diff --git a/core/math/linalg/linalg.odin b/core/math/linalg/linalg.odin new file mode 100644 index 000000000..9a4781668 --- /dev/null +++ b/core/math/linalg/linalg.odin @@ -0,0 +1,257 @@ +package linalg + +import "core:math" + +// Generic + +dot_vector :: proc(a, b: $T/[$N]$E) -> (c: E) { + for i in 0.. (c: f32) { + return real(a)*real(a) + imag(a)*imag(b) + jmag(a)*jmag(b) + kmag(a)*kmag(b); +} +dot_quaternion256 :: proc(a, b: $T/quaternion256) -> (c: f64) { + return real(a)*real(a) + imag(a)*imag(b) + jmag(a)*jmag(b) + kmag(a)*kmag(b); +} + +dot :: proc{dot_vector, dot_quaternion128, dot_quaternion256}; + +cross2 :: proc(a, b: $T/[2]$E) -> E { + return a[0]*b[1] - b[0]*a[1]; +} + +cross3 :: proc(a, b: $T/[3]$E) -> (c: T) { + c[0] = +(a[1]*b[2] - b[1]*a[2]); + c[1] = -(a[2]*b[3] - b[2]*a[3]); + c[2] = +(a[3]*b[1] - b[3]*a[1]); + return; +} + +cross :: proc{cross2, cross3}; + + +normalize_vector :: proc(v: $T/[$N]$E) -> T { + return v / length(v); +} +normalize_quaternion128 :: proc(q: $Q/quaternion128) -> Q { + return q/abs(q); +} +normalize_quaternion256 :: proc(q: $Q/quaternion256) -> Q { + return q/abs(q); +} +normalize :: proc{normalize_vector, normalize_quaternion128, normalize_quaternion256}; + +normalize0_vector :: proc(v: $T/[$N]$E) -> T { + m := length(v); + return m == 0 ? 0 : v/m; +} +normalize0_quaternion128 :: proc(q: $Q/quaternion128) -> Q { + m := abs(q); + return m == 0 ? 0 : q/m; +} +normalize0_quaternion256 :: proc(q: $Q/quaternion256) -> Q { + m := abs(q); + return m == 0 ? 0 : q/m; +} +normalize0 :: proc{normalize0_vector, normalize0_quaternion128, normalize0_quaternion256}; + + +length :: proc(v: $T/[$N]$E) -> E { + return math.sqrt(dot(v, v)); +} + + +identity :: proc($T: typeid/[$N][N]$E) -> (m: T) { + for i in 0.. (m: ((M == N) ? T : [M][N]E)) { + for j in 0.. (c: ((I == J && J == K && A == B) ? A : [I][K]E)) { + for i in 0.. (c: B) { + for i in 0.. V { + Raw_Quaternion :: struct {xyz: [3]f32, r: f32}; + + q := transmute(Raw_Quaternion)q; + v := transmute([3]f32)v; + + t := cross(2*q.xyz, v); + return V(v + q.r*t + cross(q.xyz, t)); +} + +mul_quaternion256_vector3 :: proc(q: $Q/quaternion256, v: $V/[3]$F/f64) -> V { + Raw_Quaternion :: struct {xyz: [3]f64, r: f64}; + + q := transmute(Raw_Quaternion)q; + v := transmute([3]f64)v; + + t := cross(2*q.xyz, v); + return V(v + q.r*t + cross(q.xyz, t)); +} +mul_quaternion_vector3 :: proc{mul_quaternion128_vector3, mul_quaternion256_vector3}; + +mul :: proc{mul_matrix, mul_matrix_vector, mul_quaternion128_vector3, mul_quaternion256_vector3}; + + +// Specific + +Float :: f32; + +Vector2 :: distinct [2]Float; +Vector3 :: distinct [3]Float; +Vector4 :: distinct [4]Float; + +Matrix2x1 :: distinct [2][1]Float; +Matrix2x2 :: distinct [2][2]Float; +Matrix2x3 :: distinct [2][3]Float; +Matrix2x4 :: distinct [2][4]Float; + +Matrix3x1 :: distinct [3][1]Float; +Matrix3x2 :: distinct [3][2]Float; +Matrix3x3 :: distinct [3][3]Float; +Matrix3x4 :: distinct [3][4]Float; + +Matrix4x1 :: distinct [4][1]Float; +Matrix4x2 :: distinct [4][2]Float; +Matrix4x3 :: distinct [4][3]Float; +Matrix4x4 :: distinct [4][4]Float; + + +Matrix2 :: Matrix2x2; +Matrix3 :: Matrix3x3; +Matrix4 :: Matrix4x4; + + +Quaternion :: distinct (size_of(Float) == size_of(f32) ? quaternion128 : quaternion256); + + +translate_matrix4 :: proc(v: Vector3) -> Matrix4 { + m := identity(Matrix4); + m[3][0] = v[0]; + m[3][1] = v[1]; + m[3][2] = v[2]; + return m; +} + + +rotate_matrix4 :: proc(v: Vector3, angle_radians: Float) -> Matrix4 { + c := math.cos(angle_radians); + s := math.sin(angle_radians); + + a := normalize(v); + t := a * (1-c); + + rot := identity(Matrix4); + + rot[0][0] = c + t[0]*a[0]; + rot[0][1] = 0 + t[0]*a[1] + s*a[2]; + rot[0][2] = 0 + t[0]*a[2] - s*a[1]; + rot[0][3] = 