void check_assignment (Checker *c, Operand *operand, Type *type, String context_name); b32 check_is_assignable_to (Checker *c, Operand *operand, Type *type); void check_expr (Checker *c, Operand *operand, AstNode *expression); void check_multi_expr (Checker *c, Operand *operand, AstNode *expression); void check_expr_or_type (Checker *c, Operand *operand, AstNode *expression); ExpressionKind check_expr_base (Checker *c, Operand *operand, AstNode *expression, Type *type_hint = NULL); Type * check_type (Checker *c, AstNode *expression, Type *named_type = NULL); void check_selector (Checker *c, Operand *operand, AstNode *node); void check_not_tuple (Checker *c, Operand *operand); void convert_to_typed (Checker *c, Operand *operand, Type *target_type); gbString expr_to_string (AstNode *expression); void check_entity_decl (Checker *c, Entity *e, DeclInfo *decl, Type *named_type); void check_proc_body (Checker *c, Token token, DeclInfo *decl, Type *type, AstNode *body); void check_struct_type(Checker *c, Type *struct_type, AstNode *node) { GB_ASSERT(node->kind == AstNode_StructType); GB_ASSERT(struct_type->kind == Type_Structure); ast_node(st, StructType, node); if (st->field_count == 0) { error(&c->error_collector, ast_node_token(node), "Empty struct{} definition"); return; } Map entity_map = {}; map_init(&entity_map, gb_heap_allocator()); defer (map_destroy(&entity_map)); isize field_count = 0; for (AstNode *field = st->field_list; field != NULL; field = field->next) { for (AstNode *name = field->Field.name_list; name != NULL; name = name->next) { GB_ASSERT(name->kind == AstNode_Ident); field_count++; } } Entity **fields = gb_alloc_array(c->allocator, Entity *, st->field_count); isize field_index = 0; for (AstNode *field = st->field_list; field != NULL; field = field->next) { ast_node(f, Field, field); Type *type = check_type(c, f->type); for (AstNode *name = f->name_list; name != NULL; name = name->next) { ast_node(i, Ident, name); Token name_token = i->token; // TODO(bill): is the curr_scope correct? Entity *e = make_entity_field(c->allocator, c->context.scope, name_token, type); u64 key = hash_string(name_token.string); if (map_get(&entity_map, key)) { // TODO(bill): Scope checking already checks the declaration error(&c->error_collector, name_token, "`%.*s` is already declared in this structure", LIT(name_token.string)); } else { map_set(&entity_map, key, e); fields[field_index++] = e; } add_entity_use(&c->info, name, e); } } struct_type->structure.fields = fields; struct_type->structure.field_count = field_count; } Type *check_get_params(Checker *c, Scope *scope, AstNode *field_list, isize field_count) { if (field_list == NULL || field_count == 0) return NULL; Type *tuple = make_type_tuple(c->allocator); Entity **variables = gb_alloc_array(c->allocator, Entity *, field_count); isize variable_index = 0; for (AstNode *field = field_list; field != NULL; field = field->next) { ast_node(f, Field, field); AstNode *type_expr = f->type; if (type_expr) { Type *type = check_type(c, type_expr); for (AstNode *name = f->name_list; name != NULL; name = name->next) { if (name->kind == AstNode_Ident) { ast_node(i, Ident, name); Entity *param = make_entity_param(c->allocator, scope, i->token, type); add_entity(c, scope, name, param); variables[variable_index++] = param; } else { error(&c->error_collector, ast_node_token(name), "Invalid parameter (invalid AST)"); } } } } tuple->tuple.variables = variables; tuple->tuple.variable_count = field_count; return tuple; } Type *check_get_results(Checker *c, Scope *scope, AstNode *list, isize list_count) { if (list == NULL) return NULL; Type *tuple = make_type_tuple(c->allocator); Entity **variables = gb_alloc_array(c->allocator, Entity *, list_count); isize variable_index = 0; for (AstNode *item = list; item != NULL; item = item->next) { Type *type = check_type(c, item); Token token = ast_node_token(item); token.string = make_string(""); // NOTE(bill): results are not named // TODO(bill): Should I have named results? Entity *param = make_entity_param(c->allocator, scope, token, type); // NOTE(bill): No need to record variables[variable_index++] = param; if (get_base_type(type)->kind == Type_Array) { // TODO(bill): Should I allow array's to returned? error(&c->error_collector, token, "You cannot return an array from a procedure"); } } tuple->tuple.variables = variables; tuple->tuple.variable_count = list_count; return tuple; } void check_procedure_type(Checker *c, Type *type, AstNode *proc_type_node) { ast_node(pt, ProcType, proc_type_node); isize param_count = pt->param_count; isize result_count = pt->result_count; // gb_printf("%td -> %td\n", param_count, result_count); Type *params = check_get_params(c, c->context.scope, pt->param_list, param_count); Type *results = check_get_results(c, c->context.scope, pt->result_list, result_count); type->procedure.scope = c->context.scope; type->procedure.params = params; type->procedure.param_count = pt->param_count; type->procedure.results = results; type->procedure.result_count = pt->result_count; } void check_identifier(Checker *c, Operand *o, AstNode *n, Type *named_type) { GB_ASSERT(n->kind == AstNode_Ident); o->mode = Addressing_Invalid; o->expr = n; ast_node(i, Ident, n); Entity *e = scope_lookup_entity(c->context.scope, i->token.string); if (e == NULL) { error(&c->error_collector, i->token, "Undeclared type or identifier `%.*s`", LIT(i->token.string)); return; } add_entity_use(&c->info, n, e); if (e->type == NULL) { auto *found = map_get(&c->info.entities, hash_pointer(e)); if (found != NULL) { check_entity_decl(c, e, *found, named_type); } else { GB_PANIC("Internal Compiler Error: DeclInfo not found!"); } } if (e->type == NULL) { GB_PANIC("Compiler error: How did this happen? type: %s; identifier: %.