template struct MPMCQueueNode { T data; std::atomic idx; }; typedef char CacheLinePad[64]; // Multiple Producer Multiple Consumer Queue template struct MPMCQueue { CacheLinePad pad0; isize mask; Array> buffer; gbMutex mutex; std::atomic count; CacheLinePad pad1; std::atomic head_idx; CacheLinePad pad2; std::atomic tail_idx; CacheLinePad pad3; }; template void mpmc_init(MPMCQueue *q, gbAllocator a, isize size) { size = next_pow2_isize(size); GB_ASSERT(gb_is_power_of_two(size)); gb_mutex_init(&q->mutex); q->mask = size-1; array_init(&q->buffer, a, size); for (isize i = 0; i < size; i++) { q->buffer[i].idx.store(i, std::memory_order_relaxed); } } template void mpmc_destroy(MPMCQueue *q) { gb_mutex_destroy(&q->mutex); gb_free(q->buffer.allocator, q->buffer.data); } template isize mpmc_enqueue(MPMCQueue *q, T const &data) { isize head_idx = q->head_idx.load(std::memory_order_relaxed); for (;;) { auto node = &q->buffer.data[head_idx & q->mask]; isize node_idx = node->idx.load(std::memory_order_acquire); isize diff = node_idx - head_idx; if (diff == 0) { isize next_head_idx = head_idx+1; if (q->head_idx.compare_exchange_weak(head_idx, next_head_idx)) { node->data = data; node->idx.store(next_head_idx, std::memory_order_release); return q->count.fetch_add(1, std::memory_order_release); } } else if (diff < 0) { gb_mutex_lock(&q->mutex); isize old_size = q->buffer.count; isize new_size = old_size*2; array_resize(&q->buffer, new_size); if (q->buffer.data == nullptr) { GB_PANIC("Unable to resize enqueue: %td -> %td", old_size, new_size); gb_mutex_unlock(&q->mutex); return -1; } for (isize i = old_size; i < new_size; i++) { q->buffer.data[i].idx.store(i, std::memory_order_relaxed); } q->mask = new_size-1; gb_mutex_unlock(&q->mutex); } else { head_idx = q->head_idx.load(std::memory_order_relaxed); } } } template bool mpmc_dequeue(MPMCQueue *q, T *data_) { isize tail_idx = q->tail_idx.load(std::memory_order_relaxed); for (;;) { auto node = &q->buffer.data[tail_idx & q->mask]; isize node_idx = node->idx.load(std::memory_order_acquire); isize diff = node_idx - (tail_idx+1); if (diff == 0) { isize next_tail_idx = tail_idx+1; if (q->tail_idx.compare_exchange_weak(tail_idx, next_tail_idx)) { if (data_) *data_ = node->data; node->idx.store(tail_idx + q->mask + 1, std::memory_order_release); q->count.fetch_sub(1, std::memory_order_release); return true; } } else if (diff < 0) { return false; } else { tail_idx = q->tail_idx.load(std::memory_order_relaxed); } } } template struct MPSCQueueNode { std::atomic *> next; T data; }; template struct MPSCQueue { gbAllocator allocator; std::atomic count; std::atomic *> head; std::atomic *> tail; }; template void mpsc_init(MPSCQueue *q, gbAllocator a) { using Node = MPSCQueueNode; q->allocator = a; Node *front = cast(Node *)gb_alloc_align(q->allocator, gb_size_of(Node), 64); front->next.store(nullptr, std::memory_order_relaxed); q->head.store(front, std::memory_order_relaxed); q->tail.store(front, std::memory_order_relaxed); } template isize mpsc_enqueue(MPSCQueue *q, T const &value) { using Node = MPSCQueueNode; Node *node = cast(Node *)gb_alloc_align(q->allocator, gb_size_of(Node), 64); node->data = value; node->next.store(nullptr, std::memory_order_relaxed); auto *prev_head = q->head.exchange(node, std::memory_order_acq_rel); prev_head->next.store(node, std::memory_order_release); return q->count.fetch_add(1, std::memory_order_release); } template bool mpsc_dequeue(MPSCQueue *q, T *value_) { auto *tail = q->tail.load(std::memory_order_relaxed); auto *next = tail->next.load(std::memory_order_acquire); if (next == nullptr) { return false; } if (value_) *value_ = next->data; q->tail.store(next, std::memory_order_release); q->count.fetch_sub(1, std::memory_order_release); gb_free(q->allocator, tail); return true; } template void mpsc_destroy(MPSCQueue *q) { T output = {}; while (mpsc_dequeue(q, &output)) { // okay } auto *front = q->head.load(std::memory_order_relaxed); gb_free(q->allocator, front); }