diff --git a/examples/demo_insert_semicolon/demo.odin b/examples/demo_insert_semicolon/demo.odin deleted file mode 100644 index 3fbae274e..000000000 --- a/examples/demo_insert_semicolon/demo.odin +++ /dev/null @@ -1,2007 +0,0 @@ -package main - -import "core:fmt" -import "core:mem" -import "core:os" -import "core:thread" -import "core:time" -import "core:reflect" -import "core:runtime" -import "intrinsics" - -/* - The Odin programming language is fast, concise, readable, pragmatic and open sourced. - It is designed with the intent of replacing C with the following goals: - * simplicity - * high performance - * built for modern systems - * joy of programming - - # Installing Odin - Getting Started - https://odin-lang.org/docs/install/ - Instructions for downloading and install the Odin compiler and libraries. - - # Learning Odin - Overview of Odin - https://odin-lang.org/docs/overview/ - An overview of the Odin programming language. - Frequently Asked Questions (FAQ) - https://odin-lang.org/docs/faq/ - Answers to common questions about Odin. -*/ - -the_basics :: proc() { - fmt.println("\n# the basics") - - { // The Basics - fmt.println("Hellope") - - // Lexical elements and literals - // A comment - - my_integer_variable: int // A comment for documentaton - - // Multi-line comments begin with /* and end with */. Multi-line comments can - // also be nested (unlike in C): - /* - You can have any text or code here and - have it be commented. - /* - NOTE: comments can be nested! - */ - */ - - // String literals are enclosed in double quotes and character literals in single quotes. - // Special characters are escaped with a backslash \ - - some_string := "This is a string" - _ = 'A' // unicode codepoint literal - _ = '\n' - _ = "C:\\Windows\\notepad.exe" - // Raw string literals are enclosed with single back ticks - _ = `C:\Windows\notepad.exe` - - // The length of a string in bytes can be found using the built-in `len` procedure: - _ = len("Foo") - _ = len(some_string) - - - // Numbers - - // Numerical literals are written similar to most other programming languages. - // A useful feature in Odin is that underscores are allowed for better - // readability: 1_000_000_000 (one billion). A number that contains a dot is a - // floating point literal: 1.0e9 (one billion). If a number literal is suffixed - // with i, is an imaginary number literal: 2i (2 multiply the square root of -1). - - // Binary literals are prefixed with 0b, octal literals with 0o, and hexadecimal - // literals 0x. A leading zero does not produce an octal constant (unlike C). - - // In Odin, if a number constant is possible to be represented by a type without - // precision loss, it will automatically convert to that type. - - x: int = 1.0 // A float literal but it can be represented by an integer without precision loss - // Constant literals are “untyped” which means that they can implicitly convert to a type. - - y: int // `y` is typed of type `int` - y = 1 // `1` is an untyped integer literal which can implicitly convert to `int` - - z: f64 // `z` is typed of type `f64` (64-bit floating point number) - z = 1 // `1` is an untyped integer literals which can be implicity conver to `f64` - // No need for any suffixes or decimal places like in other languages - // CONSTANTS JUST WORK!!! - - - // Assignment statements - h: int = 123 // declares a new variable `h` with type `int` and assigns a value to it - h = 637 // assigns a new value to `h` - - // `=` is the assignment operator - - // You can assign multiple variables with it: - a, b := 1, "hello" // declares `a` and `b` and infers the types from the assignments - b, a = "byte", 0 - - // Note: `:=` is two tokens, `:` and `=`. The following are equivalent, - /* - i: int = 123 - i: = 123 - i := 123 - */ - - // Constant declarations - // Constants are entities (symbols) which have an assigned value. - // The constant’s value cannot be changed. - // The constant’s value must be able to be evaluated at compile time: - X :: "what" // constant `X` has the untyped string value "what" - - // Constants can be explicitly typed like a variable declaration: - Y : int : 123 - Z :: Y + 7 // constant computations are possible - - _ = my_integer_variable - _ = x - } -} - -control_flow :: proc() { - fmt.println("\n# control flow") - { // Control flow - // For loop - // Odin has only one loop statement, the `for` loop - - // Basic for loop - for i := 0; i < 10; i += 1 { - fmt.println(i) - } - - // NOTE: Unlike other languages like C, there are no parentheses `( )` surrounding the three components. - // Braces `{ }` or a `do` are always required - for i := 0; i < 10; i += 1 { } - // for i := 0; i < 10; i += 1 do fmt.print() - - // The initial and post statements are optional - i := 0 - for ; i < 10; { - i += 1 - } - - // These semicolons can be dropped. This `for` loop is equivalent to C's `while` loop - i = 0 - for i < 10 { - i += 1 - } - - // If the condition is omitted, this produces an infinite loop: - for { - break - } - - // Range-based for loop - // The basic for loop - for j := 0; j < 10; j += 1 { - fmt.println(j) - } - // can also be written - for j in 0..