
# this may be triggered, when the explain pragma is used
if errors.len > 0:
let (_, candidates) = presentFailedCandidates(c, n, errors)
message(c.config, n.info, hintUserRaw,
"Non-matching candidates for " & renderTree(n) & "\n" &
candidates)
result = semResolvedCall(c, r, n, flags, expectedType)
else:
if c.inGenericContext > 0 and c.matchedConcept == nil:
result = semGenericStmt(c, n)
result.typ() = makeTypeFromExpr(c, result.copyTree)
elif efExplain notin flags:
# repeat the overload resolution,
# this time enabling all the diagnostic output (this should fail again)
result = semOverloadedCall(c, n, nOrig, filter, flags + {efExplain})
elif efNoUndeclared notin flags:
result = nil
notFoundError(c, n, errors)
else:
result = nil
proc explicitGenericInstError(c: PContext; n: PNode): PNode =
localError(c.config, getCallLineInfo(n), errCannotInstantiateX % renderTree(n))
result = n
proc explicitGenericSym(c: PContext, n: PNode, s: PSym, errors: var CandidateErrors, doError: bool): PNode =
if s.kind in {skTemplate, skMacro}:
internalError c.config, n.info, "cannot get explicitly instantiated symbol of " &
(if s.kind == skTemplate: "template" else: "macro")
# binding has to stay 'nil' for this to work!
var m = newCandidate(c, s, nil)
matchGenericParams(m, n, s)
if m.state != csMatch:
# state is csMatch only if *all* generic params were matched,
# including implicit parameters
if doError:
errors.add(CandidateError(
sym: s,
firstMismatch: m.firstMismatch,
diagnostics: m.diagnostics))
return nil
var newInst = generateInstance(c, s, m.bindings, n.info)
newInst.typ.flags.excl tfUnresolved
let info = getCallLineInfo(n)
markUsed(c, info, s)
onUse(info, s)
result = newSymNode(newInst, info)
proc setGenericParams(c: PContext, n, expectedParams: PNode) =
## sems generic params in subscript expression
for i in 1..<n.len:
let
constraint =
if expectedParams != nil and i <= expectedParams.len:
expectedParams[i - 1].typ
else:
nil
e = semExprWithType(c, n[i], expectedType = constraint)
if e.typ == nil:
n[i].typ() = errorType(c)
else:
n[i].typ() = e.typ.skipTypes({tyTypeDesc})
proc explicitGenericInstantiation(c: PContext, n: PNode, s: PSym, doError: bool): PNode =
assert n.kind == nkBracketExpr
setGenericParams(c, n, s.ast[genericParamsPos])
var s = s
var a = n[0]
var errors: CandidateErrors = @[]
if a.kind == nkSym:
# common case; check the only candidate has the right
# number of generic type parameters:
result = explicitGenericSym(c, n, s, errors, doError)
if result == nil:
if c.inGenericContext > 0:
# same as in semOverloadedCall, make expression untyped,
# may have failed match due to unresolved types
result = semGenericStmt(c, n)
result.typ() = makeTypeFromExpr(c, result.copyTree)
elif doError:
notFoundError(c, n, errors)
elif a.kind in {nkClosedSymChoice, nkOpenSymChoice}:
# choose the generic proc with the proper number of type parameters.
result = newNodeI(a.kind, getCallLineInfo(n))
for i in 0..<a.len:
var candidate = a[i].sym
if candidate.kind in {skProc, skMethod, skConverter,
skFunc, skIterator}:
let x = explicitGenericSym(c, n, candidate, errors, doError)
if x != nil: result.add(x)
elif c.inGenericContext > 0:
# same as in semOverloadedCall, make expression untyped,
# may have failed match due to unresolved types
# any failing match stops building the symchoice for correctness,
# can also make it untyped from the start
result = semGenericStmt(c, n)
result.typ() = makeTypeFromExpr(c, result.copyTree)
return
# get rid of nkClosedSymChoice if not ambiguous:
if result.len == 0:
result = nil
if doError:
notFoundError(c, n, errors)
else:
# probably unreachable: we are trying to instantiate `a` which is not
# a sym/symchoice
if doError:
result = explicitGenericInstError(c, n)
else:
result = nil
proc searchForBorrowProc(c: PContext, startScope: PScope, fn: PSym): tuple[s: PSym, state: TBorrowState] =
# Searches for the fn in the symbol table. If the parameter lists are suitable
# for borrowing the sym in the symbol table is returned, else nil.
# New approach: generate fn(x, y, z) where x, y, z have the proper types
# and use the overloading resolution mechanism:
const desiredTypes = abstractVar + {tyCompositeTypeClass} - {tyTypeDesc, tyDistinct}
template getType(isDistinct: bool; t: PType):untyped =
if isDistinct: t.baseOfDistinct(c.graph, c.idgen) else: t
result = default(tuple[s: PSym, state: TBorrowState])
var call = newNodeI(nkCall, fn.info)
var hasDistinct = false
var isDistinct: bool
var x: PType
var t: PType
call.add(newIdentNode(fn.name, fn.info))
for i in 1..<fn.typ.n.len:
let param = fn.typ.n[i]
#[.
# We only want the type not any modifiers such as `ptr`, `var`, `ref` ...
# tyCompositeTypeClass is here for
# when using something like:
type Foo[T] = distinct int
proc `$`(f: Foo): string {.borrow.}
# We want to skip the `Foo` to get `int`
]#
t = skipTypes(param.typ, desiredTypes)
isDistinct = t.kind == tyDistinct or param.typ.kind == tyDistinct
if t.kind == tyGenericInvocation and t.genericHead.last.kind == tyDistinct:
result.state = bsGeneric
return
if isDistinct: hasDistinct = true
if param.typ.kind == tyVar:
x = newTypeS(param.typ.kind, c)
x.addSonSkipIntLit(getType(isDistinct, t), c.idgen)
else:
x = getType(isDistinct, t)
var s = copySym(param.sym, c.idgen)
s.typ = x
s.info = param.info
call.add(newSymNode(s))
if hasDistinct:
let filter = if fn.kind in {skProc, skFunc}: {skProc, skFunc} else: {fn.kind}
var resolved = semOverloadedCall(c, call, call, filter, {})
if resolved != nil:
result.s = resolved[0].sym
result.state = bsMatch
if not compareTypes(result.s.typ.returnType, fn.typ.returnType, dcEqIgnoreDistinct, {IgnoreFlags}):
result.state = bsReturnNotMatch
elif result.s.magic in {mArrPut, mArrGet}:
# cannot borrow these magics for now
result.state = bsNotSupported
else:
result.state = bsNoDistinct