diff --git a/core/math/ease/ease.odin b/core/math/ease/ease.odin index c3917707f..d5cb85dd8 100644 --- a/core/math/ease/ease.odin +++ b/core/math/ease/ease.odin @@ -11,11 +11,13 @@ import "core:time" // with additional enum based call // Modeled after the parabola y = x^2 +@(require_results) quadratic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return p * p } // Modeled after the parabola y = -x^2 + 2x +@(require_results) quadratic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return -(p * (p - 2)) } @@ -23,6 +25,7 @@ quadratic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float( // Modeled after the piecewise quadratic // y = (1/2)((2x)^2) ; [0, 0.5) // y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1] +@(require_results) quadratic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { return 2 * p * p @@ -32,11 +35,13 @@ quadratic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_flo } // Modeled after the cubic y = x^3 +@(require_results) cubic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return p * p * p } // Modeled after the cubic y = (x - 1)^3 + 1 +@(require_results) cubic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { f := p - 1 return f * f * f + 1 @@ -45,6 +50,7 @@ cubic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { // Modeled after the piecewise cubic // y = (1/2)((2x)^3) ; [0, 0.5) // y = (1/2)((2x-2)^3 + 2) ; [0.5, 1] +@(require_results) cubic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { return 4 * p * p * p @@ -55,11 +61,13 @@ cubic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T } // Modeled after the quartic x^4 +@(require_results) quartic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return p * p * p * p } // Modeled after the quartic y = 1 - (x - 1)^4 +@(require_results) quartic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { f := p - 1 return f * f * f * (1 - p) + 1 @@ -68,6 +76,7 @@ quartic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) // Modeled after the piecewise quartic // y = (1/2)((2x)^4) ; [0, 0.5) // y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1] +@(require_results) quartic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { return 8 * p * p * p * p @@ -78,11 +87,13 @@ quartic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float } // Modeled after the quintic y = x^5 +@(require_results) quintic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return p * p * p * p * p } // Modeled after the quintic y = (x - 1)^5 + 1 +@(require_results) quintic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { f := p - 1 return f * f * f * f * f + 1 @@ -91,6 +102,7 @@ quintic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) // Modeled after the piecewise quintic // y = (1/2)((2x)^5) ; [0, 0.5) // y = (1/2)((2x-2)^5 + 2) ; [0.5, 1] +@(require_results) quintic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { return 16 * p * p * p * p * p @@ -101,26 +113,31 @@ quintic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float } // Modeled after quarter-cycle of sine wave +@(require_results) sine_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return math.sin((p - 1) * PI_2) + 1 } // Modeled after quarter-cycle of sine wave (different phase) +@(require_results) sine_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return math.sin(p * PI_2) } // Modeled after half sine wave +@(require_results) sine_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return 0.5 * (1 - math.cos(p * math.PI)) } // Modeled after shifted quadrant IV of unit circle +@(require_results) circular_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return 1 - math.sqrt(1 - (p * p)) } // Modeled after shifted quadrant II of unit circle +@(require_results) circular_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return math.sqrt((2 - p) * p) } @@ -128,6 +145,7 @@ circular_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T // Modeled after the piecewise circular function // y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5) // y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1] +@(require_results) circular_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { return 0.5 * (1 - math.sqrt(1 - 4 * (p * p))) @@ -137,11 +155,13 @@ circular_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_floa } // Modeled after the exponential function y = 2^(10(x - 1)) +@(require_results) exponential_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return p == 0.0 ? p : math.pow(2, 10 * (p - 1)) } // Modeled after the exponential function y = -2^(-10x) + 1 +@(require_results) exponential_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return p == 1.0 ? p : 1 - math.pow(2, -10 * p) } @@ -149,6 +169,7 @@ exponential_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_floa // Modeled after the piecewise exponential // y = (1/2)2^(10(2x - 1)) ; [0,0.5) // y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1] +@(require_results) exponential_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p == 0.0 || p == 1.0 { return p @@ -162,11 +183,13 @@ exponential_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_f } // Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1)) +@(require_results) elastic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return math.sin(13 * PI_2 * p) * math.pow(2, 10 * (p - 1)) } // Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1 +@(require_results) elastic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return math.sin(-13 * PI_2 * (p + 1)) * math.pow(2, -10 * p) + 1 } @@ -174,6 +197,7 @@ elastic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) // Modeled after the piecewise exponentially-damped sine wave: // y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5) // y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1] +@(require_results) elastic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { return 0.5 * math.sin(13 * PI_2 * (2 * p)) * math.pow(2, 10 * ((2 * p) - 1)) @@ -183,11 +207,13 @@ elastic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float } // Modeled after the overshooting cubic y = x^3-x*sin(x*pi) +@(require_results) back_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return p * p * p - p * math.sin(p * math.PI) } // Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi)) +@(require_results) back_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { f := 1 - p return 1 - (f * f * f - f * math.sin(f * math.PI)) @@ -196,6 +222,7 @@ back_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { // Modeled after the piecewise overshooting cubic function: // y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5) // y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1] +@(require_results) back_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { f := 2 * p @@ -206,10 +233,12 @@ back_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) } } +@(require_results) bounce_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return 1 - bounce_out(1 - p) } +@(require_results) bounce_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 4/11.0 { return (121 * p * p)/16.0 @@ -222,6 +251,7 @@ bounce_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) } } +@(require_results) bounce_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { return 0.5 * bounce_in(p*2) @@ -276,50 +306,51 @@ Ease :: enum { Bounce_In_Out, } +@(require_results) ease :: proc "contextless" (type: Ease, p: $T) -> T where intrinsics.type_is_float(T) { switch type { - case .Linear: return p - - case .Quadratic_In: return quadratic_in(p) - case .Quadratic_Out: return quadratic_out(p) - case .Quadratic_In_Out: return quadratic_in_out(p) + case .Linear: return p - case .Cubic_In: return cubic_in(p) - case .Cubic_Out: return cubic_out(p) - case .Cubic_In_Out: return cubic_in_out(p) + case .Quadratic_In: return quadratic_in(p) + case .Quadratic_Out: return quadratic_out(p) + case .Quadratic_In_Out: return quadratic_in_out(p) - case .Quartic_In: return quartic_in(p) - case .Quartic_Out: return quartic_out(p) - case .Quartic_In_Out: return quartic_in_out(p) + case .Cubic_In: return cubic_in(p) + case .Cubic_Out: return cubic_out(p) + case .Cubic_In_Out: return cubic_in_out(p) - case .Quintic_In: return quintic_in(p) - case .Quintic_Out: return quintic_out(p) - case .Quintic_In_Out: return quintic_in_out(p) + case .Quartic_In: return quartic_in(p) + case .Quartic_Out: return quartic_out(p) + case .Quartic_In_Out: return quartic_in_out(p) - case .Sine_In: return sine_in(p) - case .Sine_Out: return sine_out(p) - case .Sine_In_Out: return sine_in_out(p) + case .Quintic_In: return quintic_in(p) + case .Quintic_Out: return quintic_out(p) + case .Quintic_In_Out: return quintic_in_out(p) - case .Circular_In: return circular_in(p) - case .Circular_Out: return circular_out(p) - case .Circular_In_Out: return circular_in_out(p) + case .Sine_In: return sine_in(p) + case .Sine_Out: return sine_out(p) + case .Sine_In_Out: return sine_in_out(p) - case .Exponential_In: return exponential_in(p) - case .Exponential_Out: return exponential_out(p) - case .Exponential_In_Out: return exponential_in_out(p) + case .Circular_In: return circular_in(p) + case .Circular_Out: return circular_out(p) + case .Circular_In_Out: return circular_in_out(p) - case .Elastic_In: return elastic_in(p) - case .Elastic_Out: return elastic_out(p) - case .Elastic_In_Out: return elastic_in_out(p) + case .Exponential_In: return exponential_in(p) + case .Exponential_Out: return exponential_out(p) + case .Exponential_In_Out: return exponential_in_out(p) - case .Back_In: return back_in(p) - case .Back_Out: return back_out(p) - case .Back_In_Out: return back_in_out(p) + case .Elastic_In: return elastic_in(p) + case .Elastic_Out: return elastic_out(p) + case .Elastic_In_Out: return elastic_in_out(p) - case .Bounce_In: return bounce_in(p) - case .Bounce_Out: return bounce_out(p) - case .Bounce_In_Out: return bounce_in_out(p) + case .Back_In: return back_in(p) + case .Back_Out: return back_out(p) + case .Back_In_Out: return back_in_out(p) + + case .Bounce_In: return bounce_in(p) + case .Bounce_Out: return bounce_out(p) + case .Bounce_In_Out: return bounce_in_out(p) } // in case type was invalid @@ -353,6 +384,7 @@ Flux_Tween :: struct($T: typeid) { } // init flux map to a float type and a wanted cap +@(require_results) flux_init :: proc($T: typeid, value_capacity := 8) -> Flux_Map(T) where intrinsics.type_is_float(T) { return { values = make(map[^T]Flux_Tween(T), value_capacity), @@ -374,6 +406,7 @@ flux_clear :: proc(flux: ^Flux_Map($T)) where intrinsics.type_is_float(T) { // append / overwrite existing tween value to parameters // rest is initialized in flux_tween_init, inside update // return value can be used to set callbacks +@(require_results) flux_to :: proc( flux: ^Flux_Map($T), value: ^T, @@ -475,6 +508,7 @@ flux_update :: proc(flux: ^Flux_Map($T), dt: f64) where intrinsics.type_is_float // stop a specific key inside the map // returns true when it successfully removed the key +@(require_results) flux_stop :: proc(flux: ^Flux_Map($T), key: ^T) -> bool where intrinsics.type_is_float(T) { if key in flux.values { delete_key(&flux.values, key) @@ -486,6 +520,7 @@ flux_stop :: proc(flux: ^Flux_Map($T), key: ^T) -> bool where intrinsics.type_is // returns the amount of time left for the tween animation, if the key exists in the map // returns 0 if the tween doesnt exist on the map +@(require_results) flux_tween_time_left :: proc(flux: Flux_Map($T), key: ^T) -> f64 { if tween, ok := flux.values[key]; ok { return ((1 - tween.progress) * tween.rate) + tween.delay