<10 { - fmt.println(j) - } - for j in 0..9 { - fmt.println(j) - } - - // Certain built-in types can be iterated over - some_string := "Hello, 世界" - for character in some_string { // Strings are assumed to be UTF-8 - fmt.println(character) - } - - some_array := [3]int{1, 4, 9} - for value in some_array { - fmt.println(value) - } - - some_slice := []int{1, 4, 9} - for value in some_slice { - fmt.println(value) - } - - some_dynamic_array := [dynamic]int{1, 4, 9} - defer delete(some_dynamic_array) - for value in some_dynamic_array { - fmt.println(value) - } - - - some_map := map[string]int{"A" = 1, "C" = 9, "B" = 4} - defer delete(some_map) - for key in some_map { - fmt.println(key) - } - - // Alternatively a second index value can be added - for character, index in some_string { - fmt.println(index, character) - } - for value, index in some_array { - fmt.println(index, value) - } - for value, index in some_slice { - fmt.println(index, value) - } - for value, index in some_dynamic_array { - fmt.println(index, value) - } - for key, value in some_map { - fmt.println(key, value) - } - - // The iterated values are copies and cannot be written to. - // The following idiom is useful for iterating over a container in a by-reference manner: - for _, idx in some_slice { - some_slice[idx] = (idx+1)*(idx+1) - } - - - // If statements - x := 123 - if x >= 0 { - fmt.println("x is positive") - } - - if y := -34; y < 0 { - fmt.println("y is negative") - } - - if y := 123; y < 0 { - fmt.println("y is negative") - } else if y == 0 { - fmt.println("y is zero") - } else { - fmt.println("y is positive") - } - - // Switch statement - // A switch statement is another way to write a sequence of if-else statements. - // In Odin, the default case is denoted as a case without any expression. - - switch arch := ODIN_ARCH; arch { - case "386": - fmt.println("32-bit") - case "amd64": - fmt.println("64-bit") - case: // default - fmt.println("Unsupported architecture") - } - - // Odin’s `switch` is like one in C or C++, except that Odin only runs the selected case. - // This means that a `break` statement is not needed at the end of each case. - // Another important difference is that the case values need not be integers nor constants. - - // To achieve a C-like fall through into the next case block, the keyword `fallthrough` can be used. - one_angry_dwarf :: proc() -> int { - fmt.println("one_angry_dwarf was called") - return 1 - } - - switch j := 0; j { - case 0: - case one_angry_dwarf(): - } - - // A switch statement without a condition is the same as `switch true`. - // This can be used to write a clean and long if-else chain and have the - // ability to break if needed - - switch { - case x < 0: - fmt.println("x is negative") - case x == 0: - fmt.println("x is zero") - case: - fmt.println("x is positive") - } - - // A `switch` statement can also use ranges like a range-based loop: - switch c := 'j'; c { - case 'A'..'Z', 'a'..'z', '0'..'9': - fmt.println("c is alphanumeric") - } - - switch x { - case 0..<10: - fmt.println("units") - case 10..<13: - fmt.println("pre-teens") - case 13..<20: - fmt.println("teens") - case 20..<30: - fmt.println("twenties") - } - } - - { // Defer statement - // A defer statement defers the execution of a statement until the end of - // the scope it is in. - - // The following will print 4 then 234: - { - x := 123 - defer fmt.println(x) - { - defer x = 4 - x = 2 - } - fmt.println(x) - - x = 234 - } - - // You can defer an entire block too: - { - bar :: proc() {} - - defer { - fmt.println("1") - fmt.println("2") - } - - cond := false - defer if cond { - bar() - } - } - - // Defer statements are executed in the reverse order that they were declared: - { - defer fmt.println("1") - defer fmt.println("2") - defer fmt.println("3") - } - // Will print 3, 2, and then 1. - - if false { - f, err := os.open("my_file.txt") - if err != 0 { - // handle error - } - defer os.close(f) - // rest of code - } - } - - { // When statement - /* - The when statement is almost identical to the if statement but with some differences: - - * Each condition must be a constant expression as a when - statement is evaluated at compile time. - * The statements within a branch do not create a new scope - * The compiler checks the semantics and code only for statements - that belong to the first condition that is true - * An initial statement is not allowed in a when statement - * when statements are allowed at file scope - */ - - // Example - when ODIN_ARCH == "386" { - fmt.println("32 bit") - } else when ODIN_ARCH == "amd64" { - fmt.println("64 bit") - } else { - fmt.println("Unsupported architecture") - } - // The when statement is very useful for writing platform specific code. - // This is akin to the #if construct in C’s preprocessor however, in Odin, - // it is type checked. - } - - { // Branch statements - cond, cond1, cond2 := false, false, false - one_step :: proc() { fmt.println("one_step") } - beyond :: proc() { fmt.println("beyond") } - - // Break statement - for cond { - switch { - case: - if cond { - break // break out of the `switch` statement - } - } - - break // break out of the `for` statement - } - - loop: for cond1 { - for cond2 { - break loop // leaves both loops - } - } - - // Continue statement - for cond { - if cond2 { - continue - } - fmt.println("Hellope") - } - - // Fallthrough statement - - // Odin’s switch is like one in C or C++, except that Odin only runs the selected - // case. This means that a break statement is not needed at the end of each case. - // Another important difference is that the case values need not be integers nor - // constants. - - // fallthrough can be used to explicitly fall through into the next case block: - - switch i := 0; i { - case 0: - one_step() - fallthrough - case 1: - beyond() - } - } -} - - -named_proc_return_parameters :: proc() { - fmt.println("\n# named proc return