package runtime import "core:intrinsics" _ :: intrinsics // High performance, cache-friendly, open-addressed Robin Hood hashing hash map // data structure with various optimizations for Odin. // // Copyright 2022 (c) Dale Weiler // // The core of the hash map data structure is the Raw_Map struct which is a // type-erased representation of the map. This type-erased representation is // used in two ways: static and dynamic. When static type information is known, // the procedures suffixed with _static should be used instead of _dynamic. The // static procedures are optimized since they have type information. Hashing of // keys, comparison of keys, and data lookup are all optimized. When type // information is not known, the procedures suffixed with _dynamic should be // used. The representation of the map is the same for both static and dynamic, // and procedures of each can be mixed and matched. The purpose of the dynamic // representation is to enable reflection and runtime manipulation of the map. // The dynamic procedures all take an additional Map_Info structure parameter // which carries runtime values describing the size, alignment, and offset of // various traits of a given key and value type pair. The Map_Info value can // be created by calling map_info(K, V) with the key and value typeids. // // This map implementation makes extensive use of uintptr for representing // sizes, lengths, capacities, masks, pointers, offsets, and addresses to avoid // expensive sign extension and masking that would be generated if types were // casted all over. The only place regular ints show up is in the cap() and // len() implementations. // // To make this map cache-friendly it uses a novel strategy to ensure keys and // values of the map are always cache-line aligned and that no single key or // value of any type ever straddles a cache-line. This cache efficiency makes // for quick lookups because the linear-probe always addresses data in a cache // friendly way. This is enabled through the use of a special meta-type called // a Map_Cell which packs as many values of a given type into a local array adding // internal padding to round to MAP_CACHE_LINE_SIZE. One other benefit to storing // the internal data in this manner is false sharing no longer occurs when using // a map, enabling efficient concurrent access of the map data structure with // minimal locking if desired. // With Robin Hood hashing a maximum load factor of 75% is ideal. MAP_LOAD_FACTOR :: 75 // Minimum log2 capacity. MAP_MIN_LOG2_CAPACITY :: 6 // 64 elements // Has to be less than 100% though. #assert(MAP_LOAD_FACTOR < 100) // This is safe to change. The log2 size of a cache-line. At minimum it has to // be six though. Higher cache line sizes are permitted. MAP_CACHE_LINE_LOG2 :: 6 // The size of a cache-line. MAP_CACHE_LINE_SIZE :: 1 << MAP_CACHE_LINE_LOG2 // The minimum cache-line size allowed by this implementation is 64 bytes since // we need 6 bits in the base pointer to store the integer log2 capacity, which // at maximum is 63. Odin uses signed integers to represent length and capacity, // so only 63 bits are needed in the maximum case. #assert(MAP_CACHE_LINE_SIZE >= 64) // Map_Cell type that packs multiple T in such a way to ensure that each T stays // aligned by align_of(T) and such that align_of(Map_Cell(T)) % MAP_CACHE_LINE_SIZE == 0 // // This means a value of type T will never straddle a cache-line. // // When multiple Ts can fit in a single cache-line the data array will have more // than one element. When it cannot, the data array will have one element and // an array of Map_Cell(T) will be padded to stay a multiple of MAP_CACHE_LINE_SIZE. // // We rely on the type system to do all the arithmetic and padding for us here. // // The usual array[index] indexing for []T backed by a []Map_Cell(T) becomes a bit // more involved as there now may be internal padding. The indexing now becomes // // N :: len(Map_Cell(T){}.data) // i := index / N // j := index % N // cell[i].data[j] // // However, since len(Map_Cell(T){}.data) is a compile-time constant, there are some // optimizations we can do to eliminate the need for any divisions as N will // be bounded by [1, 64). // // In the optimal