package cbor import "core:bytes" import "core:encoding/endian" import "core:intrinsics" import "core:io" import "core:slice" import "core:strings" Encoder_Flag :: enum { // CBOR defines a tag header that also acts as a file/binary header, // this way decoders can check the first header of the binary and see if it is CBOR. Self_Described_CBOR, // Integers are stored in the smallest integer type it fits. // This involves checking each int against the max of all its smaller types. Deterministic_Int_Size, // Floats are stored in the smallest size float type without losing precision. // This involves casting each float down to its smaller types and checking if it changed. Deterministic_Float_Size, // Sort maps by their keys in bytewise lexicographic order of their deterministic encoding. // NOTE: In order to do this, all keys of a map have to be pre-computed, sorted, and // then written, this involves temporary allocations for the keys and a copy of the map itself. Deterministic_Map_Sorting, // Internal flag to do initialization. _In_Progress, } Encoder_Flags :: bit_set[Encoder_Flag] // Flags for fully deterministic output (if you are not using streaming/indeterminate length). ENCODE_FULLY_DETERMINISTIC :: Encoder_Flags{.Deterministic_Int_Size, .Deterministic_Float_Size, .Deterministic_Map_Sorting} // Flags for the smallest encoding output. ENCODE_SMALL :: Encoder_Flags{.Deterministic_Int_Size, .Deterministic_Float_Size} // Flags for the fastest encoding output. ENCODE_FAST :: Encoder_Flags{} Encoder :: struct { flags: Encoder_Flags, writer: io.Writer, } /* Decodes both deterministic and non-deterministic CBOR into a `Value` variant. `Text` and `Bytes` can safely be cast to cstrings because of an added 0 byte. Allocations are done using the given allocator, *no* allocations are done on the `context.temp_allocator`. A value can be (fully and recursively) deallocated using the `destroy` proc in this package. */ decode :: proc { decode_string, decode_reader, } // Decodes the given string as CBOR. // See docs on the proc group `decode` for more information. decode_string :: proc(s: string, allocator := context.allocator) -> (v: Value, err: Decode_Error) { context.allocator = allocator r: strings.Reader strings.reader_init(&r, s) return decode(strings.reader_to_stream(&r), allocator=allocator) } // Reads a CBOR value from the given reader. // See docs on the proc group `decode` for more information. decode_reader :: proc(r: io.Reader, hdr: Header = Header(0), allocator := context.allocator) -> (v: Value, err: Decode_Error) { context.allocator = allocator hdr := hdr if hdr == Header(0) { hdr = _decode_header(r) or_return } switch hdr { case .U8: return _decode_u8 (r) case .U16: return _decode_u16(r) case .U32: return _decode_u32(r) case .U64: return _decode_u64(r) case .Neg_U8: return Negative_U8 (_decode_u8 (r) or_return), nil case .Neg_U16: return Negative_U16(_decode_u16(r) or_return), nil case .Neg_U32: return Negative_U32(_decode_u32(r) or_return), nil case .Neg_U64: return Negative_U64(_decode_u64(r) or_return), nil case .Simple: return _decode_simple(r) case .F16: return _decode_f16(r) case .F32: return _decode_f32(r) case .F64: return _decode_f64(r) case .True: return true, nil case .False: return false, nil case .Nil: return Nil{}, nil case .Undefined: return Undefined{}, nil case .Break: return nil, .Break } maj, add := _header_split(hdr) switch maj { case .Unsigned: return _decode_tiny_u8(add) case .Negative: return Negative_U8(_decode_tiny_u8(add) or_return), nil case .Bytes: return _decode_bytes_ptr(r, add) case .Text: return _decode_text_ptr(r, add) case .Array: return _decode_array_ptr(r, add) case .Map: return _decode_map_ptr(r, add) case .Tag: return _decode_tag_ptr(r, add) case .Other: return _decode_tiny_simple(add) case: return nil, .Bad_Major } } /* Encodes the CBOR value into a binary