Files
Odin/core/net/socket_darwin.odin

431 lines
12 KiB
Odin

#+build darwin
package net
/*
Package net implements cross-platform Berkeley Sockets, DNS resolution and associated procedures.
For other protocols and their features, see subdirectories of this package.
*/
/*
Copyright 2022 Tetralux <tetraluxonpc@gmail.com>
Copyright 2022 Colin Davidson <colrdavidson@gmail.com>
Copyright 2022 Jeroen van Rijn <nom@duclavier.com>.
Copyright 2024 Feoramund <rune@swevencraft.org>.
Made available under Odin's BSD-3 license.
List of contributors:
Tetralux: Initial implementation
Colin Davidson: Linux platform code, OSX platform code, Odin-native DNS resolver
Jeroen van Rijn: Cross platform unification, code style, documentation
Feoramund: FreeBSD platform code
*/
import "core:c"
import "core:sys/posix"
import "core:time"
Socket_Option :: enum c.int {
Broadcast = c.int(posix.Sock_Option.BROADCAST),
Reuse_Address = c.int(posix.Sock_Option.REUSEADDR),
Keep_Alive = c.int(posix.Sock_Option.KEEPALIVE),
Out_Of_Bounds_Data_Inline = c.int(posix.Sock_Option.OOBINLINE),
TCP_Nodelay = c.int(posix.TCP_NODELAY),
Linger = c.int(posix.Sock_Option.LINGER),
Receive_Buffer_Size = c.int(posix.Sock_Option.RCVBUF),
Send_Buffer_Size = c.int(posix.Sock_Option.SNDBUF),
Receive_Timeout = c.int(posix.Sock_Option.RCVTIMEO),
Send_Timeout = c.int(posix.Sock_Option.SNDTIMEO),
}
Shutdown_Manner :: enum c.int {
Receive = c.int(posix.SHUT_RD),
Send = c.int(posix.SHUT_WR),
Both = c.int(posix.SHUT_RDWR),
}
@(private)
_create_socket :: proc(family: Address_Family, protocol: Socket_Protocol) -> (socket: Any_Socket, err: Create_Socket_Error) {
c_type: posix.Sock
c_protocol: posix.Protocol
c_family: posix.AF
switch family {
case .IP4: c_family = .INET
case .IP6: c_family = .INET6
case:
unreachable()
}
switch protocol {
case .TCP: c_type = .STREAM; c_protocol = .TCP
case .UDP: c_type = .DGRAM; c_protocol = .UDP
case:
unreachable()
}
sock := posix.socket(c_family, c_type, c_protocol)
if sock < 0 {
err = _create_socket_error()
return
}
switch protocol {
case .TCP: return TCP_Socket(sock), nil
case .UDP: return UDP_Socket(sock), nil
case:
unreachable()
}
}
@(private)
_dial_tcp_from_endpoint :: proc(endpoint: Endpoint, options := DEFAULT_TCP_OPTIONS) -> (skt: TCP_Socket, err: Network_Error) {
if endpoint.port == 0 {
return 0, .Port_Required
}
family := family_from_endpoint(endpoint)
sock := create_socket(family, .TCP) or_return
skt = sock.(TCP_Socket)
// NOTE(tetra): This is so that if we crash while the socket is open, we can
// bypass the cooldown period, and allow the next run of the program to
// use the same address immediately.
_ = set_option(skt, .Reuse_Address, true)
sockaddr := _endpoint_to_sockaddr(endpoint)
if posix.connect(posix.FD(skt), (^posix.sockaddr)(&sockaddr), posix.socklen_t(sockaddr.ss_len)) != .OK {
err = _dial_error()
close(skt)
}
return
}
@(private)
_bind :: proc(skt: Any_Socket, ep: Endpoint) -> (err: Bind_Error) {
sockaddr := _endpoint_to_sockaddr(ep)
s := any_socket_to_socket(skt)
if posix.bind(posix.FD(s), (^posix.sockaddr)(&sockaddr), posix.socklen_t(sockaddr.ss_len)) != .OK {
err = _bind_error()
}
return
}
@(private)
_listen_tcp :: proc(interface_endpoint: Endpoint, backlog := 1000) -> (skt: TCP_Socket, err: Network_Error) {
assert(backlog > 0 && i32(backlog) < max(i32))
family := family_from_endpoint(interface_endpoint)
sock := create_socket(family, .TCP) or_return
skt = sock.(TCP_Socket)
defer if err != nil { close(skt) }
// NOTE(tetra): This is so that if we crash while the socket is open, we can
// bypass the cooldown period, and allow the next run of the program to
// use the same address immediately.