case, len(Map_Cell(T){}.data) = 1 so the cell array can be treated // as a regular array of T, which is the case for hashes. Map_Cell :: struct($T: typeid) #align MAP_CACHE_LINE_SIZE { data: [MAP_CACHE_LINE_SIZE / size_of(T) when 0 < size_of(T) && size_of(T) < MAP_CACHE_LINE_SIZE else 1]T, } // So we can operate on a cell data structure at runtime without any type // information, we have a simple table that stores some traits about the cell. // // 32-bytes on 64-bit // 16-bytes on 32-bit Map_Cell_Info :: struct { size_of_type: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits align_of_type: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits size_of_cell: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits elements_per_cell: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits } // Same as the above procedure but at runtime with the cell Map_Cell_Info value. map_cell_index_dynamic :: #force_inline proc "contextless" (base: uintptr, info: ^Map_Cell_Info, index: uintptr) -> uintptr { // Micro-optimize the common cases to save on integer division. elements_per_cell := uintptr(info.elements_per_cell) size_of_cell := uintptr(info.size_of_cell) switch elements_per_cell { case 1: return base + (index * size_of_cell) case 2: cell_index := index >> 1 data_index := index & 1 size_of_type := uintptr(info.size_of_type) return base + (cell_index * size_of_cell) + (data_index * size_of_type) case: cell_index := index / elements_per_cell data_index := index % elements_per_cell size_of_type := uintptr(info.size_of_type) return base + (cell_index * size_of_cell) + (data_index * size_of_type) } } // Same as above procedure but with compile-time constant index. map_cell_index_dynamic_const :: proc "contextless" (base: uintptr, #no_alias info: ^Map_Cell_Info, $INDEX: uintptr) -> uintptr { elements_per_cell := uintptr(info.elements_per_cell) size_of_cell := uintptr(info.size_of_cell) size_of_type := uintptr(info.size_of_type) cell_index := INDEX / elements_per_cell data_index := INDEX % elements_per_cell return base + (cell_index * size_of_cell) + (data_index * size_of_type) } // len() for map map_len :: #force_inline proc "contextless" (m: Raw_Map) -> int { return int(m.len) } // cap() for map map_cap :: #force_inline proc "contextless" (m: Raw_Map) -> int { // The data uintptr stores the capacity in the lower six bits which gives the // a maximum value of 2^6-1, or 63. We store the integer log2 of capacity // since our capacity is always a power of two. We only need 63 bits as Odin // represents length and capacity as a signed integer. return 0 if m.data == 0 else 1 << map_log2_cap(m) } // Query the load factor of the map. This is not actually configurable, but // some math is needed to compute it. Compute it as a fixed point percentage to // avoid floating point operations. This division can be optimized out by // multiplying by the multiplicative inverse of 100. map_load_factor :: #force_inline proc "contextless" (log2_capacity: uintptr) -> uintptr { return ((uintptr(1) << log2_capacity) * MAP_LOAD_FACTOR) / 100 } map_resize_threshold :: #force_inline proc "contextless" (m: Raw_Map) -> int { return int(map_load_factor(map_log2_cap(m))) } // The data stores the log2 capacity in the lower six bits. This is primarily // used in the implementation rather than map_cap since the check for data = 0 // isn't necessary in the implementation. cap() on the otherhand needs to work // when called on an empty map. map_log2_cap :: #force_inline proc "contextless" (m: Raw_Map) -> uintptr { return m.data & (64 - 1) } // Canonicalize the data by removing the tagged capacity stored in the lower six // bits of the data uintptr. map_data :: #force_inline proc "contextless" (m: Raw_Map) -> uintptr { return m.data &~ uintptr(64 - 1) } Map_Hash :: uintptr // Procedure to check if a slot is empty for a given hash. This is represented // by the zero value to make the zero value useful. This is a procedure just // for prose reasons. map_hash_is_empty :: #force_inline proc "contextless" (hash: Map_Hash) -> bool { return hash == 0 } map_hash_is_deleted :: #force_inline proc "contextless" (hash: Map_Hash) -> bool { // The MSB indicates a tombstone return (hash >> ((size_of(Map_Hash) * 8) - 1)) != 