CBOR. Flags can be used to control the output (mainly determinism, which coincidently affects size). The default flags `ENCODE_SMALL` (`.Deterministic_Int_Size`, `.Deterministic_Float_Size`) will try to put ints and floats into their smallest possible byte size without losing equality. Adding the `.Self_Described_CBOR` flag will wrap the value in a tag that lets generic decoders know the contents are CBOR from just reading the first byte. Adding the `.Deterministic_Map_Sorting` flag will sort the encoded maps by the byte content of the encoded key. This flag has a cost on performance and memory efficiency because all keys in a map have to be precomputed, sorted and only then written to the output. Empty flags will do nothing extra to the value. The allocations for the `.Deterministic_Map_Sorting` flag are done using the `context.temp_allocator` but are followed by the necessary `delete` and `free` calls if the allocator supports them. This is helpful when the CBOR size is so big that you don't want to collect all the temporary allocations until the end. */ encode_into :: proc { encode_into_bytes, encode_into_builder, encode_into_writer, encode_into_encoder, } encode :: encode_into // Encodes the CBOR value into binary CBOR allocated on the given allocator. // See the docs on the proc group `encode_into` for more info. encode_into_bytes :: proc(v: Value, flags := ENCODE_SMALL, allocator := context.allocator) -> (data: []byte, err: Encode_Error) { b := strings.builder_make(allocator) or_return encode_into_builder(&b, v, flags) or_return return b.buf[:], nil } // Encodes the CBOR value into binary CBOR written to the given builder. // See the docs on the proc group `encode_into` for more info. encode_into_builder :: proc(b: ^strings.Builder, v: Value, flags := ENCODE_SMALL) -> Encode_Error { return encode_into_writer(strings.to_stream(b), v, flags) } // Encodes the CBOR value into binary CBOR written to the given writer. // See the docs on the proc group `encode_into` for more info. encode_into_writer :: proc(w: io.Writer, v: Value, flags := ENCODE_SMALL) -> Encode_Error { return encode_into_encoder(Encoder{flags, w}, v) } // Encodes the CBOR value into binary CBOR written to the given encoder. // See the docs on the proc group `encode_into` for more info. encode_into_encoder :: proc(e: Encoder, v: Value) -> Encode_Error { e := e outer: bool defer if outer { e.flags &~= {._In_Progress} } if ._In_Progress not_in e.flags { outer = true e.flags |= {._In_Progress} if .Self_Described_CBOR in e.flags { _encode_u64(e, TAG_SELF_DESCRIBED_CBOR, .Tag) or_return } } switch v_spec in v { case u8: return _encode_u8(e.writer, v_spec, .Unsigned) case u16: return _encode_u16(e, v_spec, .Unsigned) case u32: return _encode_u32(e, v_spec, .Unsigned) case u64: return _encode_u64(e, v_spec, .Unsigned) case Negative_U8: return _encode_u8(e.writer, u8(v_spec), .Negative) case Negative_U16: return _encode_u16(e, u16(v_spec), .Negative) case Negative_U32: return _encode_u32(e, u32(v_spec), .Negative) case Negative_U64: return _encode_u64(e, u64(v_spec), .Negative) case ^Bytes: return _encode_bytes(e, v_spec^) case ^Text: return _encode_text(e, v_spec^) case ^Array: return _encode_array(e, v_spec^) case ^Map: return _encode_map(e, v_spec^) case ^Tag: return _encode_tag(e, v_spec^) case Simple: return _encode_simple(e.writer, v_spec) case f16: return _encode_f16(e.writer, v_spec) case f32: return _encode_f32(e, v_spec) case f64: return _encode_f64(e, v_spec) case bool: return _encode_bool(e.writer, v_spec) case Nil: return _encode_nil(e.writer) case Undefined: return _encode_undefined(e.writer) case: return nil } } _decode_header :: proc(r: io.Reader) -> (hdr: Header, err: io.Error) { buf: [1]byte io.read_full(r, buf[:]) or_return return Header(buf[0]), nil } _header_split :: proc(hdr: Header) -> (Major, Add) { return Major(u8(hdr) >> 