make as a user-level procedure rather than a built-in procedure

This commit is contained in:
gingerBill
2018-08-07 11:36:18 +01:00
committed by Ginger Bill
parent 28816dc491
commit 835d7dcab2
5 changed files with 85 additions and 866 deletions

View File

@@ -2794,8 +2794,6 @@ bool check_builtin_procedure(CheckerContext *c, Operand *operand, Ast *call, i32
}
switch (id) {
// case BuiltinProc_new:
case BuiltinProc_make:
case BuiltinProc_size_of:
case BuiltinProc_align_of:
case BuiltinProc_offset_of:
@@ -2933,294 +2931,6 @@ bool check_builtin_procedure(CheckerContext *c, Operand *operand, Ast *call, i32
break;
}
#if 0
case BuiltinProc_new: {
// new :: proc(Type) -> ^Type
Operand op = {};
check_expr_or_type(c, &op, ce->args[0]);
Type *type = op.type;
if ((op.mode != Addressing_Type && type == nullptr) || type == t_invalid) {
error(ce->args[0], "Expected a type for 'new'");
return false;
}
operand->mode = Addressing_Value;
operand->type = alloc_type_pointer(type);
break;
}
#endif
#if 0
case BuiltinProc_new_slice: {
// new_slice :: proc(Type, len: int) -> []Type
// proc new_slice(Type, len, cap: int) -> []Type
Operand op = {};
check_expr_or_type(c, &op, ce->args[0]);
Type *type = op.type;
if ((op.mode != Addressing_Type && type == nullptr) || type == t_invalid) {
error(ce->args[0], "Expected a type for 'new_slice'");
return false;
}
isize arg_count = ce->args.count;
if (arg_count < 2 || 3 < arg_count) {
error(ce->args[0], "'new_slice' expects 2 or 3 arguments, found %td", arg_count);
// NOTE(bill): Return the correct type to reduce errors
} else {
// If any are constant
i64 sizes[2] = {};
isize size_count = 0;
for (isize i = 1; i < arg_count; i++) {
i64 val = 0;
bool ok = check_index_value(c, ce->args[i], -1, &val);
if (ok && val >= 0) {
GB_ASSERT(size_count < gb_count_of(sizes));
sizes[size_count++] = val;
}
}
if (size_count == 2 && sizes[0] > sizes[1]) {
error(ce->args[1], "'new_slice' count and capacity are swapped");
// No need quit
}
}
operand->mode = Addressing_Value;
operand->type = alloc_type_slice(type);
break;
}
#endif
case BuiltinProc_make: {
// make :: proc(Type, len: int) -> Type
// proc make(Type, len, cap: int) -> Type
Operand op = {};
check_expr_or_type(c, &op, ce->args[0]);
Type *type = op.type;
if ((op.mode != Addressing_Type && type == nullptr) || type == t_invalid) {
error(ce->args[0], "Expected a type for 'make'");
return false;
}
isize min_args = 0;
isize max_args = 1;
if (is_type_slice(type)) {
min_args = 2;
max_args = 2;
add_package_dependency(c, "mem", "alloc");
} else if (is_type_map(type)) {
min_args = 1;
max_args = 2;
add_package_dependency(c, "runtime", "__dynamic_map_reserve");
} else if (is_type_dynamic_array(type)) {
min_args = 1;
max_args = 3;
add_package_dependency(c, "runtime", "__dynamic_array_make");
} else {
gbString str = type_to_string(type);
error(call, "Cannot 'make' %s; type must be a slice, map, or dynamic array", str);
gb_string_free(str);
return false;
}
isize arg_count = ce->args.count;
if (arg_count < min_args || max_args < arg_count) {
error(ce->args[0], "'make' expects %td or %d argument, found %td", min_args, max_args, arg_count);
return false;
}
// If any are constant
i64 sizes[4] = {};
isize size_count = 0;
for (isize i = 1; i < arg_count; i++) {
i64 val = 0;
bool ok = check_index_value(c, false, ce->args[i], -1, &val);
if (ok && val >= 0) {
GB_ASSERT(size_count < gb_count_of(sizes));
sizes[size_count++] = val;
}
}
if (size_count == 2 && sizes[0] > sizes[1]) {
error(ce->args[1], "'make' count and capacity are swapped");