*s\n", type_to_string(e->type), LIT(i->token.string)); return; } switch (e->kind) { case Entity_Constant: add_declaration_dependency(c, e); if (e->type == &basic_types[Basic_Invalid]) return; o->value = e->constant.value; GB_ASSERT(o->value.kind != ExactValue_Invalid); o->mode = Addressing_Constant; break; case Entity_Variable: add_declaration_dependency(c, e); e->variable.used = true; if (e->type == &basic_types[Basic_Invalid]) return; o->mode = Addressing_Variable; break; case Entity_TypeName: case Entity_AliasName: o->mode = Addressing_Type; break; case Entity_Procedure: add_declaration_dependency(c, e); o->mode = Addressing_Value; break; case Entity_Builtin: o->builtin_id = e->builtin.id; o->mode = Addressing_Builtin; break; default: GB_PANIC("Compiler error: Unknown EntityKind"); break; } o->type = e->type; } i64 check_array_count(Checker *c, AstNode *e) { if (e) { Operand o = {}; check_expr(c, &o, e); if (o.mode != Addressing_Constant) { if (o.mode != Addressing_Invalid) { error(&c->error_collector, ast_node_token(e), "Array count must be a constant"); } return 0; } if (is_type_untyped(o.type) || is_type_integer(o.type)) { if (o.value.kind == ExactValue_Integer) { i64 count = o.value.value_integer; if (count >= 0) return count; error(&c->error_collector, ast_node_token(e), "Invalid array count"); return 0; } } error(&c->error_collector, ast_node_token(e), "Array count must be an integer"); } return 0; } Type *check_type_expr_extra(Checker *c, AstNode *e, Type *named_type) { gbString err_str = NULL; defer (gb_string_free(err_str)); switch (e->kind) { case_ast_node(i, Ident, e); Operand o = {}; check_identifier(c, &o, e, named_type); switch (o.mode) { case Addressing_Type: { Type *t = o.type; set_base_type(named_type, t); return t; } break; case Addressing_Invalid: break; case Addressing_NoValue: err_str = expr_to_string(e); error(&c->error_collector, ast_node_token(e), "`%s` used as a type", err_str); break; default: err_str = expr_to_string(e); error(&c->error_collector, ast_node_token(e), "`%s` used as a type when not a type", err_str); break; } case_end; case_ast_node(pe, ParenExpr, e); return check_type(c, pe->expr, named_type); case_end; case_ast_node(at, ArrayType, e); if (at->count != NULL) { Type *t = make_type_array(c->allocator, check_type(c, at->elem), check_array_count(c, at->count)); set_base_type(named_type, t); return t; } else { Type *t = make_type_slice(c->allocator, check_type(c, at->elem)); set_base_type(named_type, t); return t; } case_end; case_ast_node(st, StructType, e); Type *t = make_type_structure(c->allocator); set_base_type(named_type, t); check_struct_type(c, t, e); return t; case_end; case_ast_node(pt, PointerType, e); Type *t = make_type_pointer(c->allocator, check_type(c, pt->type)); set_base_type(named_type, t); return t; case_end; case_ast_node(pt, ProcType, e); Type *t = alloc_type(c->allocator, Type_Procedure); set_base_type(named_type, t); check_open_scope(c, e); check_procedure_type(c, t, e); check_close_scope(c); return t; case_end; default: err_str = expr_to_string(e); error(&c->error_collector, ast_node_token(e), "`%s` is not a type", err_str); break; } Type *t = &basic_types[Basic_Invalid]; set_base_type(named_type, t); return t; } Type *check_type(Checker *c, AstNode *e, Type *named_type) { ExactValue null_value = {ExactValue_Invalid}; Type *type = NULL; gbString err_str = NULL; defer (gb_string_free(err_str)); switch (e->kind) { case_ast_node(i, Ident, e); Operand operand = {}; check_identifier(c, &operand, e, named_type); switch (operand.mode) { case Addressing_Type: { type = operand.type; set_base_type(named_type, type); goto end; } break; case Addressing_Invalid: break; case Addressing_NoValue: err_str = expr_to_string(e); error(&c->error_collector, ast_node_token(e), "`%s` used as a type", err_str); break; default: err_str = expr_to_string(e); error(&c->error_collector, ast_node_token(e), "`%s` used as a type when not a type", err_str); break; } case_end; case_ast_node(se, SelectorExpr, e); Operand o = {}; check_selector(c, &o, e); if (o.mode == Addressing_Type) { set_base_type(type, o.type); return o.type; } case_end; case_ast_node(pe, ParenExpr, e); return check_type(c, pe->expr, named_type); case_end; case_ast_node(at, ArrayType, e); if (at->count != NULL) { type = make_type_array(c->allocator, check_type(c, at->elem), check_array_count(c, at->count)); set_base_type(named_type, type); } else { type = make_type_slice(c->allocator, check_type(c, at->elem)); set_base_type(named_type, type); } goto end; case_end; case_ast_node(st, StructType, e); type = make_type_structure(c->allocator); set_base_type(named_type, type); check_struct_type(c, type, e); goto end; case_end; case_ast_node(pt, PointerType, e); type = make_type_pointer(c->allocator, check_type(c, pt->type)); set_base_type(named_type, type); goto end; case_end; case_ast_node(pt, ProcType, e); type = alloc_type(c->allocator, Type_Procedure); set_base_type(named_type, type); check_procedure_type(c, type, e); goto end; case_end; default: err_str = expr_to_string(e); error(&c->error_collector, ast_node_token(e), "`%s` is not a type", err_str); break; } type = &basic_types[Basic_Invalid]; set_base_type(named_type, type); end: GB_ASSERT(is_type_typed(type)); add_type_and_value(&c->info, e, Addressing_Type, type, null_value); return type; } b32 check_unary_op(Checker *c, Operand *o, Token op) { // TODO(bill): Handle errors correctly gbString str = NULL; defer (gb_string_free(str)); switch (op.kind) { case Token_Add: case Token_Sub: if (!is_type_numeric(o->type)) { str = expr_to_string(o->expr); error(&c->error_collector, op, "Operator `%.*s` is not allowed with `%s`", LIT(op.string), str); } break; case Token_Xor: if (!is_type_integer(o->type)) { error(&c->error_collector, op, "Operator `%.*s` is only allowed with integers", LIT(op.string)); } break; case Token_Not: if (!is_type_boolean(o->type)) { str = expr_to_string(o->expr); error(&c->error_collector, op, "Operator `%.*s` is only allowed on boolean expression", LIT(op.string)); } break; default: error(&c->error_collector, op, "Unknown operator `%.*s`", LIT(op.string)); return false; } return true; } b32 check_binary_op(Checker *c, Operand *o, Token op) { // TODO(bill): Handle errors correctly switch (op.kind) { case Token_Add: case Token_Sub: case Token_Mul: case Token_Quo: case Token_AddEq: case Token_SubEq: case Token_MulEq: case Token_QuoEq: if (!is_type_numeric(o->type)) { error(&c->error_collector, op, "Operator `%.*s` is only allowed with numeric expressions", LIT(op.string)); return false; } break; case Token_Mod: case Token_And: case Token_Or: case Token_Xor: case Token_AndNot: case Token_ModEq: case Token_AndEq: case Token_OrEq: case Token_XorEq: case Token_AndNotEq: if (!is_type_integer(o->type)) { error(&c->error_collector, op, "Operator `%.*s` is only allowed with integers", LIT(op.string)); return false; } break; case Token_CmpAnd: case Token_CmpOr: case Token_CmpAndEq: case Token_CmpOrEq: if (!is_type_boolean(o->type)) { error(&c->error_collector, op, "Operator `%.*s` is only allowed with boolean expressions", LIT(op.string)); return false; } break; default: error(&c->error_collector, op, "Unknown operator `%.