TAU :: 6.28318530717958647692528676655900576 PI :: 3.14159265358979323846264338327950288 ONE_OVER_TAU :: 0.636619772367581343075535053490057448 ONE_OVER_PI :: 0.159154943091895335768883763372514362 E :: 2.71828182845904523536 SQRT_TWO :: 1.41421356237309504880168872420969808 SQRT_THREE :: 1.73205080756887729352744634150587236 SQRT_FIVE :: 2.23606797749978969640917366873127623 LOG_TWO :: 0.693147180559945309417232121458176568 LOG_TEN :: 2.30258509299404568401799145468436421 EPSILON :: 1.19209290e-7 τ :: TAU π :: PI // Vec2 :: type raw_union { // using xy_: struct {x, y: f32} // v: {2}f32 // e: [2]f32 // } // Vec3 :: type raw_union { // using xyz_: struct {x, y, z: f32} // xy: Vec2 // v: {3}f32 // e: [3]f32 // } // Vec4 :: type raw_union { // using xyzw_: struct {x, y, z, w: f32} // xy: Vec2 // xyz: Vec3 // v: {4}f32 // e: [4]f32 // } Vec2 :: type {2}f32 Vec3 :: type {3}f32 Vec4 :: type {4}f32 Mat2 :: type {4}f32 Mat3 :: type {9}f32 Mat4 :: type {16}f32 sqrt32 :: proc(x: f32) -> f32 #foreign "llvm.sqrt.f32" sqrt64 :: proc(x: f64) -> f64 #foreign "llvm.sqrt.f64" sin32 :: proc(x: f32) -> f32 #foreign "llvm.sin.f32" sin64 :: proc(x: f64) -> f64 #foreign "llvm.sin.f64" cos64 :: proc(x: f64) -> f64 #foreign "llvm.cos.f64" cos32 :: proc(x: f32) -> f32 #foreign "llvm.cos.f32" lerp32 :: proc(a, b, t: f32) -> f32 { return a*(1-t) + b*t } lerp64 :: proc(a, b, t: f64) -> f64 { return a*(1-t) + b*t } clamp32 :: proc(x, lower, upper: f32) -> f32 { return min(max(x, lower), upper) } clamp64 :: proc(x, lower, upper: f64) -> f64 { return min(max(x, lower), upper) } sign32 :: proc(x: f32) -> f32 { if x >= 0 { return +1 } return -1 } sign64 :: proc(x: f64) -> f64 { if x >= 0 { return +1 } return -1 } copy_sign :: proc(x, y: f32) -> f32 { ix := x transmute u32 iy := y transmute u32 ix &= 0x7fffffff ix |= iy & 0x80000000 return ix transmute f32 } round :: proc(x: f32) -> f32 { if x >= 0 { return floor(x + 0.5) } return ceil(x - 0.5) } floor :: proc(x: f32) -> f32 { if x >= 0 { return x as int as f32 } return (x-0.5) as int as f32 } ceil :: proc(x: f32) -> f32 { if x < 0 { return x as int as f32 } return ((x as int)+1) as f32 } remainder :: proc(x, y: f32) -> f32 { return x - round(x/y) * y } fmod :: proc(x, y: f32) -> f32 { y = abs(y) result := remainder(abs(x), y) if fsign(result) < 0 { result += y } return copy_sign(result, x) } to_radians :: proc(degrees: f32) -> f32 { return degrees * TAU / 360 } to_degrees :: proc(radians: f32) -> f32 { return radians * 360 / TAU } dot2 :: proc(a, b: Vec2) -> f32 { c := a*b; return c[0] + c[1] } dot3 :: proc(a, b: Vec3) -> f32 { c := a*b; return c[0] + c[1] + c[2] } dot4 :: proc(a, b: Vec4) -> f32 { c := a*b; return c[0] + c[1] + c[2] + c[3] } cross :: proc(x, y: Vec3) -> Vec3 { a := swizzle(x, 1, 2, 0) * swizzle(y, 2, 0, 1) b := swizzle(x, 2, 0, 1) * swizzle(y, 1, 2, 0) return a - b } vec2_mag :: proc(v: Vec2) -> f32 { return fsqrt(dot2(v, v)) } vec3_mag :: proc(v: Vec3) -> f32 { return fsqrt(dot3(v, v)) } vec4_mag :: proc(v: Vec4) -> f32 { return fsqrt(dot4(v, v)) } vec2_norm :: proc(v: Vec2) -> Vec2 { return v / Vec2{vec2_mag(v)} } vec3_norm :: proc(v: Vec3) -> Vec3 { return v / Vec3{vec3_mag(v)} } vec4_norm :: proc(v: Vec4) -> Vec4 { return v / Vec4{vec4_mag(v)} } vec2_norm0 :: proc(v: Vec2) -> Vec2 { m := vec2_mag(v) if m == 0 { return Vec2{0} } return v / Vec2{m} } vec3_norm0 :: proc(v: Vec3) -> Vec3 { m := vec3_mag(v) if m == 0 { return Vec3{0} } return v / Vec3{m} } vec4_norm0 :: proc(v: Vec4) -> Vec4 { m := vec4_mag(v) if m == 0 { return Vec4{0} } return v / Vec4{m} } F32_DIG :: 6 F32_EPSILON :: 1.192092896e-07 F32_GUARD :: 0 F32_MANT_DIG :: 24 F32_MAX :: 3.402823466e+38 F32_MAX_10_EXP :: 38 F32_MAX_EXP :: 128 F32_MIN :: 1.175494351e-38 F32_MIN_10_EXP :: -37 F32_MIN_EXP :: -125 F32_NORMALIZE :: 0 F32_RADIX :: 2 F32_ROUNDS :: 1 F64_DIG :: 15 // # of decimal digits of precision F64_EPSILON :: 2.2204460492503131e-016 // smallest such that 1.0+F64_EPSILON != 1.0 F64_MANT_DIG :: 53 // # of bits in mantissa F64_MAX :: 1.7976931348623158e+308 // max value F64_MAX_10_EXP :: 308 // max decimal exponent F64_MAX_EXP :: 1024 // max binary exponent F64_MIN :: 2.2250738585072014e-308 // min positive value F64_MIN_10_EXP :: -307 // min decimal exponent F64_MIN_EXP :: -1021 // min binary exponent F64_RADIX :: 2 // exponent radix F64_ROUNDS :: 1 // addition rounding: near