0; + + rot[1][0] = 0 + t[1]*a[0] - s*a[2]; + rot[1][1] = c + t[1]*a[1]; + rot[1][2] = 0 + t[1]*a[2] + s*a[0]; + rot[1][3] = 0; + + rot[2][0] = 0 + t[2]*a[0] + s*a[1]; + rot[2][1] = 0 + t[2]*a[1] - s*a[0]; + rot[2][2] = c + t[2]*a[2]; + rot[2][3] = 0; + + return rot; +} + +scale_matrix4 :: proc(m: Matrix4, v: Vector3) -> Matrix4 { + mm := m; + mm[0][0] *= v[0]; + mm[1][1] *= v[1]; + mm[2][2] *= v[2]; + return mm; +} + + +look_at :: proc(eye, centre, up: Vector3) -> Matrix4 { + f := normalize(centre - eye); + s := normalize(cross(f, up)); + u := cross(s, f); + return Matrix4{ + {+s.x, +u.x, -f.x, 0}, + {+s.y, +u.y, -f.y, 0}, + {+s.z, +u.z, -f.z, 0}, + {-dot(s, eye), -dot(u, eye), +dot(f, eye), 1}, + }; +} + + +perspective :: proc(fovy, aspect, near, far: Float) -> (m: Matrix4) { + tan_half_fovy := math.tan(0.5 * fovy); + m[0][0] = 1 / (aspect*tan_half_fovy); + m[1][1] = 1 / (tan_half_fovy); + m[2][2] = -(far + near) / (far - near); + m[2][3] = -1; + m[3][2] = -2*far*near / (far - near); + return; +} + + +ortho3d :: proc(left, right, bottom, top, near, far: Float) -> (m: Matrix4) { + m[0][0] = +2 / (right - left); + m[1][1] = +2 / (top - bottom); + m[2][2] = -2 / (far - near); + m[3][0] = -(right + left) / (right - left); + m[3][1] = -(top + bottom) / (top - bottom); + m[3][2] = -(far + near) / (far- near); + m[3][3] = 1; + return; +} + + +axis_angle :: proc(axis: Vector3, angle_radians: Float) -> Quaternion { + t := angle_radians*0.5; + w := math.cos(t); + v := normalize(axis) * math.sin(t); + return quaternion(w, v.x, v.y, v.z); +} + +angle_axis :: proc(angle_radians: Float, axis: Vector3) -> Quaternion { + t := angle_radians*0.5; + w := math.cos(t); + v := normalize(axis) * math.sin(t); + return quaternion(w, v.x, v.y, v.z); +} + +euler_angles :: proc(pitch, yaw, roll: Float) -> Quaternion { + p := axis_angle({1, 0, 0}, pitch); + y := axis_angle({0, 1, 0}, yaw); + r := axis_angle({0, 0, 1}, roll); + return (y * p) * r; +} diff --git a/core/math/math.odin b/core/math/math.odin index ed04cbfbc..583da00d0 100644 --- a/core/math/math.odin +++ b/core/math/math.odin @@ -1,36 +1,41 @@ package math +import "intrinsics" + +Float_Class :: enum { + Normal, // an ordinary nonzero floating point value + Subnormal, // a subnormal floating point value + Zero, // zero + Neg_Zero, // the negative zero + NaN, // Not-A-Number (NaN) + Inf, // positive infinity + Neg_Inf // negative infinity +}; + TAU :: 6.28318530717958647692528676655900576; PI :: 3.14159265358979323846264338327950288; E :: 2.71828182845904523536; + +τ :: TAU; +π :: PI; +e :: E; + SQRT_TWO :: 1.41421356237309504880168872420969808; SQRT_THREE :: 1.73205080756887729352744634150587236; SQRT_FIVE :: 2.23606797749978969640917366873127623; -LOG_TWO :: 0.693147180559945309417232121458176568; -LOG_TEN :: 2.30258509299404568401799145468436421; +LN2 :: 0.693147180559945309417232121458176568; +LN10 :: 2.30258509299404568401799145468436421; -EPSILON :: 1.19209290e-7; +MAX_F64_PRECISION :: 16; // Maximum number of meaningful digits after the decimal point for 'f64' +MAX_F32_PRECISION :: 8; // Maximum number of meaningful digits after the decimal point for 'f32' -τ :: TAU; -π :: PI; - -Vec2 :: distinct [2]f32; -Vec3 :: distinct [3]f32; -Vec4 :: distinct [4]f32; - -// Column major -Mat2 :: distinct [2][2]f32; -Mat3 :: distinct [3][3]f32; -Mat4 :: distinct [4][4]f32; - -Quat :: struct {x, y, z, w: f32}; - -QUAT_IDENTITY := Quat{x = 0, y = 0, z = 0, w = 1}; +RAD_PER_DEG :: TAU/360.0; +DEG_PER_RAD :: 360.0/TAU; -@(default_calling_convention="c") +@(default_calling_convention="none") foreign _ { @(link_name="llvm.sqrt.f32") sqrt_f32 :: proc(x: f32) -> f32 ---; @@ -58,9 +63,9 @@ foreign _ { fmuladd_f64 :: proc(a, b, c: f64) -> f64 ---; @(link_name="llvm.log.f32") - log_f32 :: proc(x: f32) -> f32 ---; + ln_f32 :: proc(x: f32) -> f32 ---; @(link_name="llvm.log.f64") - log_f64 :: proc(x: f64) -> f64 ---; + ln_f64 :: proc(x: f64) -> f64 ---; @(link_name="llvm.exp.f32") exp_f32 :: proc(x: f32) -> f32 ---; @@ -68,20 +73,40 @@ foreign _ { exp_f64 :: proc(x: f64) -> f64 ---; } -log :: proc{log_f32, log_f64}; -exp :: proc{exp_f32, exp_f64}; +sqrt :: proc{sqrt_f32, sqrt_f64}; +sin :: proc{sin_f32, sin_f64}; +cos :: proc{cos_f32, cos_f64}; +pow :: proc{pow_f32, pow_f64}; +fmuladd :: proc{fmuladd_f32, fmuladd_f64}; +ln :: proc{ln_f32, ln_f64}; +exp :: proc{exp_f32, exp_f64}; + +log_f32 :: proc(x, base: f32) -> f32 { return ln(x) / ln(base); } +log_f64 :: proc(x, base: f64) -> f64 { return ln(x) / ln(base); } +log :: proc{log_f32, log_f64}; + +log2_f32 :: proc(x: f32) -> f32 { return ln(x)/LN2; } +log2_f64 :: proc(x: f64) -> f64 { return ln(x)/LN2; } +log2 :: proc{log2_f32, log2_f64}; + +log10_f32 :: proc(x: f32) -> f32 { return ln(x)/LN10; } +log10_f64 :: proc(x: f64) -> f64 { return ln(x)/LN10; } +log10 :: proc{log10_f32, log10_f64}; + tan_f32 :: proc "c" (θ: f32) -> f32 { return sin(θ)/cos(θ); } tan_f64 :: proc "c" (θ: f64) -> f64 { return sin(θ)/cos(θ); } +tan :: proc{tan_f32, tan_f64}; lerp :: proc(a, b: $T, t: $E) -> (x: T) { return a*(1-t) + b*t; } unlerp_f32 :: proc(a, b, x: f32) -> (t: f32) { return (x-a)/(b-a); } unlerp_f64 :: proc(a, b, x: f64) -> (t: f64) { return (x-a)/(b-a); } +unlerp :: proc{unlerp_f32, unlerp_f64}; - -sign_f32 :: proc(x: f32) -> f32 { return x >= 0 ? +1 : -1; } -sign_f64 :: proc(x: f64) -> f64 { return x >= 0 ? +1 : -1; } +sign_f32 :: proc(x: f32) -> f32 { return f32(int(0 < x) - int(x < 0)); } +sign_f64 :: proc(x: f64) -> f64 { return f64(int(0 < x) - int(x < 0)); } +sign :: proc{sign_f32, sign_f64}; copy_sign_f32 :: proc(x, y: f32) -> f32 { ix := transmute(u32)x; @@ -90,7 +115,6 @@ copy_sign_f32 :: proc(x, y: f32) -> f32 { ix |= iy & 0x8000_0000; return transmute(f32)ix; } - copy_sign_f64 :: proc(x, y: f64) -> f64 { ix := transmute(u64)x; iy := transmute(u64)y; @@ -98,22 +122,89 @@ copy_sign_f64 :: proc(x, y: f64) -> f64 { ix |= iy & 0x8000_0000_0000_0000; return transmute(f64)ix; } - - -sqrt :: proc{sqrt_f32, sqrt_f64}; -sin :: proc{sin_f32, sin_f64}; -cos :: proc{cos_f32, cos_f64}; -tan :: proc{tan_f32, tan_f64}; -pow :: proc{pow_f32, pow_f64}; -fmuladd :: proc{fmuladd_f32, fmuladd_f64}; -sign :: proc{sign_f32, sign_f64}; copy_sign :: proc{copy_sign_f32, copy_sign_f64}; -round_f32 :: proc(x: f32) -> f32 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); } -round_f64 :: proc(x: f64) -> f64 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); } +to_radians_f32 :: proc(degrees: f32) -> f32 { return degrees * RAD_PER_DEG; } +to_radians_f64 :: proc(degrees: f64) -> f64 { return degrees * RAD_PER_DEG; } +to_degrees_f32 :: proc(radians: f32) -> f32 { return radians * DEG_PER_RAD; } +to_degrees_f64 :: proc(radians: f64) -> f64 { return radians * DEG_PER_RAD; } +to_radians :: proc{to_radians_f32, to_radians_f64}; +to_degrees :: proc{to_degrees_f32, to_degrees_f64}; + +trunc_f32 :: proc(x: f32) -> f32 { + trunc_internal :: proc(f: f32) -> f32 { + mask :: 0xff; + shift :: 32 - 9; + bias :: 0x7f; + + if f < 1 { + switch { + case f < 0: return -trunc_internal(-f); + case f == 0: return f; + case: return 0; + } + } + + x := transmute(u32)f; + e := (x >> shift) & mask - bias; + + if e < shift { + x &= ~(1 << (shift-e)) - 1; + } + return transmute(f32)x; + } + switch classify(x) { + case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf: + return x; + } + return trunc_internal(x); +} + +trunc_f64 :: proc(x: f64) -> f64 { + trunc_internal :: proc(f: f64) -> f64 { + mask :: 0x7ff; + shift :: 64 - 12; + bias :: 0x3ff; + + if f < 1 { + switch { + case f < 0: return -trunc_internal(-f); + case f == 0: return f; + case: return 0; + } + } + + x := transmute(u64)f; + e := (x >> shift) & mask - bias; + + if e < shift { + x &= ~(1 << (shift-e)) - 1; + } + return transmute(f64)x; + } + switch classify(x) { + case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf: + return x; + } + return trunc_internal(x); +} + +trunc :: proc{trunc_f32, trunc_f64}; + +round_f32 :: proc(x: f32) -> f32 { + return x < 0 ? ceil(x - 0.5) : floor(x + 0.5); +} +round_f64 :: proc(x: f64) -> f64 { + return x < 0 ? ceil(x - 0.5) : floor(x + 0.5); +} round :: proc{round_f32, round_f64}; + +ceil_f32 :: proc(x: f32) -> f32 { return -floor(-x); } +ceil_f64 :: proc(x: f64) -> f64 { return -floor(-x); } +ceil :: proc{ceil_f32, ceil_f64}; + floor_f32 :: proc(x: f32) -> f32 { if x == 0 || is_nan(x) || is_inf(x) { return x; @@ -144,33 +235,27 @@ floor_f64 :: proc(x: f64) -> f64 { } floor :: proc{floor_f32, floor_f64}; -ceil_f32 :: proc(x: f32) -> f32 { return -floor_f32(-x); } -ceil_f64 :: proc(x: f64) -> f64 { return -floor_f64(-x); } -ceil :: proc{ceil_f32, ceil_f64}; -remainder_f32 :: proc(x, y: f32) -> f32 { return x - round(x/y) * y; } -remainder_f64 :: proc(x, y: f64) -> f64 { return x - round(x/y) * y; } -remainder :: proc{remainder_f32, remainder_f64}; - -mod_f32 :: proc(x, y: f32) -> (n: f32) { - z := abs(y); - n = remainder(abs(x), z); - if sign(n) < 0 { - n += z; +floor_div :: proc(x, y: $T) -> T + where intrinsics.type_is_integer(T) { + a := x / y; + r := x % y; + if (r > 0 && y < 0) || (r < 0 && y > 0) { + a -= 1; } - return copy_sign(n, x); + return a; } -mod_f64 :: proc(x, y: f64) -> (n: f64) { - z := abs(y); - n = remainder(abs(x), z); - if sign(n) < 0 { - n += z; - } - return copy_sign(n, x); -} -mod :: proc{mod_f32, mod_f64}; -// TODO(bill): These need to implemented with the actual instructions +floor_mod :: proc(x, y: $T) -> T + where intrinsics.type_is_integer(T) { + r := x % y; + if (r > 0 && y < 0) || (r < 0 && y > 0) { + r += y; + } + return r; +} + + modf_f32 :: proc(x: f32) -> (int: f32, frac: f32) { shift :: 32 - 8 - 1; mask :: 0xff; @@ -190,8 +275,8 @@ modf_f32 :: proc(x: f32) -> (int: f32, frac: f32) { i := transmute(u32)x; e := uint(i>>shift)&mask - bias; - if e < 32-9 { - i &~= 1<<(32-9-e) - 1; + if e < shift { + i &~= 1<<(shift-e) - 1; } int = transmute(f32)i; frac = x - int; @@ -216,360 +301,274 @@ modf_f64 :: proc(x: f64) -> (int: f64, frac: f64) { i := transmute(u64)x; e := uint(i>>shift)&mask - bias; - if e < 64-12 { - i &~= 1<<(64-12-e) - 1; + if e < shift { + i &~= 1<<(shift-e) - 1; } int = transmute(f64)i; frac = x - int; return; } modf :: proc{modf_f32, modf_f64}; +split_decimal :: modf; -is_nan_f32 :: inline proc(x: f32) -> bool { return x != x; } -is_nan_f64 :: inline proc(x: f64) -> bool { return x != x; } +mod_f32 :: proc(x, y: f32) -> (n: f32) { + z := abs(y); + n = remainder(abs(x), z); + if sign(n) < 0 { + n += z; + } + return copy_sign(n, x); +} +mod_f64 :: proc(x, y: f64) -> (n: f64) { + z := abs(y); + n = remainder(abs(x), z); + if sign(n) < 0 { + n += z; + } + return copy_sign(n, x); +} +mod :: proc{mod_f32, mod_f64}; + +remainder_f32 :: proc(x, y: f32) -> f32 { return x - round(x/y) * y; } +remainder_f64 :: proc(x, y: f64) -> f64 { return x - round(x/y) * y; } +remainder :: proc{remainder_f32, remainder_f64}; + + + +gcd :: proc(x, y: $T) -> T + where intrinsics.type_is_ordered_numeric(T) { + x, y := x, y; + for y != 0 { + x %= y; + x, y = y, x; + } + return abs(x); +} + +lcm :: proc(x, y: $T) -> T + where intrinsics.type_is_ordered_numeric(T) { + return x / gcd(x, y) * y; +} + +frexp_f32 :: proc(x: f32) -> (significand: f32, exponent: int) { + switch { + case x == 0: + return 0, 0; + case x < 0: + significand, exponent = frexp(-x); + return -significand, exponent; + } + ex := trunc(log2(x)); + exponent = int(ex); + significand = x / pow(2.0, ex); + if abs(significand) >= 1 { + exponent += 1; + significand /= 2; + } + if exponent == 1024 && significand == 0 { + significand = 0.99999999999999988898; + } + return; +} +frexp_f64 :: proc(x: f64) -> (significand: f64, exponent: int) { + switch { + case x == 0: + return 0, 0; + case x < 0: + significand, exponent = frexp(-x); + return -significand, exponent; + } + ex := trunc(log2(x)); + exponent = int(ex); + significand = x / pow(2.0, ex); + if abs(significand) >= 1 { + exponent += 1; + significand /= 2; + } + if exponent == 1024 && significand == 0 { + significand = 0.99999999999999988898; + } + return; +} +frexp :: proc{frexp_f32, frexp_f64}; + + + + +binomial :: proc(n, k: int) -> int { + switch { + case k <= 0: return 1; + case 2*k > n: return binomial(n, n-k); + } + + b := n; + for i in 2.. int { + when size_of(int) == size_of(i64) { + @static table := [21]int{ + 1, + 1, + 2, + 6, + 24, + 120, + 720, + 5_040, + 40_320, + 362_880, + 3_628_800, + 39_916_800, + 479_001_600, + 6_227_020_800, + 87_178_291_200, + 1_307_674_368_000, + 20_922_789_888_000, + 355_687_428_096_000, + 6_402_373_705_728_000, + 121_645_100_408_832_000, + 2_432_902_008_176_640_000, + }; + } else { + @static table := [13]int{ + 1, + 1, + 2, + 6, + 24, + 120, + 720, + 5_040, + 40_320, + 362_880, + 3_628_800, + 39_916_800, + 479_001_600, + }; + } + + assert(n >= 0, "parameter must not be negative"); + assert(n < len(table), "parameter is too large to lookup in the table"); + return 0; +} + +classify_f32 :: proc(x: f32) -> Float_Class { + switch { + case x == 0: + i := transmute(i32)x; + if i < 0 { + return .Neg_Zero; + } + return .Zero; + case x*0.5 == x: + if x < 0 { + return .Neg_Inf; + } + return .Inf; + case x != x: + return .NaN; + } + + u := transmute(u32)x; + exp := int(u>>23) & (1<<8 - 1); + if exp == 0 { + return .Subnormal; + } + return .Normal; +} +classify_f64 :: proc(x: f64) -> Float_Class { + switch { + case x == 0: + i := transmute(i64)x; + if i < 0 { + return .Neg_Zero; + } + return .Zero; + case x*0.5 == x: + if x < 0 { + return .Neg_Inf; + } + return .Inf; + case x != x: + return .NaN; + } + u := transmute(u64)x; + exp := int(u>>52) & (1<<11 - 1); + if exp == 0 { + return .Subnormal; + } + return .Normal; +} +classify :: proc{classify_f32, classify_f64}; + +is_nan_f32 :: proc(x: f32) -> bool { return classify(x) == .NaN; } +is_nan_f64 :: proc(x: f64) -> bool { return classify(x) == .NaN; } is_nan :: proc{is_nan_f32, is_nan_f64}; -is_finite_f32 :: inline proc(x: f32) -> bool { return !is_nan(x-x); } -is_finite_f64 :: inline proc(x: f64) -> bool { return !is_nan(x-x); } -is_finite :: proc{is_finite_f32, is_finite_f64}; - -is_inf_f32 :: proc(x: f32, sign := 0) -> bool { - return sign >= 0 && x > F32_MAX || sign <= 0 && x < -F32_MAX; -} -is_inf_f64 :: proc(x: f64, sign := 0) -> bool { - return sign >= 0 && x > F64_MAX || sign <= 0 && x < -F64_MAX; -} -// If sign > 0, is_inf reports whether f is positive infinity -// If sign < 0, is_inf reports whether f is negative infinity -// If sign == 0, is_inf reports whether f is either infinity +is_inf_f32 :: proc(x: f32) -> bool { return classify(abs(x)) == .Inf; } +is_inf_f64 :: proc(x: f64) -> bool { return classify(abs(x)) == .Inf; } is_inf :: proc{is_inf_f32, is_inf_f64}; -to_radians :: proc(degrees: f32) -> f32 { return degrees * TAU / 360; } -to_degrees :: proc(radians: f32) -> f32 { return radians * 360 / TAU; } +is_power_of_two :: proc(x: int) -> bool { + return x > 0 && (x & (x-1)) == 0; +} - - - -mul :: proc{ - mat3_mul, - mat4_mul, mat4_mul_vec4, - quat_mul, quat_mulf, -}; - -div :: proc{quat_div, quat_divf}; - -inverse :: proc{mat4_inverse, quat_inverse}; -dot :: proc{vec_dot, quat_dot}; -cross :: proc{cross2, cross3}; - -vec_dot :: proc(a, b: $T/[$N]$E) -> E { - res: E; - for i in 0.. int { + k := x -1; + when size_of(int) == 8 { + k = k | (k >> 32); } - return res; + k = k | (k >> 16); + k = k | (k >> 8); + k = k | (k >> 4); + k = k | (k >> 2); + k = k | (k >> 1); + k += 1 + int(x <= 0); + return k; } -cross2 :: proc(a, b: $T/[2]$E) -> E { - return a[0]*b[1] - a[1]*b[0]; +sum :: proc(x: $T/[]$E) -> (res: E) + where intrinsics.BuiltinProc_type_is_numeric(E) { + for i in x { + res += i; + } + return; } -cross3 :: proc(a, b: $T/[3]$E) -> T { - i := swizzle(a, 1, 2, 0) * swizzle(b, 2, 0, 1); - j := swizzle(a, 2, 0, 1) * swizzle(b, 1, 2, 0); - return T(i - j); +prod :: proc(x: $T/[]$E) -> (res: E) + where intrinsics.BuiltinProc_type_is_numeric(E) { + for i in x { + res *= i; + } + return; +} + +cumsum_inplace :: proc(x: $T/[]$E) -> T + where intrinsics.BuiltinProc_type_is_numeric(E) { + for i in 1.. E { return sqrt(dot(v, v)); } - -norm :: proc(v: $T/[$N]$E) -> T { return v / length(v); } - -norm0 :: proc(v: $T/[$N]$E) -> T { - m := length(v); - return m == 0 ? 0 : v/m; -} - - - -identity :: proc($T: typeid/[$N][N]$E) -> T { - m: T; - for i in 0.. M { - for j in 0.. T + where intrinsics.BuiltinProc_type_is_numeric(E) { + N := min(len(dst), len(src)); + if N > 0 { + dst[0] = src[0]; + for i in 1.. Mat3 { - c: Mat3; - for j in 0..<3 { - for i in 0..<3 { - c[j][i] = a[0][i]*b[j][0] + - a[1][i]*b[j][1] + - a[2][i]*b[j][2]; - } - } - return c; -} - -mat4_mul :: proc(a, b: Mat4) -> Mat4 { - c: Mat4; - for j in 0..<4 { - for i in 0..<4 { - c[j][i] = a[0][i]*b[j][0] + - a[1][i]*b[j][1] + - a[2][i]*b[j][2] + - a[3][i]*b[j][3]; - } - } - return c; -} - -mat4_mul_vec4 :: proc(m: Mat4, v: Vec4) -> Vec4 { - return Vec4{ - m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0]*v[3], - m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1]*v[3], - m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2] + m[3][2]*v[3], - m[0][3]*v[0] + m[1][3]*v[1] + m[2][3]*v[2] + m[3][3]*v[3], - }; -} - -mat4_inverse :: proc(m: Mat4) -> Mat4 { - o: Mat4; - - sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3]; - sf01 := m[2][1] * m[3][3] - m[3][1] * m[2][3]; - sf02 := m[2][1] * m[3][2] - m[3][1] * m[2][2]; - sf03 := m[2][0] * m[3][3] - m[3][0] * m[2][3]; - sf04 := m[2][0] * m[3][2] - m[3][0] * m[2][2]; - sf05 := m[2][0] * m[3][1] - m[3][0] * m[2][1]; - sf06 := m[1][2] * m[3][3] - m[3][2] * m[1][3]; - sf07 := m[1][1] * m[3][3] - m[3][1] * m[1][3]; - sf08 := m[1][1] * m[3][2] - m[3][1] * m[1][2]; - sf09 := m[1][0] * m[3][3] - m[3][0] * m[1][3]; - sf10 := m[1][0] * m[3][2] - m[3][0] * m[1][2]; - sf11 := m[1][1] * m[3][3] - m[3][1] * m[1][3]; - sf12 := m[1][0] * m[3][1] - m[3][0] * m[1][1]; - sf13 := m[1][2] * m[2][3] - m[2][2] * m[1][3]; - sf14 := m[1][1] * m[2][3] - m[2][1] * m[1][3]; - sf15 := m[1][1] * m[2][2] - m[2][1] * m[1][2]; - sf16 := m[1][0] * m[2][3] - m[2][0] * m[1][3]; - sf17 := m[1][0] * m[2][2] - m[2][0] * m[1][2]; - sf18 := m[1][0] * m[2][1] - m[2][0] * m[1][1]; - - - o[0][0] = +(m[1][1] * sf00 - m[1][2] * sf01 + m[1][3] * sf02); - o[0][1] = -(m[1][0] * sf00 - m[1][2] * sf03 + m[1][3] * sf04); - o[0][2] = +(m[1][0] * sf01 - m[1][1] * sf03 + m[1][3] * sf05); - o[0][3] = -(m[1][0] * sf02 - m[1][1] * sf04 + m[1][2] * sf05); - - o[1][0] = -(m[0][1] * sf00 - m[0][2] * sf01 + m[0][3] * sf02); - o[1][1] = +(m[0][0] * sf00 - m[0][2] * sf03 + m[0][3] * sf04); - o[1][2] = -(m[0][0] * sf01 - m[0][1] * sf03 + m[0][3] * sf05); - o[1][3] = +(m[0][0] * sf02 - m[0][1] * sf04 + m[0][2] * sf05); - - o[2][0] = +(m[0][1] * sf06 - m[0][2] * sf07 + m[0][3] * sf08); - o[2][1] = -(m[0][0] * sf06 - m[0][2] * sf09 + m[0][3] * sf10); - o[2][2] = +(m[0][0] * sf11 - m[0][1] * sf09 + m[0][3] * sf12); - o[2][3] = -(m[0][0] * sf08 - m[0][1] * sf10 + m[0][2] * sf12); - - o[3][0] = -(m[0][1] * sf13 - m[0][2] * sf14 + m[0][3] * sf15); - o[3][1] = +(m[0][0] * sf13 - m[0][2] * sf16 + m[0][3] * sf17); - o[3][2] = -(m[0][0] * sf14 - m[0][1] * sf16 + m[0][3] * sf18); - o[3][3] = +(m[0][0] * sf15 - m[0][1] * sf17 + m[0][2] * sf18); - - ood := 1.0 / (m[0][0] * o[0][0] + - m[0][1] * o[0][1] + - m[0][2] * o[0][2] + - m[0][3] * o[0][3]); - - o[0][0] *= ood; - o[0][1] *= ood; - o[0][2] *= ood; - o[0][3] *= ood; - o[1][0] *= ood; - o[1][1] *= ood; - o[1][2] *= ood; - o[1][3] *= ood; - o[2][0] *= ood; - o[2][1] *= ood; - o[2][2] *= ood; - o[2][3] *= ood; - o[3][0] *= ood; - o[3][1] *= ood; - o[3][2] *= ood; - o[3][3] *= ood; - - return o; -} - - -mat4_translate :: proc(v: Vec3) -> Mat4 { - m := identity(Mat4); - m[3][0] = v[0]; - m[3][1] = v[1]; - m[3][2] = v[2]; - m[3][3] = 1; - return m; -} - -mat4_rotate :: proc(v: Vec3, angle_radians: f32) -> Mat4 { - c := cos(angle_radians); - s := sin(angle_radians); - - a := norm(v); - t := a * (1-c); - - rot := identity(Mat4); - - rot[0][0] = c + t[0]*a[0]; - rot[0][1] = 0 + t[0]*a[1] + s*a[2]; - rot[0][2] = 0 + t[0]*a[2] - s*a[1]; - rot[0][3] = 0; - - rot[1][0] = 0 + t[1]*a[0] - s*a[2]; - rot[1][1] = c + t[1]*a[1]; - rot[1][2] = 0 + t[1]*a[2] + s*a[0]; - rot[1][3] = 0; - - rot[2][0] = 0 + t[2]*a[0] + s*a[1]; - rot[2][1] = 0 + t[2]*a[1] - s*a[0]; - rot[2][2] = c + t[2]*a[2]; - rot[2][3] = 0; - - return rot; -} - -scale_vec3 :: proc(m: Mat4, v: Vec3) -> Mat4 { - mm := m; - mm[0][0] *= v[0]; - mm[1][1] *= v[1]; - mm[2][2] *= v[2]; - return mm; -} - -scale_f32 :: proc(m: Mat4, s: f32) -> Mat4 { - mm := m; - mm[0][0] *= s; - mm[1][1] *= s; - mm[2][2] *= s; - return mm; -} - -scale :: proc{scale_vec3, scale_f32}; - - -look_at :: proc(eye, centre, up: Vec3) -> Mat4 { - f := norm(centre - eye); - s := norm(cross(f, up)); - u := cross(s, f); - - return Mat4{ - {+s.x, +u.x, -f.x, 0}, - {+s.y, +u.y, -f.y, 0}, - {+s.z, +u.z, -f.z, 0}, - {-dot(s, eye), -dot(u, eye), dot(f, eye), 1}, - }; -} - -perspective :: proc(fovy, aspect, near, far: f32) -> Mat4 { - m: Mat4; - tan_half_fovy := tan(0.5 * fovy); - - m[0][0] = 1.0 / (aspect*tan_half_fovy); - m[1][1] = 1.0 / (tan_half_fovy); - m[2][2] = -(far + near) / (far - near); - m[2][3] = -1.0; - m[3][2] = -2.0*far*near / (far - near); - return m; -} - - -ortho3d :: proc(left, right, bottom, top, near, far: f32) -> Mat4 { - m := identity(Mat4); - m[0][0] = +2.0 / (right - left); - m[1][1] = +2.0 / (top - bottom); - m[2][2] = -2.0 / (far - near); - m[3][0] = -(right + left) / (right - left); - m[3][1] = -(top + bottom) / (top - bottom); - m[3][2] = -(far + near) / (far - near); - return m; -} - - -// Quaternion operations - -conj :: proc(q: Quat) -> Quat { - return Quat{-q.x, -q.y, -q.z, q.w}; -} - -quat_mul :: proc(q0, q1: Quat) -> Quat { - d: Quat; - d.x = q0.w * q1.x + q0.x * q1.w + q0.y * q1.z - q0.z * q1.y; - d.y = q0.w * q1.y - q0.x * q1.z + q0.y * q1.w + q0.z * q1.x; - d.z = q0.w * q1.z + q0.x * q1.y - q0.y * q1.x + q0.z * q1.w; - d.w = q0.w * q1.w - q0.x * q1.x - q0.y * q1.y - q0.z * q1.z; - return d; -} - -quat_mulf :: proc(q: Quat, f: f32) -> Quat { return Quat{q.x*f, q.y*f, q.z*f, q.w*f}; } -quat_divf :: proc(q: Quat, f: f32) -> Quat { return Quat{q.x/f, q.y/f, q.z/f, q.w/f}; } - -quat_div :: proc(q0, q1: Quat) -> Quat { return mul(q0, quat_inverse(q1)); } -quat_inverse :: proc(q: Quat) -> Quat { return div(conj(q), dot(q, q)); } -quat_dot :: proc(q0, q1: Quat) -> f32 { return q0.x*q1.x + q0.y*q1.y + q0.z*q1.z + q0.w*q1.w; } - -quat_norm :: proc(q: Quat) -> Quat { - m := sqrt(dot(q, q)); - return div(q, m); -} - -axis_angle :: proc(axis: Vec3, angle_radians: f32) -> Quat { - v := norm(axis) * sin(0.5*angle_radians); - w := cos(0.5*angle_radians); - return Quat{v.x, v.y, v.z, w}; -} - -euler_angles :: proc(pitch, yaw, roll: f32) -> Quat { - p := axis_angle(Vec3{1, 0, 0}, pitch); - y := axis_angle(Vec3{0, 1, 0}, yaw); - r := axis_angle(Vec3{0, 0, 1}, roll); - return mul(mul(y, p), r); -} - -quat_to_mat4 :: proc(q: Quat) -> Mat4 { - a := quat_norm(q); - xx := a.x*a.x; yy := a.y*a.y; zz := a.z*a.z; - xy := a.x*a.y; xz := a.x*a.z; yz := a.y*a.z; - wx := a.w*a.x; wy := a.w*a.y; wz := a.w*a.z; - - m := identity(Mat4); - - m[0][0] = 1 - 2*(yy + zz); - m[0][1] = 2*(xy + wz); - m[0][2] = 2*(xz - wy); - - m[1][0] = 2*(xy - wz); - m[1][1] = 1 - 2*(xx + zz); - m[1][2] = 2*(yz + wx); - - m[2][0] = 2*(xz + wy); - m[2][1] = 2*(yz - wx); - m[2][2] = 1 - 2*(xx + yy); - return m; -} - - - F32_DIG :: 6; F32_EPSILON :: 1.192092896e-07; diff --git a/src/check_expr.cpp b/src/check_expr.cpp index 3c4d737a4..a3b8befa9 100644 --- a/src/check_expr.cpp +++ b/src/check_expr.cpp @@ -3344,7 +3344,7 @@ BuiltinTypeIsProc *builtin_type_is_procs[BuiltinProc__type_end - BuiltinProc__ty -bool check_builtin_procedure(CheckerContext *c, Operand *operand, Ast *call, i32 id) { +bool check_builtin_procedure(CheckerContext *c, Operand *operand, Ast *call, i32 id, Type *type_hint) { ast_node(ce, CallExpr, call); if (ce->inlining != ProcInlining_none) { error(call, "Inlining operators are not allowed on built-in procedures"); @@ -3882,6 +3882,10 @@ bool check_builtin_procedure(CheckerContext *c, Operand *operand, Ast *call, i32 } operand->mode = Addressing_Value; + if (type_hint != nullptr && check_is_castable_to(c, operand, type_hint)) { + operand->type = type_hint; + } + break; } @@ -3945,6 +3949,10 @@ bool check_builtin_procedure(CheckerContext *c, Operand *operand, Ast *call, i32 default: GB_PANIC("Invalid type"); break; } + if (type_hint != nullptr && check_is_castable_to(c, operand, type_hint)) { + operand->type = type_hint; + } + break; } @@ -4033,6 +4041,10 @@ bool check_builtin_procedure(CheckerContext *c, Operand *operand, Ast *call, i32 default: GB_PANIC("Invalid type"); break; } + if (type_hint != nullptr && check_is_castable_to(c, operand, type_hint)) { + operand->type = type_hint; + } + break; } @@ -4087,6 +4099,10 @@ bool check_builtin_procedure(CheckerContext *c, Operand *operand, Ast *call, i32 default: GB_PANIC("Invalid type"); break; } + if (type_hint != nullptr && check_is_castable_to(c, operand, type_hint)) { + operand->type = type_hint; + } + break; } @@ -4134,6 +4150,10 @@ bool check_builtin_procedure(CheckerContext *c, Operand *operand, Ast *call, i32 default: GB_PANIC("Invalid type"); break; } + if (type_hint != nullptr && check_is_castable_to(c, operand, type_hint)) { + operand->type = type_hint; + } + break; } @@ -6363,7 +6383,7 @@ CallArgumentError check_polymorphic_record_type(CheckerContext *c, Operand *oper -ExprKind check_call_expr(CheckerContext *c, Operand *operand, Ast *call) { +ExprKind check_call_expr(CheckerContext *c, Operand *operand, Ast *call, Type *type_hint) { ast_node(ce, CallExpr, call); if (ce->proc != nullptr && ce->proc->kind == Ast_BasicDirective) { @@ -6470,7 +6490,7 @@ ExprKind check_call_expr(CheckerContext *c, Operand *operand, Ast *call) { if (operand->mode == Addressing_Builtin) { i32 id = operand->builtin_id; - if (!check_builtin_procedure(c, operand, call, id)) { + if (!check_builtin_procedure(c, operand, call, id, type_hint)) { operand->mode = Addressing_Invalid; } operand->expr = call; @@ -7930,7 +7950,7 @@ ExprKind check_expr_base_internal(CheckerContext *c, Operand *o, Ast *node, Type case_ast_node(ce, CallExpr, node); - return check_call_expr(c, o, node); + return check_call_expr(c, o, node, type_hint); case_end; case_ast_node(de, DerefExpr, node);