*s`", LIT(op.string)); return false; } return true; } b32 check_value_is_expressible(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value) { if (in_value.kind == ExactValue_Invalid) return true; if (is_type_boolean(type)) { return in_value.kind == ExactValue_Bool; } else if (is_type_string(type)) { return in_value.kind == ExactValue_String; } else if (is_type_integer(type)) { if (in_value.kind != ExactValue_Integer) return false; if (out_value) *out_value = in_value; i64 i = in_value.value_integer; i64 s = 8*type_size_of(c->sizes, c->allocator, type); u64 umax = ~0ull; if (s < 64) { umax = (1ull << s) - 1ull; } i64 imax = (1ll << (s-1ll)); switch (type->basic.kind) { case Basic_i8: case Basic_i16: case Basic_i32: case Basic_i64: case Basic_int: return gb_is_between(i, -imax, imax-1); case Basic_u8: case Basic_u16: case Basic_u32: case Basic_u64: case Basic_uint: return !(i < 0 || cast(u64)i > umax); case Basic_UntypedInteger: return true; default: GB_PANIC("Compiler error: Unknown integer type!"); break; } } else if (is_type_float(type)) { ExactValue v = exact_value_to_float(in_value); if (v.kind != ExactValue_Float) return false; switch (type->basic.kind) { case Basic_f32: if (out_value) *out_value = v; return true; case Basic_f64: if (out_value) *out_value = v; return true; case Basic_UntypedFloat: return true; } } else if (is_type_pointer(type)) { if (in_value.kind == ExactValue_Pointer) return true; if (in_value.kind == ExactValue_Integer) return true; if (out_value) *out_value = in_value; } return false; } void check_is_expressible(Checker *c, Operand *o, Type *type) { GB_ASSERT(type->kind == Type_Basic); GB_ASSERT(o->mode == Addressing_Constant); if (!check_value_is_expressible(c, o->value, type, &o->value)) { gbString a = type_to_string(o->type); gbString b = type_to_string(type); defer (gb_string_free(a)); defer (gb_string_free(b)); if (is_type_numeric(o->type) && is_type_numeric(type)) { if (!is_type_integer(o->type) && is_type_integer(type)) { error(&c->error_collector, ast_node_token(o->expr), "`%s` truncated to `%s`", a, b); } else { error(&c->error_collector, ast_node_token(o->expr), "`%s` overflows to `%s`", a, b); } } else { error(&c->error_collector, ast_node_token(o->expr), "Cannot convert `%s` to `%s`", a, b); } o->mode = Addressing_Invalid; } } void check_unary_expr(Checker *c, Operand *o, Token op, AstNode *node) { if (op.kind == Token_Pointer) { // Pointer address if (o->mode != Addressing_Variable) { ast_node(ue, UnaryExpr, node); gbString str = expr_to_string(ue->expr); defer (gb_string_free(str)); error(&c->error_collector, op, "Cannot take the pointer address of `%s`", str); o->mode = Addressing_Invalid; return; } o->mode = Addressing_Value; o->type = make_type_pointer(c->allocator, o->type); return; } if (!check_unary_op(c, o, op)) { o->mode = Addressing_Invalid; return; } if (o->mode == Addressing_Constant) { Type *type = get_base_type(o->type); GB_ASSERT(type->kind == Type_Basic); i32 precision = 0; if (is_type_unsigned(type)) precision = cast(i32)(8 * type_size_of(c->sizes, c->allocator, type)); o->value = exact_unary_operator_value(op, o->value, precision); if (is_type_typed(type)) { if (node != NULL) o->expr = node; check_is_expressible(c, o, type); } return; } o->mode = Addressing_Value; } void check_comparison(Checker *c, Operand *x, Operand *y, Token op) { gbString err_str = NULL; defer (gb_string_free(err_str)); if (check_is_assignable_to(c, x, y->type) || check_is_assignable_to(c, y, x->type)) { b32 defined = false; switch (op.kind) { case Token_CmpEq: case Token_NotEq: defined = is_type_comparable(x->type); break; case Token_Lt: case Token_Gt: case Token_LtEq: case Token_GtEq: { defined = is_type_ordered(x->type); } break; } if (!defined) { gbString type_string = type_to_string(x->type); err_str = gb_string_make(gb_heap_allocator(), gb_bprintf("operator `%.*s` not defined for type `%s`", LIT(op.string), type_string)); gb_string_free(type_string); } } else { gbString xt = type_to_string(x->type); gbString yt = type_to_string(y->type); defer(gb_string_free(xt)); defer(gb_string_free(yt)); err_str = gb_string_make(gb_heap_allocator(), gb_bprintf("mismatched types `%s` and `%s`", xt, yt)); } if (err_str) { error(&c->error_collector, op, "Cannot compare expression, %s", err_str); return; } if (x->mode == Addressing_Constant && y->mode == Addressing_Constant) { x->value = make_exact_value_bool(compare_exact_values(op, x->value, y->value)); } else { // TODO(bill): What should I do? } x->type = &basic_types[Basic_UntypedBool]; } void check_binary_expr(Checker *c, Operand *x, AstNode *node) { GB_ASSERT(node->kind == AstNode_BinaryExpr); Operand y_ = {}, *y = &y_; gbString err_str = NULL; defer (gb_string_free(err_str)); ast_node(be, BinaryExpr, node); check_expr(c, x, be->left); check_expr(c, y, be->right); if (x->mode == Addressing_Invalid) return; if (y->mode == Addressing_Invalid) { x->mode = Addressing_Invalid; x->expr = y->expr; return; } convert_to_typed(c, x, y->type); if (x->mode == Addressing_Invalid) return; convert_to_typed(c, y, x->type); if (y->mode == Addressing_Invalid) { x->mode = Addressing_Invalid; return; } Token op = be->op; if (token_is_comparison(op)) { check_comparison(c, x, y, op); return; } if (!are_types_identical(x->type, y->type)) { if (x->type != &basic_types[Basic_Invalid] && y->type != &basic_types[Basic_Invalid]) { gbString xt = type_to_string(x->type); gbString yt = type_to_string(y->type); defer (gb_string_free(xt)); defer (gb_string_free(yt)); err_str = expr_to_string(x->expr); error(&c->error_collector, op, "Mismatched types in binary expression `%s` : `%s` vs `%s`", err_str, xt, yt); } x->mode = Addressing_Invalid; return; } if (!check_binary_op(c, x, op)) { x->mode = Addressing_Invalid; return; } switch (op.kind) { case Token_Quo: case Token_Mod: case Token_QuoEq: case Token_ModEq: if ((x->mode == Addressing_Constant || is_type_integer(x->type)) && y->mode == Addressing_Constant) { b32 fail = false; switch (y->value.kind) { case ExactValue_Integer: if (y->value.value_integer == 0) fail = true; break; case ExactValue_Float: if (y->value.value_float == 0.0) fail = true; break; } if (fail) { error(&c->error_collector, ast_node_token(y->expr), "Division by zero not allowed"); x->mode = Addressing_Invalid; return; } } } if (x->mode == Addressing_Constant && y->mode == Addressing_Constant) { ExactValue a = x->value; ExactValue b = y->value; Type *type = get_base_type(x->type); GB_ASSERT(type->kind == Type_Basic); if (op.kind == Token_Quo && is_type_integer(type)) { op.kind = Token_QuoEq; // NOTE(bill): Hack to get division of integers } x->value = exact_binary_operator_value(op, a, b); if (is_type_typed(type)) { if (node != NULL) x->expr = node; check_is_expressible(c, x, type); } return; } x->mode = Addressing_Value; } void update_expr_type(Checker *c, AstNode *e, Type *type) { ExpressionInfo *found = map_get(&c->info.untyped, hash_pointer(e)); if (!found) return; switch (e->kind) { case_ast_node(ue, UnaryExpr, e); if (found->value.kind != ExactValue_Invalid) break; update_expr_type(c, ue->expr, type); break; case_end; case_ast_node(be, BinaryExpr, e); if (found->value.kind != ExactValue_Invalid) break; if (!token_is_comparison(be->op)) { update_expr_type(c, be->left, type); update_expr_type(c, be->right, type); } case_end; } if (is_type_untyped(type)) { found->type = get_base_type(type); } else { found->type = type; } } void update_expr_value(Checker *c, AstNode *e, ExactValue value) { ExpressionInfo *found = map_get(&c->info.untyped, hash_pointer(e)); if (found) found->value = value; } void convert_untyped_error(Checker *c, Operand *operand, Type *target_type) { gbString expr_str = expr_to_string(operand->expr); gbString type_str = type_to_string(target_type); char *extra_text = ""; defer (gb_string_free(expr_str)); defer (gb_string_free(type_str)); if (operand->mode == Addressing_Constant) { if (operand->value.value_integer == 0) { // NOTE(bill): Doesn't matter what the type is as it's still zero in the union extra_text = " - Did you want `null`?"; } } error(&c->error_collector, ast_node_token(operand->expr), "Cannot convert `%s` to `%s`%s", expr_str, type_str, extra_text); operand->mode = Addressing_Invalid; } void convert_to_typed(Checker *c, Operand *operand, Type *target_type) { GB_ASSERT_NOT_NULL(target_type); if (operand->mode == Addressing_Invalid || is_type_typed(operand->type) || target_type == &basic_types[Basic_Invalid]) { return; } if (is_type_untyped(target_type)) { Type *x = operand->type; Type *y = target_type; if (is_type_numeric(x) && is_type_numeric(y)) { if (x < y) { operand->type = target_type; update_expr_type(c, operand->expr, target_type); } } else if (x != y) { convert_untyped_error(c, operand, target_type); } return; } Type *t = get_base_type(target_type); switch (t->kind) { case Type_Basic: if (operand->mode == Addressing_Constant) { check_is_expressible(c, operand, t); if (operand->mode == Addressing_Invalid) { return; } update_expr_value(c, operand->expr, operand->value); } else { // TODO(bill): Is this really needed? switch (operand->type->basic.kind) { case Basic_UntypedBool: if (!is_type_boolean(target_type)) { convert_untyped_error(c, operand, target_type); return; } break; case Basic_UntypedInteger: case Basic_UntypedFloat: case Basic_UntypedRune: if (!is_type_numeric(target_type)) { convert_untyped_error(c, operand, target_type); return; } break; } } break; case Type_Pointer: switch (operand->type->basic.kind) { case Basic_UntypedPointer: target_type = &basic_types[Basic_UntypedPointer]; break; default: convert_untyped_error(c, operand, target_type); return; } break; default: convert_untyped_error(c, operand, target_type); return; } operand->type = target_type; } b32 check_index_value(Checker *c, AstNode *index_value, i64 max_count, i64 *value) { Operand operand = {Addressing_Invalid}; check_expr(c, &operand, index_value); if (operand.mode == Addressing_Invalid) { if (value) *value = 0; return false; } convert_to_typed(c, &operand, &basic_types[Basic_int]); if (operand.mode == Addressing_Invalid) { if (value) *value = 0; return false; } if (!is_type_integer(operand.type)) { gbString expr_str = expr_to_string(operand.expr); error(&c->error_collector, ast_node_token(operand.expr), "Index `%s` must be an integer", expr_str); gb_string_free(expr_str); if (value) *value = 0; return false; } if (operand.mode == Addressing_Constant) { if (max_count >= 0) { // NOTE(bill): Do array bound checking i64 i = exact_value_to_integer(operand.value).value_integer; if (i < 0) { gbString expr_str = expr_to_string(operand.expr); error(&c->error_collector, ast_node_token(operand.expr), "Index `%s` cannot be a negative value", expr_str); gb_string_free(expr_str); if (value) *value = 0; return false; } if (value) *value = i; if (i >= max_count) { gbString expr_str = expr_to_string(operand.expr); error(&c->error_collector, ast_node_token(operand.expr), "Index `%s` is out of bounds range [0, %lld)", expr_str, max_count); gb_string_free(expr_str); return false; } return true; } } // NOTE(bill): It's alright :D if (value) *value = -1; return true; } Entity *lookup_field(Type *type, AstNode *field_node, isize *index = NULL) { GB_ASSERT(field_node->kind == AstNode_Ident); type = get_base_type(type); if (type->kind == Type_Pointer) type = get_base_type(type->pointer.element); ast_node(i, Ident, field_node); String field_str = i->token.string; switch (type->kind) { case Type_Structure: for (isize i = 0; i < type->structure.field_count; i++) { Entity *f = type->structure.fields[i]; GB_ASSERT(f->kind == Entity_Variable && f->variable.is_field); String str = f->token.string; if (are_strings_equal(field_str, str)) { if (index) *index = i; return f; } } break; // TODO(bill): Other types and extra "hidden" fields (e.g. introspection stuff) // TODO(bill): Allow for access of field through index? e.g. `x.3` will get member of index 3 // Or is this only suitable if tuples are first-class? } return NULL; } void check_selector(Checker *c, Operand *operand, AstNode *node) { GB_ASSERT(node->kind == AstNode_SelectorExpr); ast_node(se, SelectorExpr, node); AstNode *op_expr = se->expr; AstNode *selector = se->selector; if (selector) { Entity *entity = lookup_field(operand->type, selector); if (entity == NULL) { gbString op_str = expr_to_string(op_expr); gbString sel_str = expr_to_string(selector); defer (gb_string_free(op_str)); defer (gb_string_free(sel_str)); error(&c->error_collector, ast_node_token(op_expr), "`%s` has no field `%s`", op_str, sel_str); operand->mode = Addressing_Invalid; operand->expr = node; return; } add_entity_use(&c->info, selector, entity); operand->type = entity->type; operand->expr = node; if (operand->mode != Addressing_Variable) operand->mode = Addressing_Value; } else { operand->mode = Addressing_Invalid; operand->expr = node; } } b32 check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id) { GB_ASSERT(call->kind == AstNode_CallExpr); ast_node(ce, CallExpr, call); BuiltinProcedure *bp = &builtin_procedures[id]; { char *err = NULL; if (ce->arg_list_count < bp->arg_count) err = "Too few"; if (ce->arg_list_count > bp->arg_count && !bp->variadic) err = "Too many"; if (err) { ast_node(proc, Ident, ce->proc); error(&c->error_collector, ce->close, "`%s` arguments for `%.