0 } map_hash_is_valid :: #force_inline proc "contextless" (hash: Map_Hash) -> bool { // The MSB indicates a tombstone return (hash != 0) & ((hash >> ((size_of(Map_Hash) * 8) - 1)) == 0) } // Computes the desired position in the array. This is just index % capacity, // but a procedure as there's some math involved here to recover the capacity. map_desired_position :: #force_inline proc "contextless" (m: Raw_Map, hash: Map_Hash) -> uintptr { // We do not use map_cap since we know the capacity will not be zero here. capacity := uintptr(1) << map_log2_cap(m) return uintptr(hash & Map_Hash(capacity - 1)) } map_probe_distance :: #force_inline proc "contextless" (m: Raw_Map, hash: Map_Hash, slot: uintptr) -> uintptr { // We do not use map_cap since we know the capacity will not be zero here. capacity := uintptr(1) << map_log2_cap(m) return (slot + capacity - map_desired_position(m, hash)) & (capacity - 1) } // When working with the type-erased structure at runtime we need information // about the map to make working with it possible. This info structure stores // that. // // The Odin compiler should generate this for __get_map_header. // // 80-bytes on 64-bit // 40-bytes on 32-bit Map_Info :: struct { ks: Map_Cell_Info, // 32-bytes on 64-bit, 16-bytes on 32-bit vs: Map_Cell_Info, // 32-bytes on 64-bit, 16-bytes on 32-bit key_hasher: proc "contextless" (key: rawptr, seed: Map_Hash) -> Map_Hash, // 8-bytes on 64-bit, 4-bytes on 32-bit key_equal: proc "contextless" (lhs, rhs: rawptr) -> bool, // 8-bytes on 64-bit, 4-bytes on 32-bit } // The Map_Info structure is basically a pseudo-table of information for a given K and V pair. map_info :: #force_inline proc "contextless" ($K: typeid, $V: typeid) -> ^Map_Info where intrinsics.type_is_comparable(K) { @static INFO := Map_Info { Map_Cell_Info { size_of(K), align_of(K), size_of(Map_Cell(K)), len(Map_Cell(K){}.data), }, Map_Cell_Info { size_of(V), align_of(V), size_of(Map_Cell(V)), len(Map_Cell(V){}.data), }, proc "contextless" (ptr: rawptr, seed: uintptr) -> Map_Hash { return intrinsics.type_hasher_proc(K)(ptr, seed) } , proc "contextless" (a, b: rawptr) -> bool { return intrinsics.type_equal_proc(K)(a, b) }, } return &INFO } map_kvh_data_dynamic :: proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info) -> (ks: uintptr, vs: uintptr, hs: [^]Map_Hash, sk: uintptr, sv: uintptr) { @static INFO_HS := Map_Cell_Info { size_of(Map_Hash), align_of(Map_Hash), size_of(Map_Cell(Map_Hash)), len(Map_Cell(Map_Hash){}.data), } capacity := uintptr(1) << map_log2_cap(m) ks = map_data(m) vs = map_cell_index_dynamic(ks, &info.ks, capacity) // Skip past ks to get start of vs hs_ := map_cell_index_dynamic(vs, &info.vs, capacity) // Skip past vs to get start of hs sk = map_cell_index_dynamic(hs_, &INFO_HS, capacity) // Skip past hs to get start of sk // Need to skip past two elements in the scratch key space to get to the start // of the scratch value space, of which there's only two elements as well. sv = map_cell_index_dynamic_const(sk, &info.ks, 2) hs = ([^]Map_Hash)(hs_) return } map_kvh_data_values_dynamic :: proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info) -> (vs: uintptr) { capacity := uintptr(1) << map_log2_cap(m) return map_cell_index_dynamic(map_data(m), &info.ks, capacity) // Skip past ks to get start of vs } // The only procedure which needs access to the context is the one which allocates the map. map_alloc_dynamic :: proc(info: ^Map_Info, log2_capacity: uintptr, allocator := context.allocator) -> (result: Raw_Map, err: Allocator_Error) { if log2_capacity == 0 { // Empty map, but set the allocator. return { 0, 0, allocator }, nil } if log2_capacity >= 64 { // Overflowed, would be caused by log2_capacity > 64 return {}, .Out_Of_Memory } capacity := uintptr(1) << max(log2_capacity, MAP_MIN_LOG2_CAPACITY) @static INFO_HS := Map_Cell_Info { size_of(Map_Hash), align_of(Map_Hash), size_of(Map_Cell(Map_Hash)), len(Map_Cell(Map_Hash){}.data), } round :: #force_inline proc "contextless" (value: uintptr) -> uintptr { return (value + MAP_CACHE_LINE_SIZE - 1) &~ uintptr(MAP_CACHE_LINE_SIZE - 1) } size := uintptr(0) size = round(map_cell_index_dynamic(size, &info.ks, capacity)) size = round(map_cell_index_dynamic(size, &info.vs, capacity)) size = round(map_cell_index_dynamic(size, &INFO_HS, capacity)) size = round(map_cell_index_dynamic(size, &info.ks, 2)) // Two additional ks for scratch storage size = round(map_cell_index_dynamic(size, &info.vs, 2)) // Two additional vs for scratch storage data := mem_alloc(int(size), MAP_CACHE_LINE_SIZE, allocator) or_return data_ptr := uintptr(raw_data(data)) assert(data_ptr & 63 == 0) result = { // Tagged pointer representation for capacity. data_ptr | log2_capacity, 0, allocator, } map_clear_dynamic(&result, info) return } // When the type information is known we should use map_insert_hash_static for // better performance. This procedure has to stack allocate storage to store // local keys during the Robin Hood hashing technique where elements are swapped // in the backing arrays to reduce variance. This swapping can only be done with // memcpy since there is no type information. // // This procedure returns the address of the just inserted value. @(optimization_mode="speed") map_insert_hash_dynamic :: proc(m: Raw_Map, #no_alias info: ^Map_Info, h: Map_Hash, ik: uintptr, iv: uintptr) -> (result: uintptr) { info_ks := &info.ks info_vs := &info.vs p := map_desired_position(m, h) d := uintptr(0) c := (uintptr(1) << map_log2_cap(m)) - 1 // Saturating arithmetic mask ks, vs, hs, sk, sv := map_kvh_data_dynamic(m, info) // Avoid redundant loads of these values size_of_k := info_ks.size_of_type size_of_v := info_vs.size_of_type // Use sk and sv scratch storage space for dynamic k and v storage here. // // Simulate the following at runtime // k = ik // v = iv // h = h k := map_cell_index_dynamic_const(sk, info_ks, 0) v := map_cell_index_dynamic_const(sv, info_vs, 0) intrinsics.mem_copy_non_overlapping(rawptr(k), rawptr(ik), size_of_k) intrinsics.mem_copy_non_overlapping(rawptr(v), rawptr(iv), size_of_v) h := h // Temporary k and v dynamic storage for swap below tk := map_cell_index_dynamic_const(sk, info_ks, 1) tv := map_cell_index_dynamic_const(sv, info_vs, 1) for { hp := &hs[p] element_hash := hp^ if map_hash_is_empty(element_hash) { k_dst := map_cell_index_dynamic(ks, info_ks, p) v_dst := map_cell_index_dynamic(vs, info_vs, p) intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k) intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v) hp^ = h return result if result != 0 else v_dst } if pd := map_probe_distance(m, element_hash, p); pd < d { if map_hash_is_deleted(element_hash) { k_dst := map_cell_index_dynamic(ks, info_ks, p) v_dst := map_cell_index_dynamic(vs, info_vs, p) intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k) intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v) hp^ = h return result if result != 0 else v_dst } if result == 0 { result = map_cell_index_dynamic(vs, info_vs, p) } kp := map_cell_index_dynamic(ks, info_vs, p) vp := map_cell_index_dynamic(vs, info_ks, p) // Simulate the following at runtime with dynamic storage // // kp^, k = k, kp^ // vp^, v = v, vp^ // hp^, h = h, hp^ intrinsics.mem_copy_non_overlapping(rawptr(tk), rawptr(kp), size_of_k) intrinsics.mem_copy_non_overlapping(rawptr(tv), rawptr(vp), size_of_v) intrinsics.mem_copy_non_overlapping(rawptr(kp), rawptr(k), size_of_k) intrinsics.mem_copy_non_overlapping(rawptr(vp), rawptr(v), size_of_v) intrinsics.mem_copy_non_overlapping(rawptr(k), rawptr(tk), size_of_k) intrinsics.mem_copy_non_overlapping(rawptr(v), rawptr(tv), size_of_v) hp^, h = h, hp^ d = pd } p = (p + 1) & c d += 1 } } @(optimization_mode="speed") map_add_hash_dynamic :: proc(m: Raw_Map, #no_alias info: ^Map_Info, h: Map_Hash, ik: uintptr, iv: uintptr) { info_ks := &info.ks info_vs := &info.vs capacity := uintptr(1) << map_log2_cap(m) p := map_desired_position(m, h) d := uintptr(0) c := capacity - 1 // Saturating arithmetic mask ks, vs, hs, sk, sv := map_kvh_data_dynamic(m, info) // Avoid redundant loads of these values size_of_k := info_ks.size_of_type size_of_v := info_vs.size_of_type // Use sk and sv scratch storage space for dynamic k and v storage here. // // Simulate the following at runtime // k = ik // v = iv // h = h k := map_cell_index_dynamic_const(sk, info_ks, 0) v := map_cell_index_dynamic_const(sv, info_vs, 