parameters") - - foo0 :: proc() -> int { - return 123 - } - foo1 :: proc() -> (a: int) { - a = 123 - return - } - foo2 :: proc() -> (a, b: int) { - // Named return values act like variables within the scope - a = 321 - b = 567 - return b, a - } - fmt.println("foo0 =", foo0()) // 123 - fmt.println("foo1 =", foo1()) // 123 - fmt.println("foo2 =", foo2()) // 567 321 -} - - -explicit_procedure_overloading :: proc() { - fmt.println("\n# explicit procedure overloading") - - add_ints :: proc(a, b: int) -> int { - x := a + b - fmt.println("add_ints", x) - return x - } - add_floats :: proc(a, b: f32) -> f32 { - x := a + b - fmt.println("add_floats", x) - return x - } - add_numbers :: proc(a: int, b: f32, c: u8) -> int { - x := int(a) + int(b) + int(c) - fmt.println("add_numbers", x) - return x - } - - add :: proc{add_ints, add_floats, add_numbers} - - add(int(1), int(2)) - add(f32(1), f32(2)) - add(int(1), f32(2), u8(3)) - - add(1, 2) // untyped ints coerce to int tighter than f32 - add(1.0, 2.0) // untyped floats coerce to f32 tighter than int - add(1, 2, 3) // three parameters - - // Ambiguous answers - // add(1.0, 2) - // add(1, 2.0) -} - -struct_type :: proc() { - fmt.println("\n# struct type") - // A struct is a record type in Odin. It is a collection of fields. - // Struct fields are accessed by using a dot: - { - Vector2 :: struct { - x: f32, - y: f32, - } - v := Vector2{1, 2} - v.x = 4 - fmt.println(v.x) - - // Struct fields can be accessed through a struct pointer: - - v = Vector2{1, 2} - p := &v - p.x = 1335 - fmt.println(v) - - // We could write p^.x, however, it is to nice abstract the ability - // to not explicitly dereference the pointer. This is very useful when - // refactoring code to use a pointer rather than a value, and vice versa. - } - { - // A struct literal can be denoted by providing the struct’s type - // followed by {}. A struct literal must either provide all the - // arguments or none: - Vector3 :: struct { - x, y, z: f32, - } - v: Vector3 - v = Vector3{} // Zero value - v = Vector3{1, 4, 9} - - // You can list just a subset of the fields if you specify the - // field by name (the order of the named fields does not matter): - v = Vector3{z=1, y=2} - assert(v.x == 0) - assert(v.y == 2) - assert(v.z == 1) - } - { - // Structs can tagged with different memory layout and alignment requirements: - - a :: struct #align 4 {} // align to 4 bytes - b :: struct #packed {} // remove padding between fields - c :: struct #raw_union {} // all fields share the same offset (0). This is the same as C's union - } - -} - - -union_type :: proc() { - fmt.println("\n# union type") - { - val: union{int, bool} - val = 137 - if i, ok := val.(int); ok { - fmt.println(i) - } - val = true - fmt.println(val) - - val = nil - - switch v in val { - case int: fmt.println("int", v) - case bool: fmt.println("bool", v) - case: fmt.println("nil") - } - } - { - // There is a duality between `any` and `union` - // An `any` has a pointer to the data and allows for any type (open) - // A `union` has as binary blob to store the data and allows only certain types (closed) - // The following code is with `any` but has the same syntax - val: any - val = 137 - if i, ok := val.(int); ok { - fmt.println(i) - } - val = true - fmt.println(val) - - val = nil - - switch v in val { - case int: fmt.println("int", v) - case bool: fmt.println("bool", v) - case: fmt.println("nil") - } - } - - Vector3 :: distinct [3]f32 - Quaternion :: distinct quaternion128 - - // More realistic examples - { - // NOTE(bill): For the above basic examples, you may not have any - // particular use for it. However, my main use for them is not for these - // simple cases. My main use is for hierarchical types. Many prefer - // subtyping, embedding the base data into the derived types. Below is - // an example of this for a basic game Entity. - - Entity :: struct { - id: u64, - name: string, - position: Vector3, - orientation: Quaternion, - - derived: any, - } - - Frog :: struct { - using entity: Entity, - jump_height: f32, - } - - Monster :: struct { - using entity: Entity, - is_robot: bool, - is_zombie: bool, - } - - // See `parametric_polymorphism` procedure for details - new_entity :: proc($T: typeid) -> ^Entity { - t := new(T) - t.derived = t^ - return t - } - - entity := new_entity(Monster) - - switch e in entity.derived { - case Frog: - fmt.println("Ribbit") - case Monster: - if e.is_robot { fmt.println("Robotic") } - if e.is_zombie { fmt.println("Grrrr!") } - fmt.println("I'm a monster") - } - } - - { - // NOTE(bill): A union can be used to achieve something similar. Instead - // of embedding the base data into the derived types, the derived data - // in embedded into the base type. Below is the same example of the - // basic game Entity but using an union. - - Entity :: struct { - id: u64, - name: string, - position: Vector3, - orientation: Quaternion, - - derived: union {Frog, Monster}, - } - - Frog :: struct { - using entity: ^Entity, - jump_height: f32, - } - - Monster :: struct { - using entity: ^Entity, - is_robot: bool, - is_zombie: bool, - } - - // See `parametric_polymorphism` procedure for details - new_entity :: proc($T: typeid) -> ^Entity { - t := new(Entity) - t.derived = T{entity = t} - return t - } - - entity := new_entity(Monster) - - switch e in entity.derived { - case Frog: - fmt.println("Ribbit") - case Monster: - if e.is_robot { fmt.println("Robotic") } - if e.is_zombie { fmt.println("Grrrr!") } - } - - // NOTE(bill): As you can see, the usage code has not