*s`, expected %td, got %td", err, LIT(proc->token.string), bp->arg_count, ce->arg_list_count); return false; } } switch (id) { case BuiltinProcedure_size_of: case BuiltinProcedure_align_of: case BuiltinProcedure_offset_of: // NOTE(bill): The first arg is a Type, this will be checked case by case break; default: check_multi_expr(c, operand, ce->arg_list); } switch (id) { case BuiltinProcedure_size_of: { // size_of :: proc(Type) Type *type = check_type(c, ce->arg_list); if (!type) { error(&c->error_collector, ast_node_token(ce->arg_list), "Expected a type for `size_of`"); return false; } operand->mode = Addressing_Constant; operand->value = make_exact_value_integer(type_size_of(c->sizes, c->allocator, type)); operand->type = &basic_types[Basic_int]; } break; case BuiltinProcedure_size_of_val: // size_of_val :: proc(val) check_assignment(c, operand, NULL, make_string("argument of `size_of`")); if (operand->mode == Addressing_Invalid) return false; operand->mode = Addressing_Constant; operand->value = make_exact_value_integer(type_size_of(c->sizes, c->allocator, operand->type)); operand->type = &basic_types[Basic_int]; break; case BuiltinProcedure_align_of: { // align_of :: proc(Type) Type *type = check_type(c, ce->arg_list); if (!type) { error(&c->error_collector, ast_node_token(ce->arg_list), "Expected a type for `align_of`"); return false; } operand->mode = Addressing_Constant; operand->value = make_exact_value_integer(type_align_of(c->sizes, c->allocator, type)); operand->type = &basic_types[Basic_int]; } break; case BuiltinProcedure_align_of_val: // align_of_val :: proc(val) check_assignment(c, operand, NULL, make_string("argument of `align_of`")); if (operand->mode == Addressing_Invalid) return false; operand->mode = Addressing_Constant; operand->value = make_exact_value_integer(type_align_of(c->sizes, c->allocator, operand->type)); operand->type = &basic_types[Basic_int]; break; case BuiltinProcedure_offset_of: { // offset_val :: proc(Type, field) Type *type = get_base_type(check_type(c, ce->arg_list)); AstNode *field_arg = unparen_expr(ce->arg_list->next); if (type) { if (type->kind != Type_Structure) { error(&c->error_collector, ast_node_token(ce->arg_list), "Expected a structure type for `offset_of`"); return false; } if (field_arg == NULL || field_arg->kind != AstNode_Ident) { error(&c->error_collector, ast_node_token(field_arg), "Expected an identifier for field argument"); return false; } } isize index = 0; Entity *entity = lookup_field(type, field_arg, &index); if (entity == NULL) { ast_node(arg, Ident, field_arg); gbString type_str = type_to_string(type); error(&c->error_collector, ast_node_token(ce->arg_list), "`%s` has no field named `%.*s`", type_str, LIT(arg->token.string)); return false; } operand->mode = Addressing_Constant; operand->value = make_exact_value_integer(type_offset_of(c->sizes, c->allocator, type, index)); operand->type = &basic_types[Basic_int]; } break; case BuiltinProcedure_offset_of_val: { // offset_val :: proc(val) AstNode *arg = unparen_expr(ce->arg_list); if (arg->kind != AstNode_SelectorExpr) { gbString str = expr_to_string(arg); error(&c->error_collector, ast_node_token(arg), "`%s` is not a selector expression", str); return false; } ast_node(s, SelectorExpr, arg); check_expr(c, operand, s->expr); if (operand->mode == Addressing_Invalid) return false; Type *type = operand->type; if (get_base_type(type)->kind == Type_Pointer) { Type *p = get_base_type(type); if (get_base_type(p)->kind == Type_Structure) type = p->pointer.element; } isize index = 0; Entity *entity = lookup_field(type, s->selector, &index); if (entity == NULL) { ast_node(i, Ident, s->selector); gbString type_str = type_to_string(type); error(&c->error_collector, ast_node_token(arg), "`%s` has no field named `%.*s`", type_str, LIT(i->token.string)); return false; } operand->mode = Addressing_Constant; operand->value = make_exact_value_integer(type_offset_of(c->sizes, c->allocator, type, index)); operand->type = &basic_types[Basic_int]; } break; case BuiltinProcedure_static_assert: // static_assert :: proc(cond: bool) // TODO(bill): Should `static_assert` and `assert` be unified? if (operand->mode != Addressing_Constant || !is_type_boolean(operand->type)) { gbString str = expr_to_string(ce->arg_list); defer (gb_string_free(str)); error(&c->error_collector, ast_node_token(call), "`%s` is not a constant boolean", str); return false; } if (!operand->value.value_bool) { gbString str = expr_to_string(ce->arg_list); defer (gb_string_free(str)); error(&c->error_collector, ast_node_token(call), "Static assertion: `%s`", str); return true; } break; // TODO(bill): Should these be procedures and are their names appropriate? case BuiltinProcedure_len: case BuiltinProcedure_cap: { Type *t = get_base_type(operand->type); AddressingMode mode = Addressing_Invalid; ExactValue value = {}; switch (t->kind) { case Type_Basic: if (id == BuiltinProcedure_len) { if (is_type_string(t)) { if (operand->mode == Addressing_Constant) { mode = Addressing_Constant; value = make_exact_value_integer(operand->value.value_string.len); } else { mode = Addressing_Value; } } } break; case Type_Array: mode = Addressing_Constant; value = make_exact_value_integer(t->array.count); break; case Type_Slice: mode = Addressing_Value; break; } if (mode == Addressing_Invalid) { gbString str = expr_to_string(operand->expr); error(&c->error_collector, ast_node_token(operand->expr), "Invalid expression `%s` for `%.*s`", str, LIT(bp->name)); gb_string_free(str); return false; } operand->mode = mode; operand->type = &basic_types[Basic_int]; operand->value = value; } break; // TODO(bill): copy() pointer version? case BuiltinProcedure_copy: { // copy :: proc(x, y: []Type) -> int Type *dest_type = NULL, *src_type = NULL; Type *d = get_base_type(operand->type); if (d->kind == Type_Slice) dest_type = d->slice.element; Operand op = {}; check_expr(c, &op, ce->arg_list->next); if (op.mode == Addressing_Invalid) return false; Type *s = get_base_type(op.type); if (s->kind == Type_Slice) src_type = s->slice.element; if (dest_type == NULL || src_type == NULL) { error(&c->error_collector, ast_node_token(call), "`copy` only expects slices as arguments"); return false; } if (!are_types_identical(dest_type, src_type)) { gbString d_arg = expr_to_string(ce->arg_list); gbString s_arg = expr_to_string(ce->arg_list->next); gbString d_str = type_to_string(dest_type); gbString s_str = type_to_string(src_type); defer (gb_string_free(d_arg)); defer (gb_string_free(s_arg)); defer (gb_string_free(d_str)); defer (gb_string_free(s_str)); error(&c->error_collector, ast_node_token(call), "Arguments to `copy`, %s, %s, have different element types: %s vs %s", d_arg, s_arg, d_str, s_str); return false; } operand->type = &basic_types[Basic_int]; // Returns number of elements copied operand->mode = Addressing_Value; } break; case BuiltinProcedure_print: case BuiltinProcedure_println: { for (AstNode *arg = ce->arg_list; arg != NULL; arg = arg->next) { // TOOD(bill): `check_assignment` doesn't allow tuples at the