// No need quit
}
operand->mode = Addressing_Value;
operand->type = type;
break;
}
#if 0
case BuiltinProc_free: {
// free :: proc(^Type)
// proc free([]Type)
// proc free(string)
// proc free(map[K]T)
Type *type = operand->type;
bool ok = false;
if (is_type_pointer(type)) {
ok = true;
} else if (is_type_slice(type)) {
ok = true;
} else if (is_type_string(type)) {
ok = true;
} else if (is_type_dynamic_array(type)) {
ok = true;
} else if (is_type_dynamic_map(type)) {
ok = true;
}
if (!ok) {
gbString type_str = type_to_string(type);
error(operand->expr, "Invalid type for 'free', got '%s'", type_str);
gb_string_free(type_str);
return false;
}
operand->mode = Addressing_NoValue;
break;
}
#endif
#if 0
case BuiltinProc_reserve: {
// reserve :: proc([dynamic]Type, count: int) {
// reserve :: proc(map[Key]Type, count: int) {
Type *type = operand->type;
if (!is_type_dynamic_array(type) && !is_type_dynamic_map(type)) {
gbString str = type_to_string(type);
error(operand->expr, "Expected a dynamic array or dynamic map, got '%s'", str);
gb_string_free(str);
return false;
}
Ast *capacity = ce->args[1];
Operand op = {};
check_expr(c, &op, capacity);
if (op.mode == Addressing_Invalid) {
return false;
}
Type *arg_type = base_type(op.type);
if (!is_type_integer(arg_type)) {
error(operand->expr, "'reserve' capacities must be an integer");
return false;
}
operand->type = nullptr;
operand->mode = Addressing_NoValue;
break;
}
#endif
#if 0
case BuiltinProc_clear: {
Type *type = operand->type;
bool is_pointer = is_type_pointer(type);
type = base_type(type_deref(type));
if (!is_type_dynamic_array(type) && !is_type_map(type) && !is_type_slice(type)) {
gbString str = type_to_string(type);
error(operand->expr, "Invalid type for 'clear', got '%s'", str);
gb_string_free(str);
return false;
}
operand->type = nullptr;
operand->mode = Addressing_NoValue;
break;
}
#endif
#if 0
case BuiltinProc_append: {
// append :: proc([dynamic]Type, item: ..Type)
// proc append([]Type, item: ..Type)
Operand prev_operand = *operand;
Type *type = operand->type;
bool is_pointer = is_type_pointer(type);
type = base_type(type_deref(type));
if (!is_type_dynamic_array(type) && !is_type_slice(type)) {
gbString str = type_to_string(type);
error(operand->expr, "Expected a slice or dynamic array, got '%s'", str);
gb_string_free(str);
return false;
}
bool is_addressable = operand->mode == Addressing_Variable;
if (is_pointer) {
is_addressable = true;
}
if (!is_addressable) {
error(operand->expr, "'append' can only operate on addressable values");
return false;
}
Type *elem = nullptr;
if (is_type_dynamic_array(type)) {
elem = type->DynamicArray.elem;
} else {
elem = type->Slice.elem;
}
Type *slice_elem = alloc_type_slice(elem);
Type *proc_type_params = alloc_type_tuple(c->allocator);
proc_type_params->Tuple.variables = gb_alloc_array(c->allocator, Entity *, 2);
proc_type_params->Tuple.variable_count = 2;
proc_type_params->Tuple.variables[0] = alloc_entity_param(c->allocator, nullptr, blank_token, operand->type, false, false);
proc_type_params->Tuple.variables[1] = alloc_entity_param(c->allocator, nullptr, blank_token, slice_elem, false, false);
Type *proc_type = alloc_type_proc(nullptr, proc_type_params, 2, nullptr, false, true, ProcCC_Odin);
check_call_arguments(c, &prev_operand, proc_type, call);
if (prev_operand.mode == Addressing_Invalid) {
return false;
}
operand->mode = Addressing_Value;
operand->type = t_int;
break;
}
#endif
#if 0
case BuiltinProc_delete: {
// delete :: proc(map[Key]Value, key: Key)
