struct BigInt { union { u64 word; u64 *words; } d; i32 len; b32 neg; }; BigInt const BIG_INT_ZERO = {{0}, 0, false}; BigInt const BIG_INT_ONE = {{1}, 1, false}; BigInt const BIG_INT_NEG_ONE = {{1}, 1, true}; gb_global Arena global_big_int_arena = {0}; #if defined(GB_COMPILER_MSVC) && defined(GB_ARCH_64_BIT) // URL(bill): https://stackoverflow.com/questions/8453146/128-bit-division-intrinsic-in-visual-c/8456388#8456388 u8 udiv128_data[] = { 0x48, 0x89, 0xD0, // mov rax,rdx 0x48, 0x89, 0xCA, // mov rdx,rcx 0x49, 0xF7, 0xF0, // div r8 0x49, 0x89, 0x11, // mov [r9],rdx 0xC3 // ret }; u64 (__fastcall *unsafe_udiv128)(u64 numhi, u64 numlo, u64 den, u64* rem) = (u64 (__fastcall *)(u64, u64, u64, u64*))&udiv128_data[0]; #endif void global_big_int_init(void) { arena_init(&global_big_int_arena, heap_allocator()); #if defined(GB_COMPILER_MSVC) && defined(GB_ARCH_64_BIT) DWORD dummy; VirtualProtect(udiv128_data, sizeof(udiv128_data), PAGE_EXECUTE_READWRITE, &dummy); #endif } // IMPORTANT NOTE LEAK(bill): This entire BigInt library leaks memory like there is no tomorrow // However, this isn't really a problem as the vast majority of BigInt operations will not use // more than 1 word. // I could track how much this does leaks because I use an arena_allocator but I doubt I will require // it any time soon gb_inline gbAllocator big_int_allocator(void) { return arena_allocator(&global_big_int_arena); } void big_int_alloc(BigInt *dst, isize word_len, isize word_cap) { GB_ASSERT_MSG(word_len <= word_cap, "%td %td", word_len, word_cap); if (word_cap < dst->len) { dst->len = cast(i32)word_len; } else { dst->len = cast(i32)word_len; dst->d.words = gb_alloc_array(big_int_allocator(), u64, word_cap); } } void big_int_from_u64(BigInt *dst, u64 x); void big_int_from_i64(BigInt *dst, i64 x); void big_int_init (BigInt *dst, BigInt const *src); void big_int_from_string(BigInt *dst, String const &s); void big_int_dealloc(BigInt *dst) { if (dst->len > 1) { gb_free(big_int_allocator(), dst->d.words); } gb_zero_item(dst); } BigInt big_int_make(BigInt const *b, bool abs=false); BigInt big_int_make_abs(BigInt const *b); BigInt big_int_make_u64(u64 x); BigInt big_int_make_i64(i64 x); u64 big_int_to_u64 (BigInt const *x); i64 big_int_to_i64 (BigInt const *x); f64 big_int_to_f64 (BigInt const *x); String big_int_to_string(gbAllocator allocator, BigInt const *x, u64 base = 10); gb_inline u64 const *big_int_ptr(BigInt const *b) { if (b->len <= 1) { return &b->d.word; } return b->d.words; } gb_inline u64 *big_int_ptr(BigInt *b) { if (b->len <= 1) { return &b->d.word; } return b->d.words; } void big_int_add (BigInt *dst, BigInt const *x, BigInt const *y); void big_int_sub (BigInt *dst, BigInt const *x, BigInt const *y); void big_int_shl (BigInt *dst, BigInt const *x, BigInt const *y); void big_int_shr (BigInt *dst, BigInt const *x, BigInt const *y); void big_int_mul (BigInt *dst, BigInt const *x, BigInt const *y); void big_int_mul_u64(BigInt *dst, BigInt const *x, u64 y); void big_int_quo_rem(BigInt const *x, BigInt const *y, BigInt *q, BigInt *r); void big_int_quo (BigInt *z, BigInt const *x, BigInt const *y); void big_int_rem (BigInt *z, BigInt const *x, BigInt const *y); void big_int_euclidean_div(BigInt *z, BigInt const *x, BigInt const *y); void big_int_euclidean_mod(BigInt *z, BigInt const *x, BigInt const *y); void big_int_and (BigInt *dst, BigInt const *x, BigInt const *y); void big_int_and_not(BigInt *dst, BigInt const *x, BigInt const *y); void big_int_xor (BigInt *dst, BigInt const *x, BigInt const *y); void big_int_or (BigInt *dst, BigInt const *x, BigInt const *y); void big_int_not (BigInt *dst, BigInt const *x, u64 bit_count, bool is_signed); void big_int_add_eq(BigInt *dst, BigInt const *x); void big_int_sub_eq(BigInt *dst, BigInt const *x); void big_int_shl_eq(BigInt *dst, BigInt const *x); void big_int_shr_eq(BigInt *dst, BigInt const *x); void big_int_mul_eq(BigInt *dst, BigInt const *x); void big_int_quo_eq(BigInt *dst, BigInt const *x); void big_int_rem_eq(BigInt *dst, BigInt const *x); void big_int_add_eq(BigInt *dst, BigInt const *x) { BigInt res = {}; big_int_init(&res, dst); big_int_add(dst, &res, x); } void big_int_sub_eq(BigInt *dst, BigInt const *x) { BigInt res = {}; big_int_init(&res, dst); big_int_sub(dst, &res, x); } void big_int_shl_eq(BigInt *dst, BigInt const *x) { BigInt res = {}; big_int_init(&res, dst); big_int_shl(dst, &res, x); } void big_int_shr_eq(BigInt *dst, BigInt const *x) { BigInt res = {}; big_int_init(&res, dst); big_int_shr(dst, &res, x); } void big_int_mul_eq(BigInt *dst, BigInt const *x) { BigInt res = {}; big_int_init(&res, dst); big_int_mul(dst, &res, x); } void big_int_quo_eq(BigInt *dst, BigInt const *x) { BigInt res = {}; big_int_init(&res, dst); big_int_quo(dst, &res, x); } void big_int_rem_eq(BigInt *dst, BigInt const *x) { BigInt res = {}; big_int_init(&res, dst); big_int_rem(dst, &res, x); } void big_int_normalize(BigInt *dst) { if (dst->len == 1 && dst->d.word == 0) { dst->len = 0; return; } u64 const *words = big_int_ptr(dst); i32 count_minus_one = -1; for (i32 i = 0; i < dst->len; i++) { u64 word = words[i]; if (word != 0) { count_minus_one = i; } } if (count_minus_one < 0) { dst->neg = false; if (words[0] == 0) { dst->len = 0; return; } } dst->len = count_minus_one+1; if (count_minus_one == 0) { dst->d.word = words[0]; } } i64 big_int_sign(BigInt const *x) { if (x->len == 0) { return 0; } return x->neg ? -1 : +1; } void big_int_from_u64(BigInt *dst, u64 x) { if (x == 0) { dst->len = 0; dst->neg = false; } else { dst->len = 1; dst->d.word = x; dst->neg = false; } } void big_int_from_i64(BigInt *dst, i64 x) { if (x >= 0) { big_int_from_u64(dst, cast(u64)x); return; } else { dst->len = 1; dst->d.word = (cast(u64)(-(x+1ll))) + 1ull; dst->neg = true; } } void big_int_init(BigInt *dst, BigInt const *src) { if (dst == src) { return; } if (src->len == 0) { big_int_from_u64(dst, 0); return; } else if (src->len == 1) { dst->len = 1; dst->d.word = src->d.word; dst->neg = src->neg; return; } dst->neg = src->neg; big_int_alloc(dst, src->len, src->len); u64 const *s = big_int_ptr(src); gb_memmove(dst->d.words, s, gb_size_of(u64)*dst->len); big_int_normalize(dst); } BigInt big_int_make(BigInt const *b, bool abs) { BigInt i = {}; big_int_init(&i, b); if (abs) i.neg = false; return i; } BigInt big_int_make_abs(BigInt const *b) { return big_int_make(b, true); } BigInt big_int_alias_abs(BigInt const *b) { BigInt x = *b; x.neg = false; return x; } BigInt big_int_make_u64(u64 x) { BigInt i = {}; big_int_from_u64(&i, x); return i; } BigInt big_int_make_i64(i64 x) { BigInt i = {}; big_int_from_i64(&i, x); return i; } void big_int_from_string(BigInt *dst, String const &s) { u64 base = 10; bool has_prefix = false; if (s.len > 2 && s[0] == '0') { switch (s[1]) { case 'b': base = 2; has_prefix = true; break; case 'o': base = 8; has_prefix = true; break; case 'd': base = 10; has_prefix = true; break; case 'z': base = 12; has_prefix = true; break; case 'x': base = 16; has_prefix = true; break; case 'h': base = 16; has_prefix = true; break; } } u8 *text = s.text; isize len = s.len; if (has_prefix) { text += 2; len -= 2; } BigInt b = {}; big_int_from_u64(&b, base); big_int_init(dst, &BIG_INT_ZERO); for (isize i = 0; i < len; i++) { Rune r = cast(Rune)text[i]; if (r == '_') { continue; } u64 v = u64_digit_value(r); if (v >= base) { break; } BigInt val = big_int_make_u64(v); big_int_mul_eq(dst, &b); big_int_add_eq(dst, &val); } big_int_normalize(dst); } u64 big_int_to_u64(BigInt const *x) { GB_ASSERT(!x->neg); switch (x->len) { case 0: return 0; case 1: return x->d.word; } GB_PANIC("BigInt too big for u64"); return 0; } i64 big_int_to_i64(BigInt const *x) { switch (x->len) { case 0: return 0; case 1: if (x->neg) { if (x->d.word <= 9223372036854775808ull) { // 2^63 - 1 return (-cast(i64)(x->d.word-1ull)) - 1ll; } else { GB_PANIC("BigInt too big for i64"); } } else { return cast(i64)x->d.word; } break; } GB_PANIC("BigInt too big for i64"); return 0; } f64 big_int_to_f64(BigInt const *x) { if (x->neg) { i64 i = big_int_to_i64(x); return cast(f64)i; } u64 u = big_int_to_u64(x); return cast(f64)u; } bool bi__alias(BigInt const *dst, BigInt const *src) { if (dst == src) { return true; } if (dst->len > 1 && src->len > 1) { return dst->d.words == src->d.words; } return false; } void big_int_neg(BigInt *dst, BigInt const *x) { big_int_init(dst, x); dst->neg = !dst->neg; big_int_normalize(dst); } int big_int_cmp(BigInt const *x, BigInt const *y) { if (x == y) { return 0; } else if (x->neg && !y->neg) { return -1; } else if (!x->neg && y->neg) { return +1; } else if (x->len > y->len) { return x->neg ? -1 : +1; } else if (y->len > x->len) { return x->neg ? +1 : -1; } else if (x->len == 0) { return 0; } u64 const *xd = big_int_ptr(x); u64 const *yd = big_int_ptr(y); for (i32 i = x->len; i >= 0; i--) { u64 a = xd[i]; u64 b = yd[i]; if (a > b) { return x->neg ? -1 : +1; } if (a < b) { return x->neg ? +1 : -1; } } return 0; } int big_int_cmp_zero(BigInt const *x) { if (x->len == 0) { return 0; } return x->neg ? -1 : +1; } bool big_int_is_zero(BigInt const *x) { if (x->len == 0) { return true; } return false; } void big_int_add(BigInt *dst, BigInt const *x, BigInt const *y) { if (x->len == 0) { big_int_init(dst, y); return; } if (y->len == 0) { big_int_init(dst, x); return; } if (x->neg == y->neg) { dst->neg = x->neg; u64 const *x_words = big_int_ptr(x); u64 const *y_words = big_int_ptr(y); u64 overflow = cast(u64)add_overflow_u64(x_words[0], y_words[0], &dst->d.word); if (overflow == 0 && x->len == 1 && y->len == 1) { dst->len = 1; big_int_normalize(dst); return; } u64 first_word = dst->d.word; big_int_alloc(dst, 0, gb_max(x->len, y->len)+1); dst->d.words[0] = first_word; i32 i = 1; for (;;) { u64 v = overflow; overflow = 0; bool found_word = false; if (i < x->len) { found_word = true; overflow += add_overflow_u64(v, x_words[i], &v); } if (i < y->len) { found_word = true; overflow += add_overflow_u64(v, y_words[i], &v); } dst->d.words[i] = v; i += 1; if (!found_word) { dst->len = i; big_int_normalize(dst); return; } } } else { BigInt const *pos = nullptr; BigInt const *neg = nullptr; if (x->neg) { neg = x; pos = y; } else { GB_ASSERT(y->neg); pos = x; neg = y; } BigInt neg_abs = {}; big_int_neg(&neg_abs, neg); BigInt const *bigger = nullptr; BigInt const *smaller = nullptr; int cmp = big_int_cmp(pos, &neg_abs); dst->neg = cmp < 0; switch (cmp) { case 0: big_int_from_u64(dst, 0); return; case -1: bigger = &neg_abs; smaller = pos; break; case +1: bigger = pos; smaller = &neg_abs; break; default: GB_PANIC("Invalid big_int_cmp value"); return; } u64 const *bigger_words = big_int_ptr(bigger); u64 const *smaller_words = big_int_ptr(smaller); u64 overflow = cast(u64)sub_overflow_u64(bigger_words[0], smaller_words[0], &dst->d.word); if (overflow == 0 && bigger->len == 1 && smaller->len == 1) { dst->len = 1; big_int_normalize(dst); return; } u64 first_word = dst->d.word; big_int_alloc(dst, 0, bigger->len); dst->d.words[0] = first_word; i32 i = 0; while (i < bigger->len) { u64 v = bigger_words[i]; u64 prev_overflow = overflow; overflow = 0; bool found_word = false; if (i < smaller->len) { found_word = true; overflow += sub_overflow_u64(v, smaller_words[i], &v); } if (sub_overflow_u64(v, prev_overflow, &v)) { found_word = true; overflow += 1; } else { // IMPORTANT TODO(bill): Is this mathematics correct here? v += overflow; } dst->d.words[i] = v; i += 1; if (!found_word) { break; } } GB_ASSERT(overflow == 0); dst->len = i; big_int_normalize(dst); return; } } void big_int_sub(BigInt *dst, BigInt const *x, BigInt const *y) { BigInt neg_y = {}; big_int_neg(&neg_y, y); big_int_add(dst, x, &neg_y); big_int_normalize(dst); return; } void big_int_shl(BigInt *dst, BigInt const *x, BigInt const *y) { GB_ASSERT(!y->neg); if (x->len == 0) { big_int_from_u64(dst, 0); return; } if (x->len == 1 && x->d.word == 0) { big_int_from_u64(dst, 0); return; } if (y->len == 0) { big_int_init(dst, x); return; } if (y->len == 0) { big_int_from_u64(dst, 0); return; } if (y->len != 1) { GB_PANIC("SHL value greater than 64 bits!"); } u64 const *xd = big_int_ptr(x); u64 shift_amount = big_int_to_u64(y); if (x->len == 1 && shift_amount < 64) { dst->d.word = xd[0] << shift_amount; if (dst->d.word > xd[0]) { dst->len = 1; dst->neg = x->neg; big_int_normalize(dst); return; } } u64 word_shift_len = shift_amount / 64; u64 remaining_shift_len = shift_amount % 64; big_int_alloc(dst, cast(i32)word_shift_len, x->len + word_shift_len + 1); GB_ASSERT((x->len + word_shift_len + 1) > 1); u64 carry = 0; for (i32 i = 0; i < x->len; i++) { u64 word = xd[i]; dst->d.words[dst->len] = carry | (word << remaining_shift_len); dst->len += 1; if (remaining_shift_len > 0) { carry = word >> (64 - remaining_shift_len); } else { carry = 0; } } big_int_normalize(dst); } void big_int_shr(BigInt *dst, BigInt const *x, BigInt const *y) { GB_ASSERT(!y->neg); if (x->len == 0) { big_int_from_u64(dst, 0); return; } if (x->len == 1 && x->d.word == 0) { big_int_from_u64(dst, 0); return; } if (y->len == 0) { big_int_init(dst, x); return; } if (y->len != 1) { GB_PANIC("SHR value greater than 64 bits!"); } u64 const *xd = big_int_ptr(x); u64 shift_amount = big_int_to_u64(y); if (x->len == 1) { dst->d.word = xd[0] >> shift_amount; dst->len = 1; dst->neg = x->neg; big_int_normalize(dst); return; } u64 word_shift_len = shift_amount / 64ull; u64 remaining_shift_len = shift_amount % 64ull; if (word_shift_len >= x->len) { big_int_from_u64(dst, 0); return; } i32 len = cast(i32)(x->len - word_shift_len); i32 cap = gb_max(len, dst->len); big_int_alloc(dst, len, cap); GB_ASSERT(dst->len >= 1); u64 carry = 0; for (i32 src_idx = x->len - 1; src_idx >= 0; src_idx--) { u64 v = xd[src_idx]; u64 dst_idx = src_idx - word_shift_len; dst->d.words[dst_idx] = carry | (v >> remaining_shift_len); carry = v << (64ull - remaining_shift_len); } big_int_normalize(dst); } void big_int_mul_u64(BigInt *dst, BigInt const *x, u64 y) { BigInt v64 = {}; big_int_from_u64(&v64, 64); big_int_from_u64(dst, 0); u64 const *xd = big_int_ptr(x); for (i32 i = x->len-1; i >= 0; i--) { BigInt shifted = {}; big_int_shl(&shifted, dst, &v64); u64 result_u64 = 0; u64 carry_u64 = 0; mul_overflow_u64(y, xd[i], &result_u64, &carry_u64); BigInt result; BigInt carry; BigInt