//
_ = set_option(sock, .Reuse_Address, true)
bind(sock, interface_endpoint) or_return
if posix.listen(posix.FD(skt), i32(backlog)) != .OK {
err = _listen_error()
}
return
}
@(private)
_bound_endpoint :: proc(sock: Any_Socket) -> (ep: Endpoint, err: Socket_Info_Error) {
addr: posix.sockaddr_storage
addr_len := posix.socklen_t(size_of(addr))
if posix.getsockname(posix.FD(any_socket_to_socket(sock)), (^posix.sockaddr)(&addr), &addr_len) != .OK {
err = _socket_info_error()
return
}
ep = _sockaddr_to_endpoint(&addr)
return
}
@(private)
_peer_endpoint :: proc(sock: Any_Socket) -> (ep: Endpoint, err: Socket_Info_Error) {
addr: posix.sockaddr_storage
addr_len := posix.socklen_t(size_of(addr))
if posix.getpeername(posix.FD(any_socket_to_socket(sock)), (^posix.sockaddr)(&addr), &addr_len) != .OK {
err = _socket_info_error()
return
}
ep = _sockaddr_to_endpoint(&addr)
return
}
@(private)
_accept_tcp :: proc(sock: TCP_Socket, options := DEFAULT_TCP_OPTIONS) -> (client: TCP_Socket, source: Endpoint, err: Accept_Error) {
addr: posix.sockaddr_storage
addr_len := posix.socklen_t(size_of(addr))
client_sock := posix.accept(posix.FD(sock), (^posix.sockaddr)(&addr), &addr_len)
if client_sock < 0 {
err = _accept_error()
return
}
client = TCP_Socket(client_sock)
source = _sockaddr_to_endpoint(&addr)
return
}
@(private)
_close :: proc(skt: Any_Socket) {
s := any_socket_to_socket(skt)
posix.close(posix.FD(s))
}
@(private)
_recv_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_read: int, err: TCP_Recv_Error) {
if len(buf) <= 0 {
return
}
res := posix.recv(posix.FD(skt), raw_data(buf), len(buf), {})
if res < 0 {
err = _tcp_recv_error()
return
}
return int(res), nil
}
@(private)
_recv_udp :: proc(skt: UDP_Socket, buf: []byte) -> (bytes_read: int, remote_endpoint: Endpoint, err: UDP_Recv_Error) {
if len(buf) <= 0 {
return
}
from: posix.sockaddr_storage
fromsize := posix.socklen_t(size_of(from))
res := posix.recvfrom(posix.FD(skt), raw_data(buf), len(buf), {}, (^posix.sockaddr)(&from), &fromsize)
if res < 0 {
err = _udp_recv_error()
return
}
bytes_read = int(res)
remote_endpoint = _sockaddr_to_endpoint(&from)
return
}
@(private)
_send_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_written: int, err: TCP_Send_Error) {
for bytes_written < len(buf) {
limit := min(int(max(i32)), len(buf) - bytes_written)
remaining := buf[bytes_written:][:limit]
res := posix.send(posix.FD(skt), raw_data(remaining), len(remaining), {.NOSIGNAL})
if res < 0 {
err = _tcp_send_error()
return
}
bytes_written += int(res)
}
return
}
@(private)
_send_udp :: proc(skt: UDP_Socket, buf: []byte, to: Endpoint) -> (bytes_written: int, err: UDP_Send_Error) {
toaddr := _endpoint_to_sockaddr(to)
for bytes_written < len(buf) {
limit := min(1<<31, len(buf) - bytes_written)
remaining := buf[bytes_written:][:limit]
res := posix.sendto(posix.FD(skt), raw_data(remaining), len(remaining), {.NOSIGNAL}, (^posix.sockaddr)(&toaddr), posix.socklen_t(toaddr.ss_len))
if res < 0 {
err = _udp_send_error()
return
}
bytes_written += int(res)
}
return
}
@(private)
_shutdown :: proc(skt: Any_Socket, manner: Shutdown_Manner) -> (err: Shutdown_Error) {
s := any_socket_to_socket(skt)
if posix.shutdown(posix.FD(s), posix.Shut(manner)) != .OK {
err = _shutdown_error()
}
return
}
@(private)
_set_option :: proc(s: Any_Socket, option: Socket_Option, value: any, loc := #caller_location) -> Socket_Option_Error {
level := posix.SOL_SOCKET if option != .TCP_Nodelay else posix.IPPROTO_TCP
// NOTE(tetra, 2022-02-15): On Linux, you cannot merely give a single byte for a bool;
// it _has_ to be a b32.