Type *type = operand->type;
if (!is_type_map(type)) {
gbString str = type_to_string(type);
error(operand->expr, "Expected a map, got '%s'", str);
gb_string_free(str);
return false;
}
Type *key = base_type(type)->Map.key;
Operand x = {Addressing_Invalid};
Ast *key_node = ce->args[1];
Operand op = {};
check_expr(c, &op, key_node);
if (op.mode == Addressing_Invalid) {
return false;
}
if (!check_is_assignable_to(c, &op, key)) {
gbString kt = type_to_string(key);
gbString ot = type_to_string(op.type);
error(operand->expr, "Expected a key of type '%s', got '%s'", key, ot);
gb_string_free(ot);
gb_string_free(kt);
return false;
}
operand->mode = Addressing_NoValue;
break;
}
#endif
case BuiltinProc_size_of: {
// size_of :: proc(Type or expr) -> untyped int
Operand o = {};
@@ -3604,72 +3314,9 @@ bool check_builtin_procedure(CheckerContext *c, Operand *operand, Ast *call, i32
return false;
}
break;
}
#if 0
case BuiltinProc_slice_ptr: {
// slice_ptr :: proc(a: ^T, len: int) -> []T
// proc slice_ptr(a: ^T, len, cap: int) -> []T
// ^T cannot be rawptr
Type *ptr_type = base_type(operand->type);
if (!is_type_pointer(ptr_type)) {
gbString type_str = type_to_string(operand->type);
error(call, "Expected a pointer to 'slice_ptr', got '%s'", type_str);
gb_string_free(type_str);
return false;
}
if (ptr_type == t_rawptr) {
error(call, "'rawptr' cannot have pointer arithmetic");
return false;
}
isize arg_count = ce->args.count;
if (arg_count < 2 || 3 < arg_count) {
error(ce->args[0], "'slice_ptr' expects 2 or 3 arguments, found %td", arg_count);
// NOTE(bill): Return the correct type to reduce errors
} else {
// If any are constant
i64 sizes[2] = {};
isize size_count = 0;
for (isize i = 1; i < arg_count; i++) {
i64 val = 0;
bool ok = check_index_value(c, false, ce->args[i], -1, &val);
if (ok && val >= 0) {
GB_ASSERT(size_count < gb_count_of(sizes));
sizes[size_count++] = val;
}
}
if (size_count == 2 && sizes[0] > sizes[1]) {
error(ce->args[1], "'slice_ptr' count and capacity are swapped");
// No need quit
}
}
operand->type = alloc_type_slice(ptr_type->Pointer.elem);
operand->mode = Addressing_Value;
break;
}
case BuiltinProc_slice_to_bytes: {
// slice_to_bytes :: proc(a: []T) -> []u8
Type *slice_type = base_type(operand->type);
if (!is_type_slice(slice_type)) {
gbString type_str = type_to_string(operand->type);
error(call, "Expected a slice type, got '%s'", type_str);
gb_string_free(type_str);
return false;
}
operand->type = t_u8_slice;
operand->mode = Addressing_Value;
break;
}
#endif
case BuiltinProc_expand_to_tuple: {
Type *type = base_type(operand->type);
if (!is_type_struct(type) && !is_type_array(type)) {
@@ -3773,7 +3420,7 @@ break;
}
break;
break;
}
case BuiltinProc_max: {
@@ -3849,7 +3496,7 @@ break;
}
break;
break;
}
case BuiltinProc_abs: {
@@ -4002,59 +3649,6 @@ break;
break;
}
#if 0
case BuiltinProc_transmute: {
Operand op = {};
check_expr_or_type(c, &op, ce->args[0]);
Type *t = op.type;
if ((op.mode != Addressing_Type && t == nullptr) || t == t_invalid) {
error(ce->args[0], "Expected a type for 'transmute'");
return false;
}
Ast *expr = ce->args[1];
Operand *o = operand;
check_expr(c, o, expr);
if (o->mode == Addressing_Invalid) {
return false;
}
if (o->mode == Addressing_Constant) {
gbString expr_str = expr_to_string(o->expr);
error(o->expr, "Cannot transmute a constant expression: '%s'", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
o->expr = expr;
return false;
}
if (is_type_untyped(o->type)) {
gbString expr_str = expr_to_string(o->expr);