changed, only its - // memory layout. Both approaches have their own advantages but they can - // be used together to achieve different results. The subtyping approach - // can allow for a greater control of the memory layout and memory - // allocation, e.g. storing the derivatives together. However, this is - // also its disadvantage. You must either preallocate arrays for each - // derivative separation (which can be easily missed) or preallocate a - // bunch of "raw" memory; determining the maximum size of the derived - // types would require the aid of metaprogramming. Unions solve this - // particular problem as the data is stored with the base data. - // Therefore, it is possible to preallocate, e.g. [100]Entity. - - // It should be noted that the union approach can have the same memory - // layout as the any and with the same type restrictions by using a - // pointer type for the derivatives. - - /* - Entity :: struct { - ... - derived: union{^Frog, ^Monster}, - } - - Frog :: struct { - using entity: Entity, - ... - } - Monster :: struct { - using entity: Entity, - ... - - } - new_entity :: proc(T: type) -> ^Entity { - t := new(T) - t.derived = t - return t - } - */ - } -} - -using_statement :: proc() { - fmt.println("\n# using statement") - // using can used to bring entities declared in a scope/namespace - // into the current scope. This can be applied to import names, struct - // fields, procedure fields, and struct values. - - Vector3 :: struct{x, y, z: f32} - { - Entity :: struct { - position: Vector3, - orientation: quaternion128, - } - - // It can used like this: - foo0 :: proc(entity: ^Entity) { - fmt.println(entity.position.x, entity.position.y, entity.position.z) - } - - // The entity members can be brought into the procedure scope by using it: - foo1 :: proc(entity: ^Entity) { - using entity - fmt.println(position.x, position.y, position.z) - } - - // The using can be applied to the parameter directly: - foo2 :: proc(using entity: ^Entity) { - fmt.println(position.x, position.y, position.z) - } - - // It can also be applied to sub-fields: - foo3 :: proc(entity: ^Entity) { - using entity.position - fmt.println(x, y, z) - } - } - { - // We can also apply the using statement to the struct fields directly, - // making all the fields of position appear as if they on Entity itself: - Entity :: struct { - using position: Vector3, - orientation: quaternion128, - } - foo :: proc(entity: ^Entity) { - fmt.println(entity.x, entity.y, entity.z) - } - - - // Subtype polymorphism - // It is possible to get subtype polymorphism, similar to inheritance-like - // functionality in C++, but without the requirement of vtables or unknown - // struct layout: - - Colour :: struct {r, g, b, a: u8} - Frog :: struct { - ribbit_volume: f32, - using entity: Entity, - colour: Colour, - } - - frog: Frog - // Both work - foo(&frog.entity) - foo(&frog) - frog.x = 123 - - // Note: using can be applied to arbitrarily many things, which allows - // the ability to have multiple subtype polymorphism (but also its issues). - - // Note: using’d fields can still be referred by name. - } - { // using on an enum declaration - - using Foo :: enum {A, B, C} - - f0 := A - f1 := B - f2 := C - fmt.println(f0, f1, f2) - fmt.println(len(Foo)) - } -} - - -implicit_context_system :: proc() { - fmt.println("\n# implicit context system") - // In each scope, there is an implicit value named context. This - // context variable is local to each scope and is implicitly passed - // by pointer to any procedure call in that scope (if the procedure - // has the Odin calling convention). - - // The main purpose of the implicit context system is for the ability - // to intercept third-party code and libraries and modify their - // functionality. One such case is modifying how a library allocates - // something or logs something. In C, this was usually achieved with - // the library defining macros which could be overridden so that the - // user could define what he wanted. However, not many libraries - // supported this in many languages by default which meant intercepting - // third-party code to see what it does and to change how it does it is - // not possible. - - c := context // copy the current scope's context - - context.user_index = 456 - { - context.allocator = my_custom_allocator() - context.user_index = 123 - what_a_fool_believes() // the `context` for this scope is implicitly passed to `what_a_fool_believes` - } - - // `context` value is local to the scope it is in - assert(context.user_index == 456) - - what_a_fool_believes :: proc() { - c := context // this `context` is the same as the parent procedure that it was called from - // From this example, context.user_index == 123 - // An context.allocator is assigned to the return value of `my_custom_allocator()` - assert(context.user_index == 123) - - // The memory management procedure use the `context.allocator` by - // default unless explicitly specified otherwise - china_grove := new(int) - free(china_grove) - - _ = c - } - - my_custom_allocator :: mem.nil_allocator - _ = c - - // By default, the context value has default values for its parameters which is - // decided in the package runtime. What the defaults are are compiler specific. - - // To see what the implicit context value contains, please see the following - // definition in package runtime. -} - -parametric_polymorphism :: proc() { - fmt.println("\n# parametric polymorphism") - - print_value :: proc(value: $T) { - fmt.printf("print_value: %T %v\n", value, value) - } - - v1: int = 1 - v2: f32 = 2.1 - v3: f64 = 3.14 - v4: string = "message" - - print_value(v1) - print_value(v2) - print_value(v3) - print_value(v4) - - fmt.println() - - add :: proc(p, q: $T) -> T { - x: T = p + q - return x - } - - a := add(3, 4) - fmt.printf("a: %T = %v\n", a, a) - - b := add(3.2, 4.3) - fmt.printf("b: %T = %v\n", b, b) - - // This is how `new` is implemented - alloc_type :: proc($T: typeid) -> ^T { - t := cast(^T)alloc(size_of(T), align_of(T)) - t^ = T{} // Use default initialization value - return t - } - - copy_slice :: proc(dst, src: []$T) -> int { - n := min(len(dst), len(src)) - if n > 0 { - mem.copy(&dst[0], &src[0], n*size_of(T)) - } - return n - } - - double_params :: proc(a: $A, b: $B) -> A { - return a + A(b) - } - - fmt.println(double_params(12, 1.345)) - - - - { // Polymorphic Types and Type Specialization - Table_Slot :: struct(Key, Value: typeid) { - occupied: bool, - hash: u32, - key: Key, - value: Value, - } - TABLE_SIZE_MIN :: 32 - Table :: struct(Key, Value: typeid) { - count: int, - allocator: mem.Allocator, - slots: []Table_Slot(Key, Value), - } - - // Only allow types that are specializations of a (polymorphic) slice - make_slice :: proc($T: typeid/[]$E, len: int) -> T { - return make(T, len) - } - - // Only allow types that are specializations of `Table` - allocate :: proc(table: ^$T/Table, capacity: int) { - c := context - if table.allocator.procedure != nil { - c.allocator = table.allocator - } - context = c - - table.slots = make_slice(type_of(table.slots), max(capacity, TABLE_SIZE_MIN)) - } - - expand :: proc(table: ^$T/Table) { - c := context - if table.allocator.procedure != nil { - c.allocator = table.allocator - } - context = c - - old_slots := table.slots - defer delete(old_slots) - - cap := max(2*len(table.slots), TABLE_SIZE_MIN) - allocate(table, cap) - - for s in old_slots { - if s.occupied { - put(table, s.key, s.value) - } - } - } - - // Polymorphic determination of a polymorphic struct - // put :: proc(table: ^$T/Table, key: T.Key, value: T.Value) { - put :: proc(table: ^Table($Key, $Value), key: Key, value: Value) { - hash := get_hash(key) // Ad-hoc method which would fail in a different scope - index := find_index(table, key, hash) - if index < 0 { - if f64(table.count) >= 0.75*f64(len(table.slots)) { - expand(table) - } - assert(table.count <= len(table.slots)) - - index = int(hash % u32(len(table.slots))) - - for table.slots[index].occupied { - if index += 1; index >= len(table.slots) { - index = 0 - } - } - - table.count += 1 - } - - slot := &table.slots[index] - slot.occupied = true - slot.hash = hash - slot.key = key - slot.value = value - } - - - // find :: proc(table: ^$T/Table, key: T.Key) -> (T.Value, bool) { - find :: proc(table: ^Table($Key, $Value), key: Key) -> (Value, bool) { - hash := get_hash(key) - index := find_index(table, key, hash) - if index < 0 { - return Value{}, false - } - return table.slots[index].value, true - } - - find_index :: proc(table: ^Table($Key, $Value), key: Key, hash: u32) -> int { - if len(table.slots) <= 0 { - return -1 - } - - index := int(hash % u32(len(table.slots))) - for table.slots[index].occupied { - if table.slots[index].hash == hash { - if table.slots[index].key == key { - return index - } - } - - if index += 1; index >= len(table.slots) { - index = 0 - } - } - - return -1 - } - - get_hash :: proc(s: string) -> u32 { // fnv32a - h: u32 = 0x811c9dc5 - for i in 0.. (res: [N]T) { - // `N` is the constant value passed - // `I` is the type of N - // `T` is the type passed - fmt.printf("Generating an array of type %v from the value %v of type %v\n", - typeid_of(type_of(res)), N, typeid_of(I)) - for i in 0.. (c: [M][P]T) { - for i in 0.. 0 { - for i := 0; i < len(threads); /**/ { - if t := threads[i]; thread.is_done(t) { - fmt.printf("Thread %d is done\n", t.user_index) - thread.destroy(t) - - ordered_remove(&threads, i) - } else { - i += 1 - } - } - } - } - - { // Thread Pool - fmt.println("\n## Thread Pool") - task_proc :: proc(t: ^thread.Task) { - index := t.user_index % len(prefix_table) - for iteration in 1..5 { - fmt.printf("Worker Task %d is on iteration %d\n", t.user_index, iteration) - fmt.printf("`%s`: iteration %d\n", prefix_table[index], iteration) - time.sleep(1 * time.Millisecond) - } - } - - pool: thread.Pool - thread.pool_init(pool=&pool, thread_count=3) - defer thread.pool_destroy(&pool) - - - for i in 0..<30 { - thread.pool_add_task(pool=&pool, procedure=task_proc, data=nil, user_index=i) - } - - thread.pool_start(&pool) - thread.pool_wait_and_process(&pool) - } -} - - -array_programming :: proc() { - fmt.println("\n# array programming") - { - a := [3]f32{1, 2, 3} - b := [3]f32{5, 6, 7} - c := a * b - d := a + b - e := 1 + (c - d) / 2 - fmt.printf("%.1f\n", e) // [0.5, 3.0, 6.5] - } - - { - a := [3]f32{1, 2, 3} - b := swizzle(a, 2, 1, 0) - assert(b == [3]f32{3, 2, 1}) - - c := swizzle(a, 0, 0) - assert(c == [2]f32{1, 1}) - assert(c == 1) - } - - { - Vector3 :: distinct [3]f32 - a := Vector3{1, 2, 3} - b := Vector3{5, 6, 7} - c := (a * b)/2 + 1 - d := c.x + c.y + c.z - fmt.printf("%.1f\n", d) // 22.0 - - cross :: proc(a, b: Vector3) -> Vector3 { - i := swizzle(a, 1, 2, 0) * swizzle(b, 2, 0, 1) - j := swizzle(a, 2, 0, 1) * swizzle(b, 1, 2, 0) - return i - j - } - - blah :: proc(a: Vector3) -> f32 { - return a.x + a.y + a.z - } - - x := cross(a, b) - fmt.println(x) - fmt.println(blah(x)) - } -} - -map_type :: proc() { - fmt.println("\n# map type") - - m := make(map[string]int) - defer