carry_shifted; big_int_from_u64(&result, result_u64); big_int_from_u64(&carry, carry_u64); big_int_shl(&carry_shifted, &carry, &v64); BigInt tmp; big_int_add(&tmp, &shifted, &carry_shifted); big_int_add(dst, &tmp, &result); } big_int_normalize(dst); } void big_int_mul(BigInt *z, BigInt const *x, BigInt const *y) { if (x->len == 0 || y->len == 0) { return big_int_from_u64(z, 0); } u64 const *xd = big_int_ptr(x); u64 const *yd = big_int_ptr(y); u64 carry = 0; mul_overflow_u64(xd[0], yd[0], &z->d.word, &carry); if (carry == 0 && x->len == 1 && y->len == 1) { z->neg = (x->neg != y->neg); z->len = 1; big_int_normalize(z); return; } big_int_from_u64(z, 0); i32 len = x->len+y->len; big_int_alloc(z, len, len); u64 *zd = big_int_ptr(z); for (i32 i = 0; i < y->len; i++) { u64 d = yd[i]; if (d != 0) { u64 *z = zd+i; i32 n = x->len; u64 c = 0; for (i32 j = 0; j < n; j++) { u64 z1 = 0; u64 z00 = 0; mul_overflow_u64(xd[j], d, &z00, &z1); u64 z0 = z00 + z[j]; if (z0 < z00) { z1 += 1; } z[j] = z0 + c; c = 0; if (z[j] < z0) { c = 1; } c += z1; } zd[n+i] = c; } } z->neg = (x->neg != y->neg); big_int_normalize(z); } u64 leading_zeros_u64(u64 x) { #if defined(GB_COMPILER_MSVC) return __lzcnt64(x); #else return cast(u64)__builtin_clzll(cast(unsigned long long)x); #endif } void bi__divWW(u64 u1, u64 u0, u64 y, u64 *q, u64 *r) { #if defined(GB_COMPILER_MSVC) && defined(GB_ARCH_64_BIT) *q = unsafe_udiv128(u1, u0, y, r); #else // NOTE(bill): q = (u1<<64 + u0 - r)/y // Hacker's Delight page 152 if (u1 >= y) { *q = ~cast(u64)0ull; *r = ~cast(u64)0ull; return; } u64 s = leading_zeros_u64(y); y <<= s; static u64 const B = 1ull<<32ull; static u64 const M = B-1ull; u64 vn1 = y >> 32ull; u64 vn0 = y & M; u64 un32 = (u1<>(64ull-s)); u64 un10 = u0 << s; u64 un1 = un10 >> 32ull; u64 un0 = un10 & M; u64 q1 = un32 / vn1; u64 rhat = un32 - (q1*vn1); while ((q1 >= B) || ((q1*vn0) > (B*rhat+un1))) { q1 -= 1; rhat += vn1; if (rhat >= B) { break; } } u64 un21 = (un32*B) + un1 - (q1*y); u64 q0 = un21 / vn1; rhat = un21 - (q0*vn1); while ((q0 >= B) || ((q0*vn0) > (B*rhat+un0))) { q0 -= 1; rhat += vn1; if (rhat >= B) { break; } } *q = q1*B + q0; *r = (un21*B + un0 - q0*y) >> s; #endif } void bi__divWVW(BigInt *z, u64 xn, BigInt const *x, u64 y, u64 *r_) { GB_ASSERT(x->len >= z->len); u64 r = xn; u64 const *xd = big_int_ptr(x); u64 *zd = big_int_ptr(z); for (i32 i = z->len-1; i >= 0; i--) { u64 u1 = r; u64 u0 = xd[i]; bi__divWW(r, xd[i], y, &zd[i], &r); } if (r_) *r_ = r; } void bi__divW(BigInt const *x, u64 y, BigInt *q_, u64 *r_) { BigInt q = {}; u64 r = 0; i32 m = x->len; if (y == 0) { GB_PANIC("division by zero"); } else if (y == 1) { q = *x; } else if (m == 0) { // okay } else { big_int_alloc(&q, m, m); bi__divWVW(&q, 0, x, y, &r); big_int_normalize(&q); } if (q_) *q_ = q; if (r_) *r_ = r; } u64 shlVU(BigInt *z, BigInt const *x, u64 s) { u64 c = 0; i32 n = z->len; u64 const *xd = big_int_ptr(x); u64 *zd = big_int_ptr(z); if (n > 0) { u64 s1 = 64 - s; u64 w1 = xd[n-1]; c = w1 >> s1; for (i32 i = n-1; i > 0; i--) { u64 w = w1; w1 = xd[i-1]; zd[i] = (w<>s1); } zd[0] = w1 << s; } return c; } u64 mulAddVWW(BigInt *z, BigInt const *x, u64 y, u64 r) { u64 c = r; u64 const *xd = big_int_ptr(x); u64 *zd = big_int_ptr(z); for (i32 i = 0; i < z->len; i++) { u64 a, b; mul_overflow_u64(xd[i], y, &a, &b); zd[i] = b + c; if (zd[i] < b) { a += 1; } c = a; } return c; } bool bi__greater_than(u64 x1, u64 x2, u64 y1, u64 y2) { return x1 > y1 || (x1 == x2 && x2 > y2); } void bi__div_large(BigInt const *a, BigInt const *b, BigInt *q, BigInt *r) { i32 n = b->len; i32 m = a->len - n; BigInt u = *a; BigInt v = *b; big_int_alloc(q, m+1, m+1); BigInt