5), Add(u8(hdr) & 0x1f) } _decode_u8 :: proc(r: io.Reader) -> (v: u8, err: io.Error) { byte: [1]byte io.read_full(r, byte[:]) or_return return byte[0], nil } _encode_uint :: proc { _encode_u8, _encode_u16, _encode_u32, _encode_u64, } _encode_u8 :: proc(w: io.Writer, v: u8, major: Major = .Unsigned) -> (err: io.Error) { header := u8(major) << 5 if v < u8(Add.One_Byte) { header |= v _, err = io.write_full(w, {header}) return } header |= u8(Add.One_Byte) _, err = io.write_full(w, {header, v}) return } _decode_tiny_u8 :: proc(additional: Add) -> (u8, Decode_Data_Error) { if intrinsics.expect(additional < .One_Byte, true) { return u8(additional), nil } return 0, .Bad_Argument } _decode_u16 :: proc(r: io.Reader) -> (v: u16, err: io.Error) { bytes: [2]byte io.read_full(r, bytes[:]) or_return return endian.unchecked_get_u16be(bytes[:]), nil } _encode_u16 :: proc(e: Encoder, v: u16, major: Major = .Unsigned) -> Encode_Error { if .Deterministic_Int_Size in e.flags { return _encode_deterministic_uint(e.writer, v, major) } return _encode_u16_exact(e.writer, v, major) } _encode_u16_exact :: proc(w: io.Writer, v: u16, major: Major = .Unsigned) -> (err: io.Error) { bytes: [3]byte bytes[0] = (u8(major) << 5) | u8(Add.Two_Bytes) endian.unchecked_put_u16be(bytes[1:], v) _, err = io.write_full(w, bytes[:]) return } _decode_u32 :: proc(r: io.Reader) -> (v: u32, err: io.Error) { bytes: [4]byte io.read_full(r, bytes[:]) or_return return endian.unchecked_get_u32be(bytes[:]), nil } _encode_u32 :: proc(e: Encoder, v: u32, major: Major = .Unsigned) -> Encode_Error { if .Deterministic_Int_Size in e.flags { return _encode_deterministic_uint(e.writer, v, major) } return _encode_u32_exact(e.writer, v, major) } _encode_u32_exact :: proc(w: io.Writer, v: u32, major: Major = .Unsigned) -> (err: io.Error) { bytes: [5]byte bytes[0] = (u8(major) << 5) | u8(Add.Four_Bytes) endian.unchecked_put_u32be(bytes[1:], v) _, err = io.write_full(w, bytes[:]) return } _decode_u64 :: proc(r: io.Reader) -> (v: u64, err: io.Error) { bytes: [8]byte io.read_full(r, bytes[:]) or_return return endian.unchecked_get_u64be(bytes[:]), nil } _encode_u64 :: proc(e: Encoder, v: u64, major: Major = .Unsigned) -> Encode_Error { if .Deterministic_Int_Size in e.flags { return _encode_deterministic_uint(e.writer, v, major) } return _encode_u64_exact(e.writer, v, major) } _encode_u64_exact :: proc(w: io.Writer, v: u64, major: Major = .Unsigned) -> (err: io.Error) { bytes: [9]byte bytes[0] = (u8(major) << 5) | u8(Add.Eight_Bytes) endian.unchecked_put_u64be(bytes[1:], v) _, err = io.write_full(w, bytes[:]) return } _decode_bytes_ptr :: proc(r: io.Reader, add: Add, type: Major = .Bytes) -> (v: ^Bytes, err: Decode_Error) { v = new(Bytes) or_return defer if err != nil { free(v) } v^ = _decode_bytes(r, add, type) or_return return } _decode_bytes :: proc(r: io.Reader, add: Add, type: Major = .Bytes) -> (v: Bytes, err: Decode_Error) { _n_items, length_is_unknown := _decode_container_length(r, add) or_return n_items := _n_items.? or_else INITIAL_STREAMED_BYTES_CAPACITY if length_is_unknown { buf: strings.Builder buf.buf = make([dynamic]byte, 0, n_items) or_return defer if err != nil { strings.builder_destroy(&buf) } buf_stream := strings.to_stream(&buf) for { header := _decode_header(r) or_return maj, add := _header_split(header) #partial switch maj { case type: _n_items, length_is_unknown := _decode_container_length(r, add) or_return if length_is_unknown { return nil, .Nested_Indefinite_Length } n_items := i64(_n_items.?) copied := io.copy_n(buf_stream, r, n_items) or_return assert(copied == n_items) case .Other: if add != .Break { return nil, .Bad_Argument } v = buf.buf[:] // Write zero byte so this can be converted to cstring. io.write_full(buf_stream, {0}) or_return shrink(&buf.buf) // Ignoring error, this is not critical to succeed. return case: return nil, .Bad_Major } } } else { v = make([]byte, n_items + 1) or_return // Space for the bytes and a zero byte. defer if err != nil { delete(v) } io.read_full(r, v[:n_items]) or_return v = v[:n_items] // Take off zero byte. return } } _encode_bytes :: proc(e: Encoder, val: Bytes, major: Major = .Bytes) -> (err: Encode_Error) { assert(len(val) >= 0) _encode_u64(e, u64(len(val)), major) or_return _, err = io.write_full(e.writer, val[:]) return } _decode_text_ptr :: proc(r: io.Reader, add: Add) -> (v: ^Text, err: Decode_Error) { v = new(Text) or_return defer if err != nil { free(v) } v^ = _decode_text(r, add) or_return return } _decode_text :: proc(r: io.Reader, add: Add) -> (v: Text, err: Decode_Error) { return (Text)(_decode_bytes(r, add, .Text) or_return), nil } _encode_text :: proc(e: Encoder, val: Text) -> Encode_Error { return _encode_bytes(e, transmute([]byte)val, .Text) } _decode_array_ptr :: proc(r: io.Reader, add: Add) -> (v: ^Array, err: Decode_Error) { v = new(Array) or_return defer if err != nil { free(v) } v^ = _decode_array(r, add) or_return return } _decode_array :: proc(r: io.Reader, add: Add) -> (v: Array, err: Decode_Error) { _n_items, length_is_unknown := _decode_container_length(r, add) or_return n_items := _n_items.? or_else INITIAL_STREAMED_CONTAINER_CAPACITY array := make([dynamic]Value, 0, n_items) or_return defer if err != nil { for entry in array { destroy(entry) } delete(array) } for i := 0; length_is_unknown || i < n_items; i += 1 { val, verr := decode(r) if length_is_unknown && verr == .Break { break } else if verr != nil { err = verr return } append(&array, val) or_return } shrink(&array) v = array[:] return } _encode_array :: proc(e: Encoder, arr: Array) -> Encode_Error { assert(len(arr) >= 0) _encode_u64(e, u64(len(arr)), .Array) for val in arr { encode(e, val) or_return } return nil } _decode_map_ptr :: proc(r: io.Reader, add: Add) -> (v: ^Map, err: Decode_Error) { v = new(Map) or_return defer if err != nil { free(v) } v^ = _decode_map(r, add) or_return return } _decode_map :: proc(r: io.Reader, add: Add) -> (v: Map, err: Decode_Error) { _n_items, length_is_unknown := _decode_container_length(r, add) or_return n_items := _n_items.? or_else INITIAL_STREAMED_CONTAINER_CAPACITY items := make([dynamic]Map_Entry, 0, n_items) or_return defer if err != nil { for entry in items { destroy(entry.key) destroy(entry.value) } delete(items) } for i := 0; length_is_unknown || i < n_items; i += 1 { key, kerr := decode(r) if length_is_unknown && kerr == .Break { break } else if kerr != nil { return nil, kerr } value := decode(r) or_return append(&items, Map_Entry{ key = key, value = value, }) or_return } shrink(&items) v = items[:] return } _encode_map :: proc(e: Encoder, m: Map) -> (err: Encode_Error) { assert(len(m) >= 0) _encode_u64(e, u64(len(m)), .Map) or_return if .Deterministic_Map_Sorting not_in e.flags { for entry in m { encode(e, entry.key) or_return encode(e, entry.value) or_return } return } // Deterministic_Map_Sorting needs us to sort the entries by the byte contents of the // encoded key. // // This means we have to store and sort them before writing incurring extra (temporary) allocations. Map_Entry_With_Key :: struct { encoded_key: []byte, entry: Map_Entry, } entries := make([]Map_Entry_With_Key, len(m), context.temp_allocator) or_return defer delete(entries, context.temp_allocator) for &entry, i in entries { entry.entry = m[i] buf := strings.builder_make(0, 8, context.temp_allocator) or_return ke := e ke.writer = strings.to_stream(&buf) encode(ke, entry.entry.key) or_return entry.encoded_key = buf.buf[:] } // Sort lexicographic on the bytes of the key. slice.sort_by_cmp(entries, proc(a, b: Map_Entry_With_Key) -> slice.Ordering { return slice.Ordering(bytes.compare(a.encoded_key, b.encoded_key)) }) for entry in entries { io.write_full(e.writer, entry.encoded_key) or_return