moment, should it? // Or should we destruct the tuple and use each element? check_assignment(c, operand, NULL, make_string("argument")); if (operand->mode == Addressing_Invalid) return false; } } break; } return true; } void check_call_arguments(Checker *c, Operand *operand, Type *proc_type, AstNode *call) { GB_ASSERT(call->kind == AstNode_CallExpr); GB_ASSERT(proc_type->kind == Type_Procedure); ast_node(ce, CallExpr, call); isize error_code = 0; isize param_index = 0; isize param_count = 0; if (proc_type->procedure.params) param_count = proc_type->procedure.params->tuple.variable_count; if (ce->arg_list_count == 0 && param_count == 0) return; if (ce->arg_list_count > param_count) { error_code = +1; } else { Entity **sig_params = proc_type->procedure.params->tuple.variables; AstNode *call_arg = ce->arg_list; for (; call_arg != NULL; call_arg = call_arg->next) { check_multi_expr(c, operand, call_arg); if (operand->mode == Addressing_Invalid) continue; if (operand->type->kind != Type_Tuple) { check_not_tuple(c, operand); check_assignment(c, operand, sig_params[param_index]->type, make_string("argument")); param_index++; } else { auto *tuple = &operand->type->tuple; isize i = 0; for (; i < tuple->variable_count && param_index < param_count; i++, param_index++) { Entity *e = tuple->variables[i]; operand->type = e->type; operand->mode = Addressing_Value; check_not_tuple(c, operand); check_assignment(c, operand, sig_params[param_index]->type, make_string("argument")); } if (i < tuple->variable_count && param_index == param_count) { error_code = +1; break; } } if (param_index >= param_count) break; } if (param_index < param_count) { error_code = -1; } else if (call_arg != NULL && call_arg->next != NULL) { error_code = +1; } } if (error_code != 0) { char *err_fmt = ""; if (error_code < 0) { err_fmt = "Too few arguments for `%s`, expected %td arguments"; } else { err_fmt = "Too many arguments for `%s`, expected %td arguments"; } gbString proc_str = expr_to_string(ce->proc); error(&c->error_collector, ast_node_token(call), err_fmt, proc_str, param_count); gb_string_free(proc_str); operand->mode = Addressing_Invalid; } } ExpressionKind check_call_expr(Checker *c, Operand *operand, AstNode *call) { GB_ASSERT(call->kind == AstNode_CallExpr); ast_node(ce, CallExpr, call); check_expr_or_type(c, operand, ce->proc); if (operand->mode == Addressing_Invalid) { for (AstNode *arg = ce->arg_list; arg != NULL; arg = arg->next) check_expr_base(c, operand, arg); operand->mode = Addressing_Invalid; operand->expr = call; return Expression_Statement; } if (operand->mode == Addressing_Builtin) { i32 id = operand->builtin_id; if (!check_builtin_procedure(c, operand, call, id)) operand->mode = Addressing_Invalid; operand->expr = call; return builtin_procedures[id].kind; } Type *proc_type = get_base_type(operand->type); if (proc_type == NULL || proc_type->kind != Type_Procedure) { AstNode *e = operand->expr; gbString str = expr_to_string(e); defer (gb_string_free(str)); error(&c->error_collector, ast_node_token(e), "Cannot call a non-procedure: `%s`", str); operand->mode = Addressing_Invalid; operand->expr = call; return Expression_Statement; } check_call_arguments(c, operand, proc_type, call); auto *proc = &proc_type->procedure; if (proc->result_count == 0) { operand->mode = Addressing_NoValue; } else if (proc->result_count == 1) { operand->mode = Addressing_Value; operand->type = proc->results->tuple.variables[0]->type; } else { operand->mode = Addressing_Value; operand->type = proc->results; } operand->expr = call; return Expression_Statement; } b32 check_castable_to(Checker *c, Operand *operand, Type *y) { if (check_is_assignable_to(c, operand, y)) return true; Type *x = operand->type; Type *xb = get_base_type(x); Type *yb = get_base_type(y); if (are_types_identical(xb, yb)) return true; // Cast between numbers if (is_type_integer(x) || is_type_float(x)) { if (is_type_integer(y) || is_type_float(y)) return true; } // Cast between pointers if (is_type_pointer(x)) { if (is_type_pointer(y)) return true; } // untyped integers -> pointers if (is_type_untyped(xb) && is_type_integer(xb)) { if (is_type_pointer(yb)) return true; } // (u)int <-> pointer if (is_type_pointer(xb) || is_type_int_or_uint(xb)) { if (is_type_pointer(yb)) return true; } if (is_type_pointer(xb)) { if (is_type_pointer(yb) || is_type_int_or_uint(yb)) return true; } return false; } void check_cast_expr(Checker *c, Operand *operand, Type *type) { b32 is_const_expr = operand->mode == Addressing_Constant; b32 can_convert = false; if (is_const_expr && is_type_constant_type(type)) { Type *t = get_base_type(type); if (t->kind == Type_Basic) { if (check_value_is_expressible(c, operand->value, t, &operand->value)) { can_convert = true; } } } else if (check_castable_to(c, operand, type)) { operand->mode = Addressing_Value; can_convert = true; } if (!can_convert) { gbString expr_str = expr_to_string(operand->expr); gbString type_str = type_to_string(type); defer (gb_string_free(expr_str)); defer (gb_string_free(type_str)); error(&c->error_collector, ast_node_token(operand->expr), "Cannot cast `%s` to `%s`", expr_str, type_str); operand->mode = Addressing_Invalid; return; } operand->type = type; } void check_expr_with_type_hint(Checker *c, Operand *o, AstNode *e, Type *t) { check_expr_base(c, o, e, t); check_not_tuple(c, o); char *err_str = NULL; switch (o->mode) { case Addressing_NoValue: err_str = "used as a value"; break; case Addressing_Type: err_str = "is not an expression"; break; case Addressing_Builtin: err_str = "must be called"; break; } if (err_str != NULL) { gbString str = expr_to_string(e); defer (gb_string_free(str)); error(&c->error_collector, ast_node_token(e), "`%s` %s", str, err_str); o->mode = Addressing_Invalid; } } ExpressionKind check__expr_base(Checker *c, Operand *o, AstNode *node, Type *type_hint) { ExpressionKind kind = Expression_Statement; o->mode = Addressing_Invalid; o->type = &basic_types[Basic_Invalid]; switch (node->kind) { case_ast_node(be, BadExpr, node) goto error; case_end; case_ast_node(i, Ident, node); check_identifier(c, o, node, type_hint); case_end; case_ast_node(bl, BasicLit, node); BasicKind basic_kind = Basic_Invalid; switch (bl->kind) { case Token_Integer: basic_kind = Basic_UntypedInteger; break; case Token_Float: basic_kind = Basic_UntypedFloat; break; case Token_String: basic_kind = Basic_UntypedString; break; case Token_Rune: basic_kind = Basic_UntypedRune; break; default: GB_PANIC("Unknown literal"); break; } o->mode = Addressing_Constant; o->type = &basic_types[basic_kind]; o->value = make_exact_value_from_basic_literal(*bl); case_end; case_ast_node(pl, ProcLit, node); Scope *origin_curr_scope = c->context.scope; Type *proc_type = check_type(c, pl->type); if (proc_type != NULL) { check_proc_body(c, empty_token, c->context.decl, proc_type, pl->body); o->mode = Addressing_Value; o->type = proc_type; } else { gbString str = expr_to_string(node); error(&c->error_collector, ast_node_token(node), "Invalid procedure literal `%s`", str); gb_string_free(str); goto error; } case_end; case_ast_node(cl, CompoundLit, node); Type *type = type_hint; if (cl->type != NULL) { type = check_type(c, cl->type); } if (type == NULL) { error(&c->error_collector, ast_node_token(node), "Missing type in compound literal"); goto error; } Type *t = get_base_type(type); switch (t->kind) { case Type_Structure: { if (cl->elem_count == 0) break; // NOTE(bill): No need to init { // Checker values AstNode *elem = cl->elem_list; isize field_count = t->structure.field_count; isize index = 0; for (; elem != NULL; elem = elem->next, index++) { Entity *field = t->structure.fields[index]; check_expr(c, o, elem); if (index >= field_count) { error(&c->error_collector, ast_node_token(o->expr), "Too many values in structure literal, expected %td", field_count); break; } check_assignment(c, o, field->type, make_string("structure literal")); } if (cl->elem_count < field_count) { error(&c->error_collector, cl->close, "Too few values in structure literal, expected %td, got %td", field_count, cl->elem_count); } } } break; case Type_Slice: case Type_Array: { Type *element_type = NULL; String context_name = {}; if (t->kind == Type_Slice) { element_type = t->slice.element; context_name = make_string("slice literal"); } else { element_type = t->array.element; context_name = make_string("array literal"); } i64 index = 0; i64 max = 0; for (AstNode *elem = cl->elem_list; elem != NULL; elem = elem->next, index++) { AstNode *e = elem; if (t->kind == Type_Array && t->array.count >= 0 && index >= t->array.count) { error(&c->error_collector, ast_node_token(elem), "Index %lld is out of bounds (>= %lld)", index, t->array.count); } Operand o = {}; check_expr_with_type_hint(c, &o, e, element_type); check_assignment(c, &o, element_type, context_name); } if (max < index) max = index; } break; default: { gbString str = type_to_string(t); error(&c->error_collector, ast_node_token(node), "Invalid compound literal type `%s`", str); gb_string_free(str); goto error; } break; } o->mode = Addressing_Value; o->type = type; case_end; case_ast_node(pe, ParenExpr, node); kind = check_expr_base(c, o, pe->expr, type_hint); o->expr = node; case_end; case_ast_node(te, TagExpr, node); // TODO(bill): Tag expressions error(&c->error_collector, ast_node_token(node), "Tag expressions are not supported yet"); kind = check_expr_base(c, o, te->expr, type_hint); o->expr = node; case_end; case_ast_node(ue, UnaryExpr, node); check_expr(c, o, ue->expr); if (o->mode == Addressing_Invalid) goto error; check_unary_expr(c, o, ue->op, node); if (o->mode == Addressing_Invalid) goto error; case_end; case_ast_node(be, BinaryExpr, node); check_binary_expr(c, o, node); if (o->mode == Addressing_Invalid) goto error; case_end; case_ast_node(se, SelectorExpr, node); check_expr_base(c, o, se->expr); check_selector(c, o, node); case_end; case_ast_node(ie, IndexExpr, node); check_expr(c, o, ie->expr); if (o->mode == Addressing_Invalid) goto error; b32 valid = false; i64 max_count = -1; Type *t = get_base_type(o->type); switch (t->kind) { case Type_Basic: if (is_type_string(t)) { valid = true; if (o->mode == Addressing_Constant) { max_count = o->value.value_string.len; } o->mode = Addressing_Value; o->type = &basic_types[Basic_u8]; } break; case Type_Array: valid = true; max_count = t->array.count; if (o->mode != Addressing_Variable) o->mode = Addressing_Value; o->type = t->array.element; break; case Type_Slice: valid = true; o->type = t->slice.element; o->mode = Addressing_Variable; break; case Type_Pointer: valid = true; o->mode = Addressing_Variable; o->type = get_base_type(t->pointer.element); break; } if (!valid) { gbString str = expr_to_string(o->expr); error(&c->error_collector, ast_node_token(o->expr), "Cannot index `%s`", str); gb_string_free(str); goto error; } if (ie->index == NULL) { gbString str = expr_to_string(o->expr); error(&c->error_collector, ast_node_token(o->expr), "Missing index for `%s`", str); gb_string_free(str); goto error; } check_index_value(c, ie->index, max_count, NULL); case_end; case_ast_node(se, SliceExpr, node); check_expr(c, o, se->expr); if (o->mode == Addressing_Invalid) goto error; b32 valid = false; i64 max_count = -1; Type *t = get_base_type(o->type); switch (t->kind) { case Type_Basic: if (is_type_string(t)) { valid = true; if (o->mode == Addressing_Constant) { max_count = o->value.value_string.len; } o->mode = Addressing_Value; } break; case Type_Array: valid = true; max_count = t->array.count; if (o->mode != Addressing_Variable) { gbString str = expr_to_string(node); error(&c->error_collector, ast_node_token(node), "Cannot slice array `%s`, value is not addressable", str); gb_string_free(str); goto error; } o->type = make_type_slice(c->allocator, t->array.element); o->mode = Addressing_Value; break; case Type_Slice: valid = true; o->mode = Addressing_Value; break; case Type_Pointer: valid = true; o->type = make_type_slice(c->allocator, get_base_type(t->pointer.element)); o->mode = Addressing_Value; break; } if (!valid) { gbString str = expr_to_string(o->expr); error(&c->error_collector, ast_node_token(o->expr), "Cannot slice `%s`", str); gb_string_free(str); goto error; } i64 indices[3] = {}; AstNode *nodes[3] = {se->low, se->high, se->max}; for (isize i = 0; i < gb_count_of(nodes); i++) { i64 index = max_count; if (nodes[i] != NULL) { i64 capacity = -1; if (max_count >= 0) capacity = max_count; i64 j = 0; if (check_index_value(c, nodes[i], capacity, &j)) { index = j; } } else if (i == 0) { index = 0; } indices[i] = index; } for (isize i = 0; i < gb_count_of(indices); i++) { i64 a = indices[i]; for (isize j = i+1; j < gb_count_of(indices); j++) { i64 b = indices[j]; if (a > b && b >= 0) { error(&c->error_collector, se->close, "Invalid slice indices: [%td > %td]", a, b); } } } case_end; case_ast_node(ce, CastExpr, node); Type *cast_type = check_type(c, ce->type); check_expr_or_type(c, o, ce->expr); if (o->mode != Addressing_Invalid) check_cast_expr(c, o, cast_type); case_end; case_ast_node(ce, CallExpr, node); return check_call_expr(c, o, node); case_end; case_ast_node(de, DerefExpr, node); check_expr_or_type(c, o, de->expr); if (o->mode == Addressing_Invalid) { goto error; } else { Type *t = get_base_type(o->type); if (t->kind == Type_Pointer) { o->mode = Addressing_Variable; o->type = t->pointer.element; } else { gbString str = expr_to_string(o->expr); error(&c->error_collector, ast_node_token(o->expr), "Cannot dereference `%s`", str); gb_string_free(str); goto error; } } case_end; case AstNode_ProcType: case AstNode_PointerType: case AstNode_ArrayType: case AstNode_StructType: o->mode = Addressing_Type; o->type = check_type(c, node); break; } kind = Expression_Expression; o->expr = node; return kind; error: o->mode = Addressing_Invalid; o->expr = node; return kind; } ExpressionKind check_expr_base(Checker *c, Operand *o, AstNode *node, Type *type_hint) { ExpressionKind kind = check__expr_base(c, o, node, type_hint); Type *type = NULL; ExactValue value = {ExactValue_Invalid}; switch (o->mode) { case Addressing_Invalid: type = &basic_types[Basic_Invalid]; break; case Addressing_NoValue: type = NULL; break; case Addressing_Constant: type = o->type; value = o->value; break; default: type = o->type; break; } if (type != NULL) { if (is_type_untyped(type)) { add_untyped(&c->info, node, false, o->mode, type, value); } else { add_type_and_value(&c->info, node, o->mode, type, value); } } return kind; } void check_multi_expr(Checker *c, Operand *o, AstNode *e) { gbString err_str = NULL; defer (gb_string_free(err_str)); check_expr_base(c, o, e); switch (o->mode) { default: return; // NOTE(bill): Valid case Addressing_NoValue: err_str = expr_to_string(e); error(&c->error_collector, ast_node_token(e), "`%s` used as value", err_str); break; case Addressing_Type: err_str = expr_to_string(e); error(&c->error_collector, ast_node_token(e), "`%s` is not an expression", err_str); break; } o->mode = Addressing_Invalid; } // TODO(bill): Should I remove this entirely? void check_not_tuple(Checker *c, Operand *o) { if (o->mode == Addressing_Value) { // NOTE(bill): Tuples are not first class thus never named if (o->type->kind == Type_Tuple) { isize count = o->type->tuple.variable_count; GB_ASSERT(count != 1); error(&c->error_collector, ast_node_token(o->expr), "%td-valued tuple found where single value expected", count); o->mode = Addressing_Invalid; } } } void check_expr(Checker *c, Operand *o, AstNode *e) { check_multi_expr(c, o, e); check_not_tuple(c, o); } void check_expr_or_type(Checker *c, Operand *o, AstNode *e) { check_expr_base(c, o, e); check_not_tuple(c, o); if (o->mode == Addressing_NoValue) { AstNode *e = o->expr; gbString str = expr_to_string(e); defer (gb_string_free(str)); error(&c->error_collector, ast_node_token(e), "`%s` used as value or type", str); o->mode = Addressing_Invalid; } } gbString write_expr_to_string(gbString str, AstNode *node); gbString write_field_list_to_string(gbString str, AstNode *field_list, char *sep) { isize i = 0; for (AstNode *field = field_list; field != NULL; field = field->next) { ast_node(f, Field, field); if (i > 0) str = gb_string_appendc(str, sep); isize j = 0; for (AstNode *name = f->name_list; name != NULL; name = name->next) { if (j > 0) str = gb_string_appendc(str, ", "); str = write_expr_to_string(str, name); j++; } str = gb_string_appendc(str, ": "); str = write_expr_to_string(str, f->type); i++; } return str; } gbString string_append_token(gbString str, Token token) { return gb_string_append_length(str, token.string.text, token.string.len); } gbString write_expr_to_string(gbString str, AstNode *node) { if (node == NULL) return str; switch (node->kind) { default: str = gb_string_appendc(str, "(bad expression)"); break; case_ast_node(i, Ident, node); str = string_append_token(str, i->token); case_end; case_ast_node(bl, BasicLit, node); str = string_append_token(str, *bl); case_end; case_ast_node(pl, ProcLit, node); str = write_expr_to_string(str, pl->type); case_end; case_ast_node(cl, CompoundLit, node); str = gb_string_appendc(str, "("); str = write_expr_to_string(str, cl->type); str = gb_string_appendc(str, " literal)"); case_end; case_ast_node(te, TagExpr, node); str = gb_string_appendc(str, "#"); str = string_append_token(str, te->name); str = write_expr_to_string(str, te->expr); case_end; case_ast_node(ue, UnaryExpr, node); str = string_append_token(str, ue->op); str = write_expr_to_string(str, ue->expr); case_end; case_ast_node(be, BinaryExpr, node); str = write_expr_to_string(str, be->left); str = gb_string_appendc(str, " "); str = string_append_token(str, be->op); str = gb_string_appendc(str, " "); str = write_expr_to_string(str, be->right); case_end; case_ast_node(pe, ParenExpr, node); str = gb_string_appendc(str, "("); str = write_expr_to_string(str, pe->expr); str = gb_string_appendc(str, ")"); case_end; case_ast_node(se, SelectorExpr, node); str = write_expr_to_string(str, se->expr); str = gb_string_appendc(str, "."); str = write_expr_to_string(str, se->selector); case_end; case_ast_node(ie, IndexExpr, node); str = write_expr_to_string(str, ie->expr); str = gb_string_appendc(str, "["); str = write_expr_to_string(str, ie->index); str = gb_string_appendc(str, "]"); case_end; case_ast_node(se, SliceExpr, node); str = write_expr_to_string(str, se->expr); str = gb_string_appendc(str, "["); str = write_expr_to_string(str, se->low); str = gb_string_appendc(str, ":"); str = write_expr_to_string(str, se->high); if (se->triple_indexed) { str = gb_string_appendc(str, ":"); str = write_expr_to_string(str, se->max); } str = gb_string_appendc(str, "]"); case_end; case_ast_node(ce, CastExpr, node); str = gb_string_appendc(str, "cast("); str = write_expr_to_string(str, ce->type); str = gb_string_appendc(str, ")"); str = write_expr_to_string(str, ce->expr); case_end; case_ast_node(pt, PointerType, node); str = gb_string_appendc(str, "^"); str = write_expr_to_string(str, pt->type); case_end; case_ast_node(at, ArrayType, node); str = gb_string_appendc(str, "["); str = write_expr_to_string(str, at->count); str = gb_string_appendc(str, "]"); str = write_expr_to_string(str, at->elem); case_end; case_ast_node(ce, CallExpr, node); str = write_expr_to_string(str, ce->proc); str = gb_string_appendc(str, "("); isize i = 0; for (AstNode *arg = ce->arg_list; arg != NULL; arg = arg->next) { if (i > 0) gb_string_appendc(str, ", "); str = write_expr_to_string(str, arg); i++; } str = gb_string_appendc(str, ")"); case_end; case_ast_node(pt, ProcType, node); str = gb_string_appendc(str, "proc("); str = write_field_list_to_string(str, pt->param_list, ", "); str = gb_string_appendc(str, ")"); case_end; case_ast_node(st, StructType, node); str = gb_string_appendc(str, "struct{"); str = write_field_list_to_string(str, st->field_list, ", "); str = gb_string_appendc(str, "}"); case_end; } return str; } gbString expr_to_string(AstNode *expression) { return write_expr_to_string(gb_string_make(gb_heap_allocator(), ""), expression); }