// I haven't tested if you can give more than that.
bool_value: b32
int_value: posix.socklen_t
timeval_value: posix.timeval
ptr: rawptr
len: posix.socklen_t
switch option {
case
.Broadcast,
.Reuse_Address,
.Keep_Alive,
.Out_Of_Bounds_Data_Inline,
.TCP_Nodelay:
// TODO: verify whether these are options or not on Linux
// .Broadcast,
// .Conditional_Accept,
// .Dont_Linger:
switch x in value {
case bool, b8:
x2 := x
bool_value = b32((^bool)(&x2)^)
case b16:
bool_value = b32(x)
case b32:
bool_value = b32(x)
case b64:
bool_value = b32(x)
case:
panic("set_option() value must be a boolean here", loc)
}
ptr = &bool_value
len = size_of(bool_value)
case
.Linger,
.Send_Timeout,
.Receive_Timeout:
t := value.(time.Duration) or_else panic("set_option() value must be a time.Duration here", loc)
micros := i64(time.duration_microseconds(t))
timeval_value.tv_usec = posix.suseconds_t(micros % 1e6)
timeval_value.tv_sec = posix.time_t(micros - i64(timeval_value.tv_usec)) / 1e6
ptr = &timeval_value
len = size_of(timeval_value)
case
.Receive_Buffer_Size,
.Send_Buffer_Size:
// TODO: check for out of range values and return .Value_Out_Of_Range?
switch i in value {
case i8, u8: i2 := i; int_value = posix.socklen_t((^u8)(&i2)^)
case i16, u16: i2 := i; int_value = posix.socklen_t((^u16)(&i2)^)
case i32, u32: i2 := i; int_value = posix.socklen_t((^u32)(&i2)^)
case i64, u64: i2 := i; int_value = posix.socklen_t((^u64)(&i2)^)
case i128, u128: i2 := i; int_value = posix.socklen_t((^u128)(&i2)^)
case int, uint: i2 := i; int_value = posix.socklen_t((^uint)(&i2)^)
case:
panic("set_option() value must be an integer here", loc)
}
ptr = &int_value
len = size_of(int_value)
}
skt := any_socket_to_socket(s)
if posix.setsockopt(posix.FD(skt), i32(level), posix.Sock_Option(option), ptr, len) != .OK {
return _socket_option_error()
}
return nil
}
@(private)
_set_blocking :: proc(socket: Any_Socket, should_block: bool) -> (err: Set_Blocking_Error) {
socket := any_socket_to_socket(socket)
flags_ := posix.fcntl(posix.FD(socket), .GETFL, 0)
if flags_ < 0 {
return _set_blocking_error()
}
flags := transmute(posix.O_Flags)flags_
if should_block {
flags -= {.NONBLOCK}
} else {
flags += {.NONBLOCK}
}
if posix.fcntl(posix.FD(socket), .SETFL, flags) < 0 {
return _set_blocking_error()
}
return nil
}
@private
_endpoint_to_sockaddr :: proc(ep: Endpoint) -> (sockaddr: posix.sockaddr_storage) {
switch a in ep.address {
case IP4_Address:
(^posix.sockaddr_in)(&sockaddr)^ = posix.sockaddr_in {
sin_port = u16be(ep.port),
sin_addr = transmute(posix.in_addr)a,
sin_family = .INET,
sin_len = size_of(posix.sockaddr_in),
}
return
case IP6_Address:
(^posix.sockaddr_in6)(&sockaddr)^ = posix.sockaddr_in6 {
sin6_port = u16be(ep.port),
sin6_addr = transmute(posix.in6_addr)a,
sin6_family = .INET6,
sin6_len = size_of(posix.sockaddr_in6),
}
return
}
unreachable()
}
@private
_sockaddr_to_endpoint :: proc(native_addr: ^posix.sockaddr_storage) -> (ep: Endpoint) {
#partial switch native_addr.ss_family {
case .INET:
addr := cast(^posix.sockaddr_in)native_addr
port := int(addr.sin_port)
ep = Endpoint {
address = IP4_Address(transmute([4]byte)addr.sin_addr),
port = port,
}
case .INET6:
addr := cast(^posix.sockaddr_in6)native_addr
port := int(addr.sin6_port)
ep = Endpoint {
address = IP6_Address(transmute([8]u16be)addr.sin6_addr),
port = port,
}
case:
panic("native_addr is neither IP4 or IP6 address")
}
return
}
@(private)
_sockaddr_basic_to_endpoint :: proc(native_addr: ^posix.sockaddr) -> (ep: Endpoint) {
#partial switch native_addr.sa_family {
case .INET:
addr := cast(^posix.sockaddr_in)native_addr
port := int(addr.sin_port)
ep = Endpoint {
address = IP4_Address(transmute([4]byte)addr.sin_addr),
port = port,
}
case .INET6:
addr := cast(^posix.sockaddr_in6)native_addr
port := int(addr.sin6_port)
ep = Endpoint {
address = IP6_Address(transmute([8]u16be)addr.sin6_addr),
port = port,
}
case:
panic("native_addr is neither IP4 or IP6 address")
}
return
}