delete(entry.encoded_key, context.temp_allocator) encode(e, entry.entry.value) or_return } return nil } _decode_tag_ptr :: proc(r: io.Reader, add: Add) -> (v: Value, err: Decode_Error) { tag := _decode_tag(r, add) or_return if t, ok := tag.?; ok { defer if err != nil { destroy(t.value) } tp := new(Tag) or_return tp^ = t return tp, nil } // no error, no tag, this was the self described CBOR tag, skip it. return decode(r) } _decode_tag :: proc(r: io.Reader, add: Add) -> (v: Maybe(Tag), err: Decode_Error) { num := _decode_tag_nr(r, add) or_return // CBOR can be wrapped in a tag that decoders can use to see/check if the binary data is CBOR. // We can ignore it here. if num == TAG_SELF_DESCRIBED_CBOR { return } t := Tag{ number = num, value = decode(r) or_return, } if nested, ok := t.value.(^Tag); ok { destroy(nested) return nil, .Nested_Tag } return t, nil } _decode_tag_nr :: proc(r: io.Reader, add: Add) -> (nr: Tag_Number, err: Decode_Error) { #partial switch add { case .One_Byte: return u64(_decode_u8(r) or_return), nil case .Two_Bytes: return u64(_decode_u16(r) or_return), nil case .Four_Bytes: return u64(_decode_u32(r) or_return), nil case .Eight_Bytes: return u64(_decode_u64(r) or_return), nil case: return u64(_decode_tiny_u8(add) or_return), nil } } _encode_tag :: proc(e: Encoder, val: Tag) -> Encode_Error { _encode_u64(e, val.number, .Tag) or_return return encode(e, val.value) } _decode_simple :: proc(r: io.Reader) -> (v: Simple, err: io.Error) { buf: [1]byte io.read_full(r, buf[:]) or_return return Simple(buf[0]), nil } _encode_simple :: proc(w: io.Writer, v: Simple) -> (err: Encode_Error) { header := u8(Major.Other) << 5 if v < Simple(Add.False) { header |= u8(v) _, err = io.write_full(w, {header}) return } else if v <= Simple(Add.Break) { return .Invalid_Simple } header |= u8(Add.One_Byte) _, err = io.write_full(w, {header, u8(v)}) return } _decode_tiny_simple :: proc(add: Add) -> (Simple, Decode_Data_Error) { if add < Add.False { return Simple(add), nil } return 0, .Bad_Argument } _decode_f16 :: proc(r: io.Reader) -> (v: f16, err: io.Error) { bytes: [2]byte io.read_full(r, bytes[:]) or_return n := endian.unchecked_get_u16be(bytes[:]) return transmute(f16)n, nil } _encode_f16 :: proc(w: io.Writer, v: f16) -> (err: io.Error) { bytes: [3]byte bytes[0] = u8(Header.F16) endian.unchecked_put_u16be(bytes[1:], transmute(u16)v) _, err = io.write_full(w, bytes[:]) return } _decode_f32 :: proc(r: io.Reader) -> (v: f32, err: io.Error) { bytes: [4]byte io.read_full(r, bytes[:]) or_return n := endian.unchecked_get_u32be(bytes[:]) return transmute(f32)n, nil } _encode_f32 :: proc(e: Encoder, v: f32) -> io.Error { if .Deterministic_Float_Size in e.flags { return _encode_deterministic_float(e.writer, v) } return _encode_f32_exact(e.writer, v) } _encode_f32_exact :: proc(w: io.Writer, v: f32) -> (err: io.Error) { bytes: [5]byte bytes[0] = u8(Header.F32) endian.unchecked_put_u32be(bytes[1:], transmute(u32)v) _, err = io.write_full(w, bytes[:]) return } _decode_f64 :: proc(r: io.Reader) -> (v: f64, err: io.Error) { bytes: [8]byte io.read_full(r, bytes[:]) or_return n := endian.unchecked_get_u64be(bytes[:]) return transmute(f64)n, nil } _encode_f64 :: proc(e: Encoder, v: f64) -> io.Error { if .Deterministic_Float_Size in e.flags { return _encode_deterministic_float(e.writer, v) } return _encode_f64_exact(e.writer, v) } _encode_f64_exact :: proc(w: io.Writer, v: f64) -> (err: io.Error) { bytes: [9]byte bytes[0] = u8(Header.F64) endian.unchecked_put_u64be(bytes[1:], transmute(u64)v) _, err = io.write_full(w, bytes[:]) return } _encode_bool :: proc(w: io.Writer, v: bool) -> (err: io.Error) { switch v { case true: _, err = io.write_full(w, {u8(Header.True )}); return case false: _, err = io.write_full(w, {u8(Header.False)}); return case: unreachable() } } _encode_undefined :: proc(w: io.Writer) -> io.Error { _, err := io.write_full(w, {u8(Header.Undefined)}) return err } _encode_nil :: proc(w: io.Writer) -> io.Error { _, err := io.write_full(w, {u8(Header.Nil)}) return err } // Streaming encode_stream_begin :: proc(w: io.Writer, major: Major) -> (err: io.Error) { assert(major >= Major(.Bytes) && major <= Major(.Map), "illegal stream type") header := (u8(major) << 5) | u8(Add.Length_Unknown) _, err = io.write_full(w, {header}) return } encode_stream_end :: proc(w: io.Writer) -> io.Error { header := (u8(Major.Other) << 5) | u8(Add.Break) _, err := io.write_full(w, {header}) return err } encode_stream_bytes :: _encode_bytes encode_stream_text :: _encode_text encode_stream_array_item :: encode encode_stream_map_entry :: proc(e: Encoder, key: Value, val: Value) -> Encode_Error { encode(e, key) or_return return encode(e, val) } // _decode_container_length :: proc(r: io.Reader, add: Add) -> (length: Maybe(int), is_unknown: bool, err: Decode_Error) { if add == Add.Length_Unknown { return nil, true, nil } #partial switch add { case .One_Byte: length = int(_decode_u8(r) or_return) case .Two_Bytes: length = int(_decode_u16(r) or_return) case .Four_Bytes: big_length := _decode_u32(r) or_return if u64(big_length) > u64(max(int)) { err = .Length_Too_Big return } length = int(big_length) case .Eight_Bytes: big_length := _decode_u64(r) or_return if big_length > u64(max(int)) { err = .Length_Too_Big return } length = int(big_length) case: length = int(_decode_tiny_u8(add) or_return) } return } // Deterministic encoding is (among other things) encoding all values into their smallest // possible representation. // See section 4 of RFC 8949. _encode_deterministic_uint :: proc { _encode_u8, _encode_deterministic_u16, _encode_deterministic_u32, _encode_deterministic_u64, _encode_deterministic_u128, } _encode_deterministic_u16 :: proc(w: io.Writer, v: u16, major: Major = .Unsigned) -> Encode_Error { switch { case v <= u16(max(u8)): return _encode_u8(w, u8(v), major) case: return _encode_u16_exact(w, v, major) } } _encode_deterministic_u32 :: proc(w: io.Writer, v: u32, major: Major = .Unsigned) -> Encode_Error { switch { case v <= u32(max(u8)): return _encode_u8(w, u8(v), major) case v <= u32(max(u16)): return _encode_u16_exact(w, u16(v), major) case: return _encode_u32_exact(w, u32(v), major) } } _encode_deterministic_u64 :: proc(w: io.Writer, v: u64, major: Major = .Unsigned) -> Encode_Error { switch { case v <= u64(max(u8)): return _encode_u8(w, u8(v), major) case v <= u64(max(u16)): return _encode_u16_exact(w, u16(v), major) case v <= u64(max(u32)): return _encode_u32_exact(w, u32(v), major) case: return _encode_u64_exact(w, u64(v), major) } } _encode_deterministic_u128 :: proc(w: io.Writer, v: u128, major: Major = .Unsigned) -> Encode_Error { switch { case v <= u128(max(u8)): return _encode_u8(w, u8(v), major) case v <= u128(max(u16)): return _encode_u16_exact(w, u16(v), major) case v <= u128(max(u32)): return _encode_u32_exact(w, u32(v), major) case v <= u128(max(u64)): return _encode_u64_exact(w, u64(v), major) case: return .Int_Too_Big } } _encode_deterministic_negative :: #force_inline proc(w: io.Writer, v: $T) -> Encode_Error where T == Negative_U8 || T == Negative_U16 || T == Negative_U32 || T == Negative_U64 { return _encode_deterministic_uint(w, v, .Negative) } // A Deterministic float is a float in the smallest type that stays the same after down casting. _encode_deterministic_float :: proc { _encode_f16, _encode_deterministic_f32, _encode_deterministic_f64, } _encode_deterministic_f32 :: proc(w: io.Writer, v: f32) -> io.Error { if (f32(f16(v)) == v) { return _encode_f16(w, f16(v)) } return _encode_f32_exact(w, v) } _encode_deterministic_f64 :: proc(w: io.Writer, v: f64) -> io.Error { if (f64(f16(v)) == v) { return _encode_f16(w, f16(v)) } if (f64(f32(v)) == v) { return _encode_f32_exact(w, f32(v)) } return _encode_f64_exact(w, v) }