qhatv = {{cast(u64)n+1ull}, 1, false}; big_int_alloc(&u, a->len+1, a->len+1); u64 *ud = big_int_ptr(&u); u64 *vd = big_int_ptr(&v); u64 shift = leading_zeros_u64(vd[n-1]); if (shift > 0) { BigInt v1 = {{cast(u64)n}, 1, false}; shlVU(&v1, &v, shift); v = v1; vd = big_int_ptr(&v); } BigInt uu = u; uu.len = a->len; ud[a->len] = shlVU(&uu, a, shift); } void big_int_quo_rem_unsigned(BigInt const *a, BigInt const *b, BigInt *q_, BigInt *r_) { if (b->len == 0) { GB_PANIC("division by zero"); } else if (b->len == 1 && b->d.word == 0) { GB_PANIC("division by zero"); } BigInt x = *a; x.neg = false; BigInt y = *b; y.neg = false; BigInt q = {}; BigInt r = {}; int cmp = big_int_cmp(&x, &y); if (cmp < 0) { q = BIG_INT_ZERO; r = x; goto end; } else if (cmp == 0) { q = BIG_INT_ONE; r = BIG_INT_ZERO; goto end; } if (y.len == 1) { if (y.d.word == 0) { GB_PANIC("division by zero"); } else if (y.d.word == 1) { q = x; r = BIG_INT_ZERO; goto end; } else if (x.len == 0) { q = BIG_INT_ZERO; r = BIG_INT_ZERO; goto end; } u64 rr = 0; bi__divW(&x, y.d.word, &q, &rr); big_int_from_u64(&r, rr); goto end; } GB_PANIC("Division of a large denominator not yet supported"); bi__div_large(&x, &y, &q, &r); end: big_int_normalize(&q); big_int_normalize(&r); if (q_) *q_ = q; if (r_) *r_ = r; return; } // `big_int_quo_rem` sets z to the quotient x/y and r to the remainder x%y // and returns the pair (z, r) for y != 0. // if y == 0, a division-by-zero run-time panic occurs. // // q = x/y with the result truncated to zero // r = x - y*q void big_int_quo_rem(BigInt const *x, BigInt const *y, BigInt *q_, BigInt *r_) { BigInt q = {}; BigInt r = {}; big_int_quo_rem_unsigned(x, y, &q, &r); q.neg = q.len > 0 && x->neg != y->neg; r.neg = r.len > 0 && x->neg; if (q_) *q_ = q; if (r_) *r_ = r; } void big_int_quo(BigInt *z, BigInt const *x, BigInt const *y) { BigInt r = {}; big_int_quo_rem_unsigned(x, y, z, &r); z->neg = z->len > 0 && x->neg != y->neg; } void big_int_rem(BigInt *z, BigInt const *x, BigInt const *y) { BigInt q = {}; big_int_quo_rem_unsigned(x, y, &q, z); z->neg = z->len > 0 && x->neg; } void big_int_euclidean_div(BigInt *z, BigInt const *x, BigInt const *y) { BigInt r = {}; big_int_quo_rem(x, y, z, &r); if (r.neg) { if (y->neg) { big_int_add(z, z, &BIG_INT_ONE); } else { big_int_sub(z, z, &BIG_INT_ONE); } } } void big_int_euclidean_mod(BigInt *z, BigInt const *x, BigInt const *y) { BigInt y0 = {}; big_int_init(&y0, y); BigInt q = {}; big_int_quo_rem(x, y, &q, z); if (z->neg) { if (y0.neg) { big_int_sub(z, z, &y0); } else { big_int_add(z, z, &y0); } } } void big_int_and(BigInt *dst, BigInt const *x, BigInt const *y) { if (x->len == 0 || y->len == 0) { big_int_from_u64(dst, 0); return; } if (x->neg == y->neg) { if (x->neg) { // (-x) & (-y) == ~(x-1) & ~(x-y) == ~((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1) BigInt x1 = big_int_make_abs(x); BigInt y1 = big_int_make_abs(y); BigInt z1 = {}; big_int_sub_eq(&x1, &BIG_INT_ONE); big_int_sub_eq(&y1, &BIG_INT_ONE); big_int_or(&z1, &x1, &y1); big_int_add(dst, &z1, &BIG_INT_ONE); dst->neg = true; // NOTE(bill): dst cannot be 0 as x and y are both negative big_int_normalize(dst); return; } u64 const *xd = big_int_ptr(x); u64 const *yd = big_int_ptr(y); if (x->len == 1 && y->len == 1) { dst->len = 1; dst->d.word = xd[0] & yd[0]; return; } i32 len = gb_max(x->len, y->len); big_int_alloc(dst, len, len); GB_ASSERT(dst->len > 1); i32 i = 0; for (; i < x->len && i < y->len; i++) { dst->d.words[i] = xd[i] & yd[i]; } for (; i < len; i++) { dst->d.words[i] = 0; } dst->neg = false; big_int_normalize(dst); return; } if (x->neg) { BigInt const *tmp = x; x = y; y = tmp; // NOTE(bill): AND is symmetric } // x & (-y) == x &~ (y-1) dst->neg = false; BigInt x1 = big_int_make_abs(x); BigInt y1 = big_int_make_abs(y); big_int_sub_eq(&y1, &BIG_INT_ONE); big_int_and_not(dst, &x1, &y1); big_int_normalize(dst); } void big_int__and_not_abs(BigInt *dst, BigInt const *x, BigInt const *y) { u64 const *xd = big_int_ptr(x); u64 const *yd = big_int_ptr(y); if (x->len == 1 && y->len == 1) { dst->len = 1; dst->d.word = xd[0] & (~yd[0]); return; } i32 len = gb_max(x->len, y->len); big_int_alloc(dst, len, len); GB_ASSERT(dst->len > 1); i32 i = 0; for (; i < x->len && i < y->len; i++) { dst->d.words[i] = xd[i] & (~yd[i]); } if (i < x->len) { for (; i < len; i++) { dst->d.words[i] = xd[i]; } } if (i < y->len) { for (; i < len; i++) { dst->d.words[i] = yd[i]; } } big_int_normalize(dst); } void big_int_and_not(BigInt *dst, BigInt const *x, BigInt const *y) { if (x->len == 0) { big_int_init(dst, y); return; } if (y->len == 0) { big_int_init(dst, x); return; } if (x->neg == y->neg) { if (x->neg) { // (-x) &~ (-y) == ~(x-1) &~ ~(y-1) == ~(x-1) & (y-1) == (y-1) &~ (x-1) BigInt x1 = big_int_make_abs(x); BigInt y1 = big_int_make_abs(y); big_int_sub_eq(&x1, &BIG_INT_ONE); big_int_sub_eq(&y1, &BIG_INT_ONE); big_int__and_not_abs(dst, &y1, &x1); dst->neg = false; big_int_normalize(dst); return; } big_int__and_not_abs(dst, x, y); dst->neg = false; big_int_normalize(dst); return; } if (x->neg) { // (-x) &~ y == ~(x-1) &~ y == ~(x-1) & ~y == ~((x-1) | y) == -(((x-1) | y) + 1) BigInt x1 = big_int_make_abs(x); BigInt y1 = big_int_make_abs(y); big_int_sub_eq(&x1, &BIG_INT_ONE); BigInt z1 = {}; big_int_or(&z1, &x1, &y1); big_int_add(dst, &z1, &BIG_INT_ONE); dst->neg = true; big_int_normalize(dst); return; } // x &~ (-y) == x &~ ~(y-1) == x & (y-1) BigInt x1 = big_int_make_abs(x); BigInt y1 = big_int_make_abs(y); big_int_sub_eq(&y1, &BIG_INT_ONE); big_int_and(dst, &x1, &y1); dst->neg = false; big_int_normalize(dst); return; } void big_int__xor_abs(BigInt *dst, BigInt const *x, BigInt const *y) { u64 const *xd = big_int_ptr(x); u64 const *yd = big_int_ptr(y); if (x->len == 1 && y->len == 1) { dst->len = 1; dst->d.word = xd[0] ^ yd[0]; big_int_normalize(dst); return; } i32 len = gb_max(x->len, y->len); big_int_alloc(dst, len, len); GB_ASSERT(dst->len > 1); i32 i = 0; for (; i < x->len && i < y->len; i++) { dst->d.words[i] = xd[i] ^ yd[i]; } for (; i < len; i++) { if (i < x->len) { dst->d.words[i] = xd[i]; } if (i < y->len) { dst->d.words[i] = yd[i]; } } big_int_normalize(dst); } void big_int_xor(BigInt *dst, BigInt const *x, BigInt const *y) { if (x->len == 0) { big_int_init(dst, y); return; } else if (y->len == 0) { big_int_init(dst, x); return; } if (x->neg == y->neg) { if (x->neg) { // (-x) ^ (-y) == ~(x-1) ^ ~(y-1) == (x-1) ^ (y-1) BigInt x1 = big_int_make_abs(x); BigInt y1 = big_int_make_abs(y); big_int_sub_eq(&x1, &BIG_INT_ONE); big_int_sub_eq(&y1, &BIG_INT_ONE); big_int__xor_abs(dst, &x1, &y1); dst->neg = false; return; } big_int__xor_abs(dst, x, y); dst->neg = false; return; } // x->neg != y->neg if (x->neg) { BigInt const *tmp = x; x = y; y = tmp; } dst->neg = false; if (y->neg) { // x ^ (-y) == x ^ ~(y-1) == ~(x ^ (y-1)) == -((x ^ (y-1)) + 1) BigInt y1 = big_int_make_abs(y); big_int_sub_eq(&y1, &BIG_INT_ONE); big_int__xor_abs(dst, x, &y1); big_int_add_eq(dst, &BIG_INT_ONE); dst->neg = true; } return; } void big_int_or(BigInt *dst, BigInt const *x, BigInt const *y) { if (x->len == 0) { big_int_init(dst, y); return; } else if (y->len == 0) { big_int_init(dst, x); return; } if (x->neg == y->neg) { if (x->neg) { // (-x) | (-y) == ~(x-1) | ~(y-1) == ~((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1) BigInt x1 = big_int_make_abs(x); BigInt y1 = big_int_make_abs(y); big_int_sub_eq(&x1, &BIG_INT_ONE); big_int_sub_eq(&y1, &BIG_INT_ONE); big_int_and(dst, &x1, &y1); big_int_add_eq(dst, &BIG_INT_ONE); dst->neg = true; return; } dst->neg = x->neg; u64 const *xd = big_int_ptr(x); u64 const *yd = big_int_ptr(y); if (x->len == 1 && y->len == 1) { dst->len = 1; dst->d.word = xd[0] | yd[0]; return; } i32 len = gb_max(x->len, y->len); big_int_alloc(dst, len, len); GB_ASSERT(dst->len > 1); for (i32 i = 0; i < len; i++) { u64 word = 0; if (i < x->len) { word |= xd[i]; } if (i < y->len) { word |= yd[i]; } dst->d.words[i] = word; } big_int_normalize(dst); } if (x->neg) { BigInt const *tmp = x; x = y; y = tmp; } dst->neg = false; if (y->neg) { // x | (-y) == x | ~(y-1) == ~((y-1) &~ x) == -(~((y-1) &~ x) + 1) BigInt y1 = big_int_make_abs(y); big_int_sub_eq(&y1, &BIG_INT_ONE); big_int__and_not_abs(dst, &y1, x); big_int_add_eq(dst, &BIG_INT_ONE); dst->neg = true; } return; } void big_int_not(BigInt *dst, BigInt const *x, u64 bit_count, bool is_signed) { if (bit_count == 0) { big_int_from_u64(dst, 0); return; } // TODO(bill): Is this fast enough? dst->neg = false; u64 const *xd = big_int_ptr(x); if (bit_count <= 64) { dst->len = 1; if (x->len == 0) { if (bit_count == 64) { dst->d.word = ~cast(u64)0ull; } else { dst->d.word = (1ull << bit_count) - 1ull; } } else if (x->len == 1) { dst->d.word = ~xd[0]; if (bit_count != 64) { u64 mask = (1ull << bit_count) - 1ull; dst->d.word &= mask; } } } else { dst->len = cast(i32)((bit_count+63ull) / 64ull); GB_ASSERT(dst->len >= x->len); big_int_alloc(dst, dst->len, dst->len); GB_ASSERT(dst->len > 1); i32 i = 0; for (; i < x->len; i++) { dst->d.words[i] = ~xd[i]; } for (; i < dst->len; i++) { dst->d.words[i] = ~cast(u64)0ull; } i32 word_idx = cast(i32)(cast(u64)dst->len - (bit_count/64ull)-1ull); u32 word_bit_idx = bit_count % 64; if (word_idx < dst->len) { u64 mask = (1ull << word_bit_idx) - 1ull; dst->d.words[word_idx] &= mask; } } big_int_normalize(dst); if (is_signed) { BigInt prec = big_int_make_u64(bit_count-1); BigInt mask = {}; BigInt mask_minus_one = {}; big_int_shl(&mask, &BIG_INT_ONE, &prec); big_int_sub(&mask_minus_one, &mask, &BIG_INT_ONE); BigInt a = {}; BigInt b = {}; big_int_and(&a, dst, &mask_minus_one); big_int_and(&b, dst, &mask); big_int_sub(dst, &a, &b); } } char digit_to_char(u8 digit) { GB_ASSERT(digit < 16); if (digit <= 9) { return digit + '0'; } else if (digit <= 15) { return digit + 'a'; } return '0'; } String big_int_to_string(gbAllocator allocator, BigInt const *x, u64 base) { GB_ASSERT(base <= 16); if ((x->len == 0) && (x->len == 1 && x->d.word == 0)) { u8 *buf = gb_alloc_array(allocator, u8, 1); buf[0] = '0'; return make_string(buf, 1); } Array buf = {}; array_init(&buf, allocator, 0, 32); BigInt v = *x; if (v.neg) { array_add(&buf, '-'); v.neg = false; big_int_normalize(&v); } isize first_word_idx = buf.count; BigInt r = {}; BigInt b = {}; big_int_from_u64(&b, base); u8 digit = 0; while (big_int_cmp(&v, &b) >= 0) { big_int_quo_rem(&v, &b, &v, &r); digit = cast(u8)big_int_to_u64(&r); array_add(&buf, digit_to_char(digit)); } big_int_rem(&r, &v, &b); digit = cast(u8)big_int_to_u64(&r); array_add(&buf, digit_to_char(digit)); for (isize i = first_word_idx; i < buf.count/2; i++) { isize j = buf.count + first_word_idx - i - 1; char tmp = buf[i]; buf[i] = buf[j]; buf[j] = tmp; } return make_string(cast(u8 *)buf.data, buf.count); }