0) intrinsics.mem_copy_non_overlapping(rawptr(k), rawptr(ik), size_of_k) intrinsics.mem_copy_non_overlapping(rawptr(v), rawptr(iv), size_of_v) h := h // Temporary k and v dynamic storage for swap below tk := map_cell_index_dynamic_const(sk, info_ks, 1) tv := map_cell_index_dynamic_const(sv, info_vs, 1) for { hp := &hs[p] element_hash := hp^ if map_hash_is_empty(element_hash) { k_dst := map_cell_index_dynamic(ks, info_ks, p) v_dst := map_cell_index_dynamic(vs, info_vs, p) intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k) intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v) hp^ = h return } if pd := map_probe_distance(m, element_hash, p); pd < d { if map_hash_is_deleted(element_hash) { k_dst := map_cell_index_dynamic(ks, info_ks, p) v_dst := map_cell_index_dynamic(vs, info_vs, p) intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k) intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v) hp^ = h return } kp := map_cell_index_dynamic(ks, info_vs, p) vp := map_cell_index_dynamic(vs, info_ks, p) // Simulate the following at runtime with dynamic storage // // kp^, k = k, kp^ // vp^, v = v, vp^ // hp^, h = h, hp^ intrinsics.mem_copy_non_overlapping(rawptr(tk), rawptr(kp), size_of_k) intrinsics.mem_copy_non_overlapping(rawptr(tv), rawptr(vp), size_of_v) intrinsics.mem_copy_non_overlapping(rawptr(kp), rawptr(k), size_of_k) intrinsics.mem_copy_non_overlapping(rawptr(vp), rawptr(v), size_of_v) intrinsics.mem_copy_non_overlapping(rawptr(k), rawptr(tk), size_of_k) intrinsics.mem_copy_non_overlapping(rawptr(v), rawptr(tv), size_of_v) hp^, h = h, hp^ d = pd } p = (p + 1) & c d += 1 } } @(optimization_mode="size") map_grow_dynamic :: proc(#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info) -> Allocator_Error { allocator := m.allocator if allocator.procedure == nil { allocator = context.allocator } log2_capacity := map_log2_cap(m^) if m.data == 0 { n := map_alloc_dynamic(info, MAP_MIN_LOG2_CAPACITY, allocator) or_return m.data = n.data return nil } resized := map_alloc_dynamic(info, log2_capacity + 1, allocator) or_return old_capacity := uintptr(1) << log2_capacity ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info) // Cache these loads to avoid hitting them in the for loop. info_ks := &info.ks info_vs := &info.vs n := map_len(m^) for i := uintptr(0); i < old_capacity; i += 1 { hash := hs[i] if map_hash_is_empty(hash) { continue } if map_hash_is_deleted(hash) { continue } k := map_cell_index_dynamic(ks, info_ks, i) v := map_cell_index_dynamic(vs, info_vs, i) map_insert_hash_dynamic(resized, info, hash, k, v) // Only need to do this comparison on each actually added pair, so do not // fold it into the for loop comparator as a micro-optimization. n -= 1 if n == 0 { // break } } mem_free(rawptr(ks), allocator) m.data = resized.data // Should copy the capacity too return nil } @(optimization_mode="size") map_reserve_dynamic :: proc(#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, new_capacity: uintptr) -> Allocator_Error { allocator := m.allocator if allocator.procedure == nil { allocator = context.allocator } new_capacity := new_capacity new_capacity = max(new_capacity, uintptr(1)<= new_capacity { return nil } // ceiling nearest power of two log2_new_capacity := size_of(uintptr) - intrinsics.count_leading_zeros(new_capacity-1) if m.data == 0 { m^ = map_alloc_dynamic(info, MAP_MIN_LOG2_CAPACITY, allocator) or_return return nil } resized := map_alloc_dynamic(info, log2_new_capacity, allocator) or_return ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info) // Cache these loads to avoid hitting them in the for loop. info_ks := &info.ks info_vs := &info.vs n := map_len(m^) for i := uintptr(0); i < capacity; i += 1 { hash := hs[i] if map_hash_is_empty(hash) { continue } if map_hash_is_deleted(hash) { continue } k := map_cell_index_dynamic(ks, info_ks, i) v := map_cell_index_dynamic(vs, info_vs, i) map_insert_hash_dynamic(resized, info, hash, k, v) // Only need to do this comparison on each actually added pair, so do not // fold it into the for loop comparator as a micro-optimization. n -= 1 if n == 0 { break } } mem_free(rawptr(ks), allocator) m^ = resized // Should copy the capacity too return nil } @(optimization_mode="size") map_shrink_dynamic :: proc(#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info) -> Allocator_Error { allocator := m.allocator if allocator.procedure == nil { // TODO(bill): is this correct behaviour? allocator = context.allocator } // Cannot shrink the capacity if the number of items in the map would exceed // one minus the current log2 capacity's resize threshold. That is the shrunk // map needs to be within the max load factor. log2_capacity := map_log2_cap(m^) if m.len >= map_load_factor(log2_capacity - 1) { return nil } shrinked := map_alloc_dynamic(info, log2_capacity - 1, allocator) or_return capacity := uintptr(1) << log2_capacity ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info) info_ks := &info.ks info_vs := &info.vs n := map_len(m^) for i := uintptr(0); i < capacity; i += 1 { hash := hs[i] if map_hash_is_empty(hash) { continue } if map_hash_is_deleted(hash) { continue } k := map_cell_index_dynamic(ks, info_ks, i) v := map_cell_index_dynamic(vs, info_vs, i) map_insert_hash_dynamic(shrinked, info, hash, k, v) // Only need to do this comparison on each actually added pair, so do not // fold it into the for loop comparator as a micro-optimization. n -= 1 if n == 0 { break } } mem_free(rawptr(ks), allocator) m.data = shrinked.data // Should copy the capacity too return nil } // Single procedure for static and dynamic paths. @(require_results) map_free :: proc(m: Raw_Map, loc := #caller_location) -> Allocator_Error { return mem_free(rawptr(map_data(m)), m.allocator, loc) } @(optimization_mode="speed") map_lookup_dynamic :: proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info, k: uintptr) -> (index: uintptr, ok: bool) { if map_len(m) == 0 { return 0, false } h := info.key_hasher(rawptr(k), 0) p := map_desired_position(m, h) d := uintptr(0) c := (uintptr(1) << map_log2_cap(m)) - 1 ks, _, hs, _, _ := map_kvh_data_dynamic(m, info) info_ks := &info.ks for { element_hash := hs[p] if map_hash_is_empty(element_hash) { return 0, false } else if d > map_probe_distance(m, element_hash, p) { return 0, false } else if element_hash == h && info.key_equal(rawptr(k), rawptr(map_cell_index_dynamic(ks, info_ks, p))) { return p, true } p = (p + 1) & c d += 1 } } @(optimization_mode="speed") map_exists_dynamic :: proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info, k: uintptr) -> (ok: bool) { if map_len(m) == 0 { return false } h := info.key_hasher(rawptr(k), 0) p := map_desired_position(m, h) d := uintptr(0) c := (uintptr(1) << map_log2_cap(m)) - 1 ks, _, hs, _, _ := map_kvh_data_dynamic(m, info) info_ks := &info.ks for { element_hash := hs[p] if map_hash_is_empty(element_hash) { return false } else if d > map_probe_distance(m, element_hash, p) { return false } else if element_hash == h && info.key_equal(rawptr(k), rawptr(map_cell_index_dynamic(ks, info_ks, p))) { return true } p = (p + 1) & c d += 1 } } @(optimization_mode="speed") map_insert_dynamic :: proc(#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, k, v: uintptr) -> (value: uintptr, err: Allocator_Error) { if map_len(m^) + 1 >= map_resize_threshold(m^) { map_grow_dynamic(m, info) or_return } hashed := info.key_hasher(rawptr(k), 0) value = map_insert_hash_dynamic(m^, info, hashed, k, v) m.len += 1 return } // Same as map_insert_dynamic but does not return address to the inserted element. @(optimization_mode="speed") map_add_dynamic :: proc(#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, k, v: uintptr) -> Allocator_Error { if map_len(m^) + 1 >= map_resize_threshold(m^) { map_grow_dynamic(m, info) or_return } map_add_hash_dynamic(m^, info, info.key_hasher(rawptr(k), 0), k, v) m.len += 1 return nil } map_erase_dynamic :: #force_inline proc "contextless" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, k: uintptr) -> bool { MASK :: 1 << (size_of(Map_Hash)*8 - 1) index := map_lookup_dynamic(m^, info, k) or_return _, _, hs, _, _ := map_kvh_data_dynamic(m^, info) hs[index] |= MASK m.len -= 1 return true } map_clear_dynamic :: #force_inline proc "contextless" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info) { if m.data == 0 { return } _, _, hs, _, _ := map_kvh_data_dynamic(m^, info) intrinsics.mem_zero(rawptr(hs), map_cap(m^) * size_of(Map_Hash)) m.len = 0 } __dynamic_map_get :: proc "contextless" (m: rawptr, #no_alias info: ^Map_Info, key: rawptr) -> (ptr: rawptr) { rm := (^Raw_Map)(m)^ if index, ok := map_lookup_dynamic(rm, info, uintptr(key)); ok { vs := map_kvh_data_values_dynamic(rm, info) ptr = rawptr(map_cell_index_dynamic(vs, &info.vs, index)) } return } __dynamic_map_set :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, key, value: rawptr, loc := #caller_location) -> rawptr { value, err := map_insert_dynamic(m, info, uintptr(key), uintptr(value)) return rawptr(value) if err == nil else nil } __dynamic_map_reserve :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, new_capacity: uint, loc := #caller_location) { map_reserve_dynamic(m, info, uintptr(new_capacity)) } INITIAL_HASH_SEED :: 0xcbf29ce484222325 HASH_MASK :: 1 << (8*size_of(uintptr) - 1) -1 _fnv64a :: proc "contextless" (data: []byte, seed: u64 = INITIAL_HASH_SEED) -> u64 { h: u64 = seed for b in data { h = (h ~ u64(b)) * 0x100000001b3 } h &= HASH_MASK return h | u64(h == 0) } default_hash :: #force_inline proc "contextless" (data: []byte) -> uintptr { return uintptr(_fnv64a(data)) } default_hash_string :: #force_inline proc "contextless" (s: string) -> uintptr { return default_hash(transmute([]byte)(s)) } default_hash_ptr :: #force_inline proc "contextless" (data: rawptr, size: int) -> uintptr { s := Raw_Slice{data, size} return default_hash(transmute([]byte)(s)) } @(private) _default_hasher_const :: #force_inline proc "contextless" (data: rawptr, seed: uintptr, $N: uint) -> uintptr where N <= 16 { h := u64(seed) + 0xcbf29ce484222325 p := uintptr(data) #unroll for _ in 0.. uintptr { h := u64(seed) + 0xcbf29ce484222325 p := uintptr(data) for _ in 0.. uintptr { return #force_inline _default_hasher_const(data, seed, 1) } default_hasher2 :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr { return #force_inline _default_hasher_const(data, seed, 2) } default_hasher3 :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr { return #force_inline _default_hasher_const(data, seed, 3) } default_hasher4 :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr { return #force_inline _default_hasher_const(data, seed, 4) } default_hasher5 :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr { return #force_inline _default_hasher_const(data, seed, 5) } default_hasher6 :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr { return #force_inline _default_hasher_const(data, seed, 6) } default_hasher7 :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr { return #force_inline _default_hasher_const(data, seed, 7) } default_hasher8 :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr { return #force_inline _default_hasher_const(data, seed, 8) } default_hasher9 :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr { return #force_inline _default_hasher_const(data, seed, 9) } default_hasher10 :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr { return #force_inline _default_hasher_const(data, seed, 10) } default_hasher11 :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr { return #force_inline _default_hasher_const(data, seed, 11) } default_hasher12 :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr { return #force_inline _default_hasher_const(data, seed, 12) } default_hasher13 :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr { return #force_inline _default_hasher_const(data, seed, 13) } default_hasher14 :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr { return #force_inline _default_hasher_const(data, seed, 14) } default_hasher15 :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr { return #force_inline _default_hasher_const(data, seed, 15) } default_hasher16 :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr { return #force_inline _default_hasher_const(data, seed, 16) } default_hasher_string :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr { h := u64(seed) + 0xcbf29ce484222325 str := (^[]byte)(data)^ for b in str { h = (h ~ u64(b)) * 0x100000001b3 } h &= HASH_MASK return uintptr(h) | uintptr(h == 0) } default_hasher_cstring :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr { h := u64(seed) + 0xcbf29ce484222325 ptr := (^uintptr)(data)^ for (^byte)(ptr)^ != 0 { b := (^byte)(ptr)^ h = (h ~ u64(b)) * 0x100000001b3 ptr += 1 } h &= HASH_MASK return uintptr(h) | uintptr(h == 0) }