/* `Base32` encoding and decoding, as specified in [[ RFC 4648; https://www.rfc-editor.org/rfc/rfc4648.html ]]. A secondary param can be used to supply a custom alphabet to `encode` and a matching decoding table to `decode`. If none is supplied it just uses the standard Base32 alphabet. In case your specific version does not use padding, you may truncate it from the encoded output. Error represents errors that can occur during base32 decoding operations. As per RFC 4648: - Section 3.3: Invalid character handling - Section 3.2: Padding requirements - Section 6: Base32 encoding specifics (including block size requirements) */ package encoding_base32 Error :: enum { None, Invalid_Character, // Input contains characters outside the specified alphabet Invalid_Length, // Input length is not valid for base32 (must be a multiple of 8 with proper padding) Malformed_Input, // Input has improper structure (wrong padding position or incomplete groups) } Validate_Proc :: #type proc(c: byte) -> bool @private _validate_default :: proc(c: byte) -> bool { return (c >= 'A' && c <= 'Z') || (c >= '2' && c <= '7') } @(rodata) ENC_TABLE := [32]byte { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '2', '3', '4', '5', '6', '7', } PADDING :: '=' @(rodata) DEC_TABLE := [256]u8 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, } encode :: proc(data: []byte, ENC_TBL := ENC_TABLE, allocator := context.allocator) -> string { out_length := (len(data) + 4) / 5 * 8 out := make([]byte, out_length, allocator) _encode(out, data, ENC_TBL) return string(out[:]) } @private _encode :: proc(out, data: []byte, ENC_TBL := ENC_TABLE, allocator := context.allocator) { out := out data := data for len(data) > 0 { carry: byte switch len(data) { case: out[7] = ENC_TBL[data[4] & 0x1f] carry = data[4] >> 5 fallthrough case 4: out[6] = ENC_TBL[carry | (data[3] << 3) & 0x1f] out[5] = ENC_TBL[(data[3] >> 2) & 0x1f] carry = data[3] >> 7 fallthrough case 3: out[4] = ENC_TBL[carry | (data[2] << 1) & 0x1f] carry = (data[2] >> 4) & 0x1f fallthrough case 2: out[3] = ENC_TBL[carry | (data[1] << 4) & 0x1f] out[2] = ENC_TBL[(data[1] >> 1) & 0x1f] carry = (data[1] >> 6) & 0x1f fallthrough case 1: out[1] = ENC_TBL[carry | (data[0] << 2) & 0x1f] out[0] = ENC_TBL[data[0] >> 3] } if len(data) < 5 { out[7] = byte(PADDING) if len(data) < 4 { out[6] = byte(PADDING) out[5] = byte(PADDING) if len(data) < 3 { out[4] = byte(PADDING) if len(data) < 2 { out[3] = byte(PADDING) out[2] = byte(PADDING) } } } break } data = data[5:] out = out[8:] } } @(optimization_mode="favor_size") decode :: proc( data: string, DEC_TBL := DEC_TABLE, validate: Validate_Proc = _validate_default, allocator := context.allocator) -> (out: []byte, err: Error) { if len(data) == 0 { return nil, .None } // Check minimum length requirement first if len(data) < 2 { return nil, .Invalid_Length } // Validate characters using provided validation function for i := 0; i < len(data); i += 1 { c := data[i] if c == byte(PADDING) { break } if !validate(c) { return nil, .Invalid_Character } } // Validate padding and length data_len := len(data) padding_count := 0 for i := data_len - 1; i >= 0; i -= 1 { if data[i] != byte(PADDING) { break } padding_count += 1 } // Verify no padding in the middle for i := 0; i < data_len - padding_count; i += 1 { if data[i] == byte(PADDING) { return nil, .Malformed_Input } } // Check for proper padding and length combinations if padding_count > 0 { content_len := data_len - padding_count mod8 := content_len % 8 required_padding: int switch mod8 { case 2: required_padding = 6 // 2 chars need 6 padding chars case 4: required_padding = 4 // 4 chars need 4 padding chars case 5: required_padding = 3 // 5 chars need 3 padding chars case 7: required_padding = 1 // 7 chars need 1 padding char case: required_padding = 0 } if required_padding > 0 { if padding_count != required_padding { return nil, .Malformed_Input } } else if mod8 != 0 { return nil, .Malformed_Input } } else { // No padding - must be multiple of 8 if data_len % 8 != 0 { return nil, .Malformed_Input } } // Calculate decoded length: 5 bytes for every 8 input chars input_chars := data_len - padding_count out_len := input_chars * 5 / 8 out = make([]byte, out_len, allocator) defer if err != .None { delete(out) } // Process input in 8-byte blocks outi := 0 for i := 0; i < input_chars; i += 8 { buf: [8]byte block_size := min(8, input_chars - i) // Decode block for j := 0; j < block_size; j += 1 { buf[j] = DEC_TBL[data[i + j]] } // Convert to output bytes based on block size bytes_to_write := block_size * 5 / 8 switch block_size { case 8: out[outi + 4] = (buf[6] << 5) | buf[7] fallthrough case 7: out[outi + 3] = (buf[4] << 7) | (buf[5] << 2) | (buf[6] >> 3) fallthrough case 5: out[outi + 2] = (buf[3] << 4) | (buf[4] >> 1) fallthrough case 4: out[outi + 1] = (buf[1] << 6) | (buf[2] << 1) | (buf[3] >> 4) fallthrough case 2: out[outi] = (buf[0] << 3) | (buf[1] >> 2) } outi += bytes_to_write } return }