delete(m) - - m["Bob"] = 2 - m["Ted"] = 5 - fmt.println(m["Bob"]) - - delete_key(&m, "Ted") - - // If an element of a key does not exist, the zero value of the - // element will be returned. To check to see if an element exists - // can be done in two ways: - elem, ok := m["Bob"] - exists := "Bob" in m - _, _ = elem, ok - _ = exists -} - -implicit_selector_expression :: proc() { - fmt.println("\n# implicit selector expression") - - Foo :: enum {A, B, C} - - f: Foo - f = Foo.A - f = .A - - BAR :: bit_set[Foo]{.B, .C} - - switch f { - case .A: - fmt.println("HITHER") - case .B: - fmt.println("NEVER") - case .C: - fmt.println("FOREVER") - } - - my_map := make(map[Foo]int) - defer delete(my_map) - - my_map[.A] = 123 - my_map[Foo.B] = 345 - - fmt.println(my_map[.A] + my_map[Foo.B] + my_map[.C]) -} - - -partial_switch :: proc() { - fmt.println("\n# partial_switch") - { // enum - Foo :: enum { - A, - B, - C, - D, - } - - f := Foo.A - switch f { - case .A: fmt.println("A") - case .B: fmt.println("B") - case .C: fmt.println("C") - case .D: fmt.println("D") - case: fmt.println("?") - } - - #partial switch f { - case .A: fmt.println("A") - case .D: fmt.println("D") - } - } - { // union - Foo :: union {int, bool} - f: Foo = 123 - switch in f { - case int: fmt.println("int") - case bool: fmt.println("bool") - case: - } - - #partial switch in f { - case bool: fmt.println("bool") - } - } -} - -cstring_example :: proc() { - fmt.println("\n# cstring_example") - - W :: "Hellope" - X :: cstring(W) - Y :: string(X) - - w := W - _ = w - x: cstring = X - y: string = Y - z := string(x) - fmt.println(x, y, z) - fmt.println(len(x), len(y), len(z)) - fmt.println(len(W), len(X), len(Y)) - // IMPORTANT NOTE for cstring variables - // len(cstring) is O(N) - // cast(string)cstring is O(N) -} - -bit_set_type :: proc() { - fmt.println("\n# bit_set type") - - { - using Day :: enum { - Sunday, - Monday, - Tuesday, - Wednesday, - Thursday, - Friday, - Saturday, - } - - Days :: distinct bit_set[Day] - WEEKEND :: Days{Sunday, Saturday} - - d: Days - d = {Sunday, Monday} - e := d + WEEKEND - e += {Monday} - fmt.println(d, e) - - ok := Saturday in e // `in` is only allowed for `map` and `bit_set` types - fmt.println(ok) - if Saturday in e { - fmt.println("Saturday in", e) - } - X :: Saturday in WEEKEND // Constant evaluation - fmt.println(X) - fmt.println("Cardinality:", card(e)) - } - { - x: bit_set['A'..'Z'] - #assert(size_of(x) == size_of(u32)) - y: bit_set[0..8; u16] - fmt.println(typeid_of(type_of(x))) // bit_set[A..Z] - fmt.println(typeid_of(type_of(y))) // bit_set[0..8; u16] - - x += {'F'}; - assert('F' in x) - x -= {'F'}; - assert('F' not_in x) - - y += {1, 4, 2} - assert(2 in y) - } - { - Letters :: bit_set['A'..'Z'] - a := Letters{'A', 'B'} - b := Letters{'A', 'B', 'C', 'D', 'F'} - c := Letters{'A', 'B'} - - assert(a <= b) // 'a' is a subset of 'b' - assert(b >= a) // 'b' is a superset of 'a' - assert(a < b) // 'a' is a strict subset of 'b' - assert(b > a) // 'b' is a strict superset of 'a' - - assert(!(a < c)) // 'a' is a not strict subset of 'c' - assert(!(c > a)) // 'c' is a not strict superset of 'a' - } -} - -deferred_procedure_associations :: proc() { - fmt.println("\n# deferred procedure associations") - - @(deferred_out=closure) - open :: proc(s: string) -> bool { - fmt.println(s) - return true - } - - closure :: proc(ok: bool) { - fmt.println("Goodbye?", ok) - } - - if open("Welcome") { - fmt.println("Something in the middle, mate.") - } -} - -reflection :: proc() { - fmt.println("\n# reflection") - - Foo :: struct { - x: int `tag1`, - y: string `json:"y_field"`, - z: bool, // no tag - } - - id := typeid_of(Foo) - names := reflect.struct_field_names(id) - types := reflect.struct_field_types(id) - tags := reflect.struct_field_tags(id) - - assert(len(names) == len(types) && len(names) == len(tags)) - - fmt.println("Foo :: struct {") - for tag, i in tags { - name, type := names[i], types[i] - if tag != "" { - fmt.printf("\t%s: %T `%s`,\n", name, type, tag) - } else { - fmt.printf("\t%s: %T,\n", name, type) - } - } - fmt.println("}") - - - for tag, i in tags { - if val, ok := reflect.struct_tag_lookup(tag, "json"); ok { - fmt.printf("json: %s -> %s\n", names[i], val) - } - } -} - -quaternions :: proc() { - // Not just an April Fool's Joke any more, but a fully working thing! - fmt.println("\n# quaternions") - - { // Quaternion operations - q := 1 + 2i + 3j + 4k - r := quaternion(5, 6, 7, 8) - t := q * r - fmt.printf("(%v) * (%v) = %v\n", q, r, t) - v := q / r - fmt.printf("(%v) / (%v) = %v\n", q, r, v) - u := q + r - fmt.printf("(%v) + (%v) = %v\n", q, r, u) - s := q - r - fmt.printf("(%v) - (%v) = %v\n", q, r, s) - } - { // The quaternion types - q128: quaternion128 // 4xf32 - q256: quaternion256 // 4xf64 - q128 = quaternion(1, 0, 0, 0) - q256 = 1 // quaternion(1, 0, 0, 0) - } - { // Built-in procedures - q := 1 + 2i + 3j + 4k - fmt.println("q =", q) - fmt.println("real(q) =", real(q)) - fmt.println("imag(q) =", imag(q)) - fmt.println("jmag(q) =", jmag(q)) - fmt.println("kmag(q) =", kmag(q)) - fmt.println("conj(q) =", conj(q)) - fmt.println("abs(q) =", abs(q)) - } - { // Conversion of a complex type to a quaternion type - c := 1 + 2i - q := quaternion256(c) - fmt.println(c) - fmt.println(q) - } - { // Memory layout of Quaternions - q := 1 + 2i + 3j + 4k - a := transmute([4]f64)q - fmt.println("Quaternion memory layout: xyzw/(ijkr)") - fmt.println(q) // 1.000+2.000i+3.000j+4.000k - fmt.println(a) // [2.000, 3.000, 4.000, 1.000] - } -} - -unroll_for_statement :: proc() { - fmt.println("\n#'#unroll for' statements") - - // '#unroll for' works the same as if the 'inline' prefix did not - // exist but these ranged loops are explicitly unrolled which can - // be very very useful for certain optimizations - - fmt.println("Ranges") - #unroll for x, i in 1..