diff --git a/vendor/box2d/math_functions.odin b/vendor/box2d/math_functions.odin index 082eccca2..2294a515c 100644 --- a/vendor/box2d/math_functions.odin +++ b/vendor/box2d/math_functions.odin @@ -28,155 +28,184 @@ Mat22_zero :: Mat22{0, 0, 0, 0} // @return the minimum of two floats +@(deprecated="Prefer the built-in 'min(a, b)'", require_results) MinFloat :: proc "c" (a, b: f32) -> f32 { return min(a, b) } // @return the maximum of two floats +@(deprecated="Prefer the built-in 'max(a, b)'", require_results) MaxFloat :: proc "c" (a, b: f32) -> f32 { return max(a, b) } // @return the absolute value of a float +@(deprecated="Prefer the built-in 'abs(a)'", require_results) AbsFloat :: proc "c" (a: f32) -> f32 { return abs(a) } // @return a f32 clamped between a lower and upper bound +@(deprecated="Prefer the built-in 'clamp(a, lower, upper)'", require_results) ClampFloat :: proc "c" (a, lower, upper: f32) -> f32 { return clamp(a, lower, upper) } // @return the minimum of two integers +@(deprecated="Prefer the built-in 'min(a, b)'", require_results) MinInt :: proc "c" (a, b: c.int) -> c.int { return min(a, b) } // @return the maximum of two integers +@(deprecated="Prefer the built-in 'max(a, b)'", require_results) MaxInt :: proc "c" (a, b: c.int) -> c.int { return max(a, b) } // @return the absolute value of an integer +@(deprecated="Prefer the built-in 'abs(a)'", require_results) AbsInt :: proc "c" (a: c.int) -> c.int { return abs(a) } // @return an integer clamped between a lower and upper bound +@(deprecated="Prefer the built-in 'clamp(a, lower, upper)'", require_results) ClampInt :: proc "c" (a, lower, upper: c.int) -> c.int { return clamp(a, lower, upper) } // Vector dot product +@(require_results) Dot :: proc "c" (a, b: Vec2) -> f32 { return a.x * b.x + a.y * b.y } // Vector cross product. In 2D this yields a scalar. +@(require_results) Cross :: proc "c" (a, b: Vec2) -> f32 { return a.x * b.y - a.y * b.x } // Perform the cross product on a vector and a scalar. In 2D this produces a vector. +@(require_results) CrossVS :: proc "c" (v: Vec2, s: f32) -> Vec2 { return {s * v.y, -s * v.x} } // Perform the cross product on a scalar and a vector. In 2D this produces a vector. +@(require_results) CrossSV :: proc "c" (s: f32, v: Vec2) -> Vec2 { return {-s * v.y, s * v.x} } // Get a left pointing perpendicular vector. Equivalent to b2CrossSV(1, v) +@(require_results) LeftPerp :: proc "c" (v: Vec2) -> Vec2 { return {-v.y, v.x} } // Get a right pointing perpendicular vector. Equivalent to b2CrossVS(v, 1) +@(require_results) RightPerp :: proc "c" (v: Vec2) -> Vec2 { return {v.y, -v.x} } // Vector addition +@(deprecated="Prefer 'a + b'", require_results) Add :: proc "c" (a, b: Vec2) -> Vec2 { return a + b } // Vector subtraction +@(deprecated="Prefer 'a - b'", require_results) Sub :: proc "c" (a, b: Vec2) -> Vec2 { return a - b } // Vector negation +@(deprecated="Prefer '-a'", require_results) Neg :: proc "c" (a: Vec2) -> Vec2 { return -a } // Vector linear interpolation // https://fgiesen.wordpress.com/2012/08/15/linear-interpolation-past-present-and-future/ +@(require_results) Lerp :: proc "c" (a, b: Vec2, t: f32) -> Vec2 { return {(1 - t) * a.x + t * b.x, (1 - t) * a.y + t * b.y} } // Component-wise multiplication +@(deprecated="Prefer 'a * b'", require_results) Mul :: proc "c" (a, b: Vec2) -> Vec2 { return a * b } // Multiply a scalar and vector +@(deprecated="Prefer 's * v'", require_results) MulSV :: proc "c" (s: f32, v: Vec2) -> Vec2 { return s * v } // a + s * b +@(deprecated="Prefer 'a + s * b'", require_results) MulAdd :: proc "c" (a: Vec2, s: f32, b: Vec2) -> Vec2 { return a + s * b } // a - s * b +@(deprecated="Prefer 'a - s * b'", require_results) MulSub :: proc "c" (a: Vec2, s: f32, b: Vec2) -> Vec2 { return a - s * b } // Component-wise absolute vector +@(require_results) Abs :: proc "c" (a: Vec2) -> (b: Vec2) { - b.x = AbsFloat(a.x) - b.y = AbsFloat(a.y) + b.x = abs(a.x) + b.y = abs(a.y) return } // Component-wise minimum vector +@(require_results) Min :: proc "c" (a, b: Vec2) -> (c: Vec2) { - c.x = MinFloat(a.x, b.x) - c.y = MinFloat(a.y, b.y) + c.x = min(a.x, b.x) + c.y = min(a.y, b.y) return } // Component-wise maximum vector +@(require_results) Max :: proc "c" (a, b: Vec2) -> (c: Vec2) { - c.x = MaxFloat(a.x, b.x) - c.y = MaxFloat(a.y, b.y) + c.x = max(a.x, b.x) + c.y = max(a.y, b.y) return } // Component-wise clamp vector v into the range [a, b] +@(require_results) Clamp :: proc "c" (v: Vec2, a, b: Vec2) -> (c: Vec2) { - c.x = ClampFloat(v.x, a.x, b.x) - c.y = ClampFloat(v.y, a.y, b.y) + c.x = clamp(v.x, a.x, b.x) + c.y = clamp(v.y, a.y, b.y) return } // Get the length of this vector (the norm) +@(require_results) Length :: proc "c" (v: Vec2) -> f32 { return math.sqrt(v.x * v.x + v.y * v.y) } // Get the length squared of this vector +@(require_results) LengthSquared :: proc "c" (v: Vec2) -> f32 { return v.x * v.x + v.y * v.y } // Get the distance between two points +@(require_results) Distance :: proc "c" (a, b: Vec2) -> f32 { dx := b.x - a.x dy := b.y - a.y @@ -184,18 +213,21 @@ Distance :: proc "c" (a, b: Vec2) -> f32 { } // Get the distance squared between points +@(require_results) DistanceSquared :: proc "c" (a, b: Vec2) -> f32 { c := Vec2{b.x - a.x, b.y - a.y} return c.x * c.x + c.y * c.y } // Make a rotation using an angle in radians +@(require_results) MakeRot :: proc "c" (angle: f32) -> Rot { // todo determinism return {math.cos(angle), math.sin(angle)} } // Normalize rotation +@(require_results) NormalizeRot :: proc "c" (q: Rot) -> Rot { mag := math.sqrt(q.s * q.s + q.c * q.c) invMag := f32(mag > 0.0 ? 1.0 / mag : 0.0) @@ -203,6 +235,7 @@ NormalizeRot :: proc "c" (q: Rot) -> Rot { } // Is this rotation normalized? +@(require_results) IsNormalized :: proc "c" (q: Rot) -> bool { // larger tolerance due to failure on mingw 32-bit qq := q.s * q.s + q.c * q.c @@ -211,6 +244,7 @@ IsNormalized :: proc "c" (q: Rot) -> bool { // Normalized linear interpolation // https://fgiesen.wordpress.com/2012/08/15/linear-interpolation-past-present-and-future/ +@(require_results) NLerp :: proc "c" (q1: Rot, q2: Rot, t: f32) -> Rot { omt := 1 - t return NormalizeRot({ @@ -222,6 +256,7 @@ NLerp :: proc "c" (q1: Rot, q2: Rot, t: f32) -> Rot { // Integration rotation from angular velocity // @param q1 initial rotation // @param deltaAngle the angular displacement in radians +@(require_results) IntegrateRotation :: proc "c" (q1: Rot, deltaAngle: f32) -> Rot { // dc/dt = -omega * sin(t) // ds/dt = omega * cos(t) @@ -237,6 +272,7 @@ IntegrateRotation :: proc "c" (q1: Rot, deltaAngle: f32) -> Rot { // @param q1 initial rotation // @param q2 final rotation // @param inv_h inverse time step +@(require_results) ComputeAngularVelocity :: proc "c" (q1: Rot, q2: Rot, inv_h: f32) -> f32 { // ds/dt = omega * cos(t) // dc/dt = -omega * sin(t) @@ -253,22 +289,26 @@ ComputeAngularVelocity :: proc "c" (q1: Rot, q2: Rot, inv_h: f32) -> f32 { } // Get the angle in radians in the range [-pi, pi] +@(require_results) Rot_GetAngle :: proc "c" (q: Rot) -> f32 { // todo determinism return math.atan2(q.s, q.c) } // Get the x-axis +@(require_results) Rot_GetXAxis :: proc "c" (q: Rot) -> Vec2 { return {q.c, q.s} } // Get the y-axis +@(require_results) Rot_GetYAxis :: proc "c" (q: Rot) -> Vec2 { return {-q.s, q.c} } // Multiply two rotations: q * r +@(require_results) MulRot :: proc "c" (q, r: Rot) -> (qr: Rot) { // [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc] // [qs qc] [rs rc] [qs*rc+qc*rs -qs*rs+qc*rc] @@ -280,6 +320,7 @@ MulRot :: proc "c" (q, r: Rot) -> (qr: Rot) { } // Transpose multiply two rotations: qT * r +@(require_results) InvMulRot :: proc "c" (q, r: Rot) -> (qr: Rot) { // [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc] // [-qs qc] [rs rc] [-qs*rc+qc*rs qs*rs+qc*rc] @@ -291,6 +332,7 @@ InvMulRot :: proc "c" (q, r: Rot) -> (qr: Rot) { } // relative angle between b and a (rot_b * inv(rot_a)) +@(require_results) RelativeAngle :: proc "c" (b, a: Rot) -> f32 { // sin(b - a) = bs * ac - bc * as // cos(b - a) = bc * ac + bs * as @@ -300,6 +342,7 @@ RelativeAngle :: proc "c" (b, a: Rot) -> f32 { } // Convert an angle in the range [-2*pi, 2*pi] into the range [-pi, pi] +@(require_results) UnwindAngle :: proc "c" (angle: f32) -> f32 { if angle < -pi { return angle + 2.0 * pi @@ -310,16 +353,19 @@ UnwindAngle :: proc "c" (angle: f32) -> f32 { } // Rotate a vector +@(require_results) RotateVector :: proc "c" (q: Rot, v: Vec2) -> Vec2 { return {q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y} } // Inverse rotate a vector +@(require_results) InvRotateVector :: proc "c" (q: Rot, v: Vec2) -> Vec2 { return {q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y} } // Transform a point (e.g. local space to world space) +@(require_results) TransformPoint :: proc "c" (t: Transform, p: Vec2) -> Vec2 { x := (t.q.c * p.x - t.q.s * p.y) + t.p.x y := (t.q.s * p.x + t.q.c * p.y) + t.p.y @@ -327,6 +373,7 @@ TransformPoint :: proc "c" (t: Transform, p: Vec2) -> Vec2 { } // Inverse transform a point (e.g. world space to local space) +@(require_results) InvTransformPoint :: proc "c" (t: Transform, p: Vec2) -> Vec2 { vx := p.x - t.p.x vy := p.y - t.p.y @@ -335,6 +382,7 @@ InvTransformPoint :: proc "c" (t: Transform, p: Vec2) -> Vec2 { // v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p // = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p +@(require_results) MulTransforms :: proc "c" (A, B: Transform) -> (C: Transform) { C.q = MulRot(A.q, B.q) C.p = RotateVector(A.q, B.p) + A.p @@ -343,6 +391,7 @@ MulTransforms :: proc "c" (A, B: Transform) -> (C: Transform) { // v2 = A.q' * (B.q * v1 + B.p - A.p) // = A.q' * B.q * v1 + A.q' * (B.p - A.p) +@(require_results) InvMulTransforms :: proc "c" (A, B: Transform) -> (C: Transform) { C.q = InvMulRot(A.q, B.q) C.p = InvRotateVector(A.q, B.p-A.p) @@ -350,11 +399,13 @@ InvMulTransforms :: proc "c" (A, B: Transform) -> (C: Transform) { } // Multiply a 2-by-2 matrix times a 2D vector +@(deprecated="Prefer 'A * v'", require_results) MulMV :: proc "c" (A: Mat22, v: Vec2) -> Vec2 { return A * v } // Get the inverse of a 2-by-2 matrix +@(require_results) GetInverse22 :: proc "c" (A: Mat22) -> Mat22 { a := A[0, 0] b := A[0, 1] @@ -373,6 +424,7 @@ GetInverse22 :: proc "c" (A: Mat22) -> Mat22 { // Solve A * x = b, where b is a column vector. This is more efficient // than computing the inverse in one-shot cases. +@(require_results) Solve22 :: proc "c" (A: Mat22, b: Vec2) -> Vec2 { a11 := A[0, 0] a12 := A[0, 1] @@ -386,6 +438,7 @@ Solve22 :: proc "c" (A: Mat22, b: Vec2) -> Vec2 { } // Does a fully contain b +@(require_results) AABB_Contains :: proc "c" (a, b: AABB) -> bool { (a.lowerBound.x <= b.lowerBound.x) or_return (a.lowerBound.y <= b.lowerBound.y) or_return @@ -395,42 +448,49 @@ AABB_Contains :: proc "c" (a, b: AABB) -> bool { } // Get the center of the AABB. +@(require_results) AABB_Center :: proc "c" (a: AABB) -> Vec2 { return {0.5 * (a.lowerBound.x + a.upperBound.x), 0.5 * (a.lowerBound.y + a.upperBound.y)} } // Get the extents of the AABB (half-widths). +@(require_results) AABB_Extents :: proc "c" (a: AABB) -> Vec2 { return {0.5 * (a.upperBound.x - a.lowerBound.x), 0.5 * (a.upperBound.y - a.lowerBound.y)} } // Union of two AABBs +@(require_results) AABB_Union :: proc "c" (a, b: AABB) -> (c: AABB) { - c.lowerBound.x = MinFloat(a.lowerBound.x, b.lowerBound.x) - c.lowerBound.y = MinFloat(a.lowerBound.y, b.lowerBound.y) - c.upperBound.x = MaxFloat(a.upperBound.x, b.upperBound.x) - c.upperBound.y = MaxFloat(a.upperBound.y, b.upperBound.y) + c.lowerBound.x = min(a.lowerBound.x, b.lowerBound.x) + c.lowerBound.y = min(a.lowerBound.y, b.lowerBound.y) + c.upperBound.x = max(a.upperBound.x, b.upperBound.x) + c.upperBound.y = max(a.upperBound.y, b.upperBound.y) return } +@(require_results) Float_IsValid :: proc "c" (a: f32) -> bool { math.is_nan(a) or_return math.is_inf(a) or_return return true } +@(require_results) Vec2_IsValid :: proc "c" (v: Vec2) -> bool { (math.is_nan(v.x) || math.is_nan(v.y)) or_return (math.is_inf(v.x) || math.is_inf(v.y)) or_return return true } +@(require_results) Rot_IsValid :: proc "c" (q: Rot) -> bool { (math.is_nan(q.s) || math.is_nan(q.c)) or_return (math.is_inf(q.s) || math.is_inf(q.c)) or_return return IsNormalized(q) } +@(require_results) Normalize :: proc "c" (v: Vec2) -> Vec2 { length := Length(v) if length < 1e-23 { @@ -440,6 +500,7 @@ Normalize :: proc "c" (v: Vec2) -> Vec2 { return invLength * v } +@(require_results) NormalizeChecked :: proc "odin" (v: Vec2) -> Vec2 { length := Length(v) if length < 1e-23 { @@ -449,6 +510,7 @@ NormalizeChecked :: proc "odin" (v: Vec2) -> Vec2 { return invLength * v } +@(require_results) GetLengthAndNormalize :: proc "c" (v: Vec2) -> (length: f32, vn: Vec2) { length = Length(v) if length < 1e-23 {