error(o->expr, "Cannot transmute untyped expression: '%s'", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
o->expr = expr;
return false;
}
i64 srcz = type_size_of(o->type);
i64 dstz = type_size_of(t);
if (srcz != dstz) {
gbString expr_str = expr_to_string(o->expr);
gbString type_str = type_to_string(t);
error(o->expr, "Cannot transmute '%s' to '%s', %lld vs %lld bytes", expr_str, type_str, srcz, dstz);
gb_string_free(type_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
o->expr = expr;
return false;
}
o->mode = Addressing_Value;
o->type = t;
break;
}
#endif
}
return true;
@@ -4246,6 +3840,8 @@ CALL_ARGUMENT_CHECKER(check_call_arguments_internal) {
gen_entity = poly_proc_data.gen_entity;
GB_ASSERT(is_type_proc(gen_entity->type));
final_proc_type = gen_entity->type;
} else {
err = CallArgumentError_WrongTypes;
}
}
@@ -4614,44 +4210,54 @@ CallArgumentData check_call_arguments(CheckerContext *c, Operand *operand, Type
if (valid_count == 0) {
error(operand->expr, "No procedures or ambiguous call for procedure group '%s' that match with the given arguments", expr_name);
gb_printf_err("\tGiven argument types: (");
bool all_invalid_type = true;
for_array(i, operands) {
Operand o = operands[i];
if (i > 0) gb_printf_err(", ");
gbString type = type_to_string(o.type);
defer (gb_string_free(type));
gb_printf_err("%s", type);
}
gb_printf_err(")\n");
if (procs.count > 0) {
gb_printf_err("Did you mean to use one of the following:\n");
}
for_array(i, procs) {
Entity *proc = procs[i];
TokenPos pos = proc->token.pos;
Type *t = base_type(proc->type);
if (t == t_invalid) continue;
GB_ASSERT(t->kind == Type_Proc);
gbString pt;
defer (gb_string_free(pt));
if (t->Proc.node != nullptr) {
pt = expr_to_string(t->Proc.node);
} else {
pt = type_to_string(t);
if (o.type != t_invalid) {
all_invalid_type = false;
break;
}
String name = proc->token.string;
char const *sep = "::";
if (proc->kind == Entity_Variable) {
sep = ":=";
}
// gb_printf_err("\t%.*s %s %s at %.*s(%td:%td) with score %lld\n", LIT(name), sep, pt, LIT(pos.file), pos.line, pos.column, cast(long long)valids[i].score);
gb_printf_err("\t%.*s %s %s at %.*s(%td:%td)\n", LIT(name), sep, pt, LIT(pos.file), pos.line, pos.column);
}
if (procs.count > 0) {
gb_printf_err("\n");
if (!all_invalid_type) {
error(operand->expr, "No procedures or ambiguous call for procedure group '%s' that match with the given arguments", expr_name);
gb_printf_err("\tGiven argument types: (");
for_array(i, operands) {
Operand o = operands[i];
if (i > 0) gb_printf_err(", ");
gbString type = type_to_string(o.type);
defer (gb_string_free(type));
gb_printf_err("%s", type);
}
gb_printf_err(")\n");
if (procs.count > 0) {
gb_printf_err("Did you mean to use one of the following:\n");
}
for_array(i, procs) {
Entity *proc = procs[i];
TokenPos pos = proc->token.pos;
Type *t = base_type(proc->type);
if (t == t_invalid) continue;
GB_ASSERT(t->kind == Type_Proc);
gbString pt;
defer (gb_string_free(pt));
if (t->Proc.node != nullptr) {
pt = expr_to_string(t->Proc.node);
} else {
pt = type_to_string(t);
}
String name = proc->token.string;
char const *sep = "::";
if (proc->kind == Entity_Variable) {
sep = ":=";
}
// gb_printf_err("\t%.*s %s %s at %.*s(%td:%td) with score %lld\n", LIT(name), sep, pt, LIT(pos.file), pos.line, pos.column, cast(long long)valids[i].score);
gb_printf_err("\t%.*s %s %s at %.*s(%td:%td)\n", LIT(name), sep, pt, LIT(pos.file), pos.line, pos.column);
}
if (procs.count > 0) {
gb_printf_err("\n");
}
}
result_type = t_invalid;
} else if (valid_count > 1) {