<4 { - fmt.println(x, i) - } - - fmt.println("Strings") - #unroll for r, i in "Hello, 世界" { - fmt.println(r, i) - } - - fmt.println("Arrays") - #unroll for elem, idx in ([4]int{1, 4, 9, 16}) { - fmt.println(elem, idx) - } - - - Foo_Enum :: enum { - A = 1, - B, - C = 6, - D, - } - fmt.println("Enum types") - #unroll for elem, idx in Foo_Enum { - fmt.println(elem, idx) - } -} - -where_clauses :: proc() { - fmt.println("\n#procedure 'where' clauses") - - { // Sanity checks - simple_sanity_check :: proc(x: [2]int) - where len(x) > 1, - type_of(x) == [2]int { - fmt.println(x) - } - } - { // Parametric polymorphism checks - cross_2d :: proc(a, b: $T/[2]$E) -> E - where intrinsics.type_is_numeric(E) { - return a.x*b.y - a.y*b.x - } - cross_3d :: proc(a, b: $T/[3]$E) -> T - where intrinsics.type_is_numeric(E) { - x := a.y*b.z - a.z*b.y - y := a.z*b.x - a.x*b.z - z := a.x*b.y - a.y*b.z - return T{x, y, z} - } - - a := [2]int{1, 2} - b := [2]int{5, -3} - fmt.println(cross_2d(a, b)) - - x := [3]f32{1, 4, 9} - y := [3]f32{-5, 0, 3} - fmt.println(cross_3d(x, y)) - - // Failure case - // i := [2]bool{true, false} - // j := [2]bool{false, true} - // fmt.println(cross_2d(i, j)) - - } - - { // Procedure groups usage - foo :: proc(x: [$N]int) -> bool - where N > 2 { - fmt.println(#procedure, "was called with the parameter", x) - return true - } - - bar :: proc(x: [$N]int) -> bool - where 0 < N, - N <= 2 { - fmt.println(#procedure, "was called with the parameter", x) - return false - } - - baz :: proc{foo, bar} - - x := [3]int{1, 2, 3} - y := [2]int{4, 9} - ok_x := baz(x) - ok_y := baz(y) - assert(ok_x == true) - assert(ok_y == false) - } - - { // Record types - Foo :: struct(T: typeid, N: int) - where intrinsics.type_is_integer(T), - N > 2 { - x: [N]T, - y: [N-2]T, - } - - T :: i32 - N :: 5 - f: Foo(T, N) - #assert(size_of(f) == (N+N-2)*size_of(T)) - } -} - - -when ODIN_OS == "windows" { - foreign import kernel32 "system:kernel32.lib" -} - -foreign_system :: proc() { - fmt.println("\n#foreign system") - when ODIN_OS == "windows" { - // It is sometimes necessarily to interface with foreign code, - // such as a C library. In Odin, this is achieved through the - // foreign system. You can “import” a library into the code - // using the same semantics as a normal import declaration. - - // This foreign import declaration will create a - // “foreign import name” which can then be used to associate - // entities within a foreign block. - - foreign kernel32 { - ExitProcess :: proc "stdcall" (exit_code: u32) --- - } - - // Foreign procedure declarations have the cdecl/c calling - // convention by default unless specified otherwise. Due to - // foreign procedures do not have a body declared within this - // code, you need append the --- symbol to the end to distinguish - // it as a procedure literal without a body and not a procedure type. - - // The attributes system can be used to change specific properties - // of entities declared within a block: - - @(default_calling_convention = "std") - foreign kernel32 { - @(link_name="GetLastError") get_last_error :: proc() -> i32 --- - } - - // Example using the link_prefix attribute - @(default_calling_convention = "std") - @(link_prefix = "Get") - foreign kernel32 { - LastError :: proc() -> i32 --- - } - } -} - -ranged_fields_for_array_compound_literals :: proc() { - fmt.println("\n#ranged fields for array compound literals") - { // Normal Array Literal - foo := [?]int{1, 4, 9, 16} - fmt.println(foo) - } - { // Indexed - foo := [?]int{ - 3 = 16, - 1 = 4, - 2 = 9, - 0 = 1, - } - fmt.println(foo) - } - { // Ranges - i := 2 - foo := [?]int { - 0 = 123, - 5..9 = 54, - 10..<16 = i*3 + (i-1)*2, - } - #assert(len(foo) == 16) - fmt.println(foo); // [123, 0, 0, 0, 0, 54, 54, 54, 54, 54, 8, 8, 8, 8, 8] - } - { // Slice and Dynamic Array support - i := 2 - foo_slice := []int { - 0 = 123, - 5..9 = 54, - 10..<16 = i*3 + (i-1)*2, - } - assert(len(foo_slice) == 16) - fmt.println(foo_slice); // [123, 0, 0, 0, 0, 54, 54, 54, 54, 54, 8, 8, 8, 8, 8] - - foo_dynamic_array := [dynamic]int { - 0 = 123, - 5..9 = 54, - 10..<16 = i*3 + (i-1)*2, - } - assert(len(foo_dynamic_array) == 16) - fmt.println(foo_dynamic_array); // [123, 0, 0, 0, 0, 54, 54, 54, 54, 54, 8, 8, 8, 8, 8] - } -} - -deprecated_attribute :: proc() { - @(deprecated="Use foo_v2 instead") - foo_v1 :: proc(x: int) { - fmt.println("foo_v1") - } - foo_v2 :: proc(x: int) { - fmt.println("foo_v2") - } - - // NOTE: Uncomment to see the warning messages - // foo_v1(1) -} - -range_statements_with_multiple_return_values :: proc() { - // IMPORTANT NOTE(bill, 2019-11-02): This feature is subject to be changed/removed - fmt.println("\n#range statements with multiple return values") - My_Iterator :: struct { - index: int, - data: []i32, - } - make_my_iterator :: proc(data: []i32) -> My_Iterator { - return My_Iterator{data = data} - } - my_iterator :: proc(it: ^My_Iterator) -> (val: i32, idx: int, cond: bool) { - if cond = it.index < len(it.data); cond { - val = it.data[it.index] - idx = it.index - it.index += 1 - } - return - } - - data := make([]i32, 6) - for _, i in data { - data[i] = i32(i*i) - } - - { - it := make_my_iterator(data) - for val in my_iterator(&it) { - fmt.println(val) - } - } - { - it := make_my_iterator(data) - for val, idx in my_iterator(&it) { - fmt.println(val, idx) - } - } - { - it := make_my_iterator(data) - for { - val, _, cond := my_iterator(&it) - if !cond { - break - } - fmt.println(val) - } - } -} - - -soa_struct_layout :: proc() { - // IMPORTANT NOTE(bill, 2019-11-03): This feature is subject to be changed/removed - // NOTE(bill): Most likely #soa [N]T - fmt.println("\n#SOA Struct Layout") - - { - Vector3 :: struct {x, y, z: f32} - - N :: 2 - v_aos: [N]Vector3 - v_aos[0].x = 1 - v_aos[0].y = 4 - v_aos[0].z = 9 - - fmt.println(len(v_aos)) - fmt.println(v_aos[0]) - fmt.println(v_aos[0].x) - fmt.println(&v_aos[0].x) - - v_aos[1] = {0, 3, 4} - v_aos[1].x = 2 - fmt.println(v_aos[1]) - fmt.println(v_aos) - - v_soa: #soa[N]Vector3 - - v_soa[0].x = 1 - v_soa[0].y = 4 - v_soa[0].z = 9 - - - // Same syntax as AOS and treat as if it was an array - fmt.println(len(v_soa)) - fmt.println(v_soa[0]) - fmt.println(v_soa[0].x) - fmt.println(&v_soa[0].x) - v_soa[1] = {0, 3, 4} - v_soa[1].x = 2 - fmt.println(v_soa[1]) - - // Can use SOA syntax if necessary - v_soa.x[0] = 1 - v_soa.y[0] = 4 - v_soa.z[0] = 9 - fmt.println(v_soa.x[0]) - - // Same pointer addresses with both syntaxes - assert(&v_soa[0].x == &v_soa.x[0]) - - - // Same fmt printing - fmt.println(v_aos) - fmt.println(v_soa) - } - { - // Works with arrays of length <= 4 which have the implicit fields xyzw/rgba - Vector3 :: distinct [3]f32 - - N :: 2 - v_aos: [N]Vector3 - v_aos[0].x = 1 - v_aos[0].y = 4 - v_aos[0].z = 9 - - v_soa: #soa[N]Vector3 - - v_soa[0].x = 1 - v_soa[0].y = 4 - v_soa[0].z = 9 - } - { - // SOA Slices - // Vector3 :: struct {x, y, z: f32} - Vector3 :: struct {x: i8, y: i16, z: f32} - - N :: 3 - v: #soa[N]Vector3 - v[0].x = 1 - v[0].y = 4 - v[0].z = 9 - - s: #soa[]Vector3 - s = v[:] - assert(len(s) == N) - fmt.println(s) - fmt.println(s[0].x) - - a := s[1:2] - assert(len(a) == 1) - fmt.println(a) - - d: #soa[dynamic]Vector3 - - append_soa(&d, Vector3{1, 2, 3}, Vector3{4, 5, 9}, Vector3{-4, -4, 3}) - fmt.println(d) - fmt.println(len(d)) - fmt.println(cap(d)) - fmt.println(d[:]) - } -} - -constant_literal_expressions :: proc() { - fmt.println("\n#constant literal expressions") - - Bar :: struct {x, y: f32} - Foo :: struct {a, b: int, using c: Bar} - - FOO_CONST :: Foo{b = 2, a = 1, c = {3, 4}} - - - fmt.println(FOO_CONST.a) - fmt.println(FOO_CONST.b) - fmt.println(FOO_CONST.c) - fmt.println(FOO_CONST.c.x) - fmt.println(FOO_CONST.c.y) - fmt.println(FOO_CONST.x); // using works as expected - fmt.println(FOO_CONST.y) - - fmt.println("-------") - - ARRAY_CONST :: [3]int{1 = 4, 2 = 9, 0 = 1} - - fmt.println(ARRAY_CONST[0]) - fmt.println(ARRAY_CONST[1]) - fmt.println(ARRAY_CONST[2]) - - fmt.println("-------") - - FOO_ARRAY_DEFAULTS :: [3]Foo{{}, {}, {}} - fmt.println(FOO_ARRAY_DEFAULTS[2].x) - - fmt.println("-------") - - Baz :: enum{A=5, B, C, D} - ENUM_ARRAY_CONST :: [Baz]int{.A .. .C = 1, .D = 16} - - fmt.println(ENUM_ARRAY_CONST[.A]) - fmt.println(ENUM_ARRAY_CONST[.B]) - fmt.println(ENUM_ARRAY_CONST[.C]) - fmt.println(ENUM_ARRAY_CONST[.D]) - - fmt.println("-------") - - Partial_Baz :: enum{A=5, B, C, D=16} - #assert(len(Partial_Baz) < len(#partial [Partial_Baz]int)) - PARTIAL_ENUM_ARRAY_CONST :: #partial [Partial_Baz]int{.A .. .C = 1, .D = 16} - - fmt.println(PARTIAL_ENUM_ARRAY_CONST[.A]) - fmt.println(PARTIAL_ENUM_ARRAY_CONST[.B]) - fmt.println(PARTIAL_ENUM_ARRAY_CONST[.C]) - fmt.println(PARTIAL_ENUM_ARRAY_CONST[.D]) - - fmt.println("-------") - - - STRING_CONST :: "Hellope!" - - fmt.println(STRING_CONST[0]) - fmt.println(STRING_CONST[2]) - fmt.println(STRING_CONST[3]) - - fmt.println(STRING_CONST[0:5]) - fmt.println(STRING_CONST[3:][:4]) -} - -union_maybe :: proc() { - fmt.println("\n#union #maybe") - - Maybe :: union(T: typeid) #maybe {T} - - i: Maybe(u8) - p: Maybe(^u8); // No tag is stored for pointers, nil is the sentinel value - - #assert(size_of(i) == size_of(u8) + size_of(u8)) - #assert(size_of(p) == size_of(^u8)) - - i = 123 - x := i.? - y, y_ok := p.? - p = &x - z, z_ok := p.? - - fmt.println(i, p) - fmt.println(x, &x) - fmt.println(y, y_ok) - fmt.println(z, z_ok) -} - -dummy_procedure :: proc() { - fmt.println("dummy_procedure") -} - -explicit_context_definition :: proc "c" () { - // Try commenting the following statement out below - context = runtime.default_context() - - fmt.println("\n#explicit context definition") - dummy_procedure() -} - -relative_data_types :: proc() { - fmt.println("\n#relative data types") - - x: int = 123 - ptr: #relative(i16) ^int - ptr = &x - fmt.println(ptr^) - - arr := [3]int{1, 2, 3} - s := arr[:] - rel_slice: #relative(i16) []int - rel_slice = s - fmt.println(rel_slice) - fmt.println(rel_slice[:]) - fmt.println(rel_slice[1]) -} - -main :: proc() { - when true { - the_basics() - control_flow() - named_proc_return_parameters() - explicit_procedure_overloading() - struct_type() - union_type() - using_statement() - implicit_context_system() - parametric_polymorphism() - array_programming() - map_type() - implicit_selector_expression() - partial_switch() - cstring_example() - bit_set_type() - deferred_procedure_associations() - reflection() - quaternions() - unroll_for_statement() - where_clauses() - foreign_system() - ranged_fields_for_array_compound_literals() - deprecated_attribute() - range_statements_with_multiple_return_values() - threading_example() - soa_struct_layout() - constant_literal_expressions() - union_maybe() - explicit_context_definition() - relative_data_types() - } -}