mirror of
https://github.com/odin-lang/Odin.git
synced 2026-02-16 08:04:07 +00:00
357 lines
9.7 KiB
Odin
357 lines
9.7 KiB
Odin
// Easing procedures used for animations.
|
|
package ease
|
|
|
|
@require import "core:math"
|
|
import "base:intrinsics"
|
|
|
|
@(private) PI_2 :: math.PI / 2
|
|
|
|
// converted to odin from https://github.com/warrenm/AHEasing
|
|
// with additional enum based call
|
|
|
|
// Modeled after the parabola y = x^2
|
|
@(require_results)
|
|
quadratic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
return p * p
|
|
}
|
|
|
|
// Modeled after the parabola y = -x^2 + 2x
|
|
@(require_results)
|
|
quadratic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
return -(p * (p - 2))
|
|
}
|
|
|
|
// Modeled after the piecewise quadratic
|
|
// y = (1/2)((2x)^2) ; [0, 0.5)
|
|
// y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
|
|
@(require_results)
|
|
quadratic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
if p < 0.5 {
|
|
return 2 * p * p
|
|
} else {
|
|
return (-2 * p * p) + (4 * p) - 1
|
|
}
|
|
}
|
|
|
|
// Modeled after the cubic y = x^3
|
|
@(require_results)
|
|
cubic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
return p * p * p
|
|
}
|
|
|
|
// Modeled after the cubic y = (x - 1)^3 + 1
|
|
@(require_results)
|
|
cubic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
f := p - 1
|
|
return f * f * f + 1
|
|
}
|
|
|
|
// Modeled after the piecewise cubic
|
|
// y = (1/2)((2x)^3) ; [0, 0.5)
|
|
// y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
|
|
@(require_results)
|
|
cubic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
if p < 0.5 {
|
|
return 4 * p * p * p
|
|
} else {
|
|
f := (2 * p) - 2
|
|
return 0.5 * f * f * f + 1
|
|
}
|
|
}
|
|
|
|
// Modeled after the quartic x^4
|
|
@(require_results)
|
|
quartic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
return p * p * p * p
|
|
}
|
|
|
|
// Modeled after the quartic y = 1 - (x - 1)^4
|
|
@(require_results)
|
|
quartic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
f := p - 1
|
|
return f * f * f * (1 - p) + 1
|
|
}
|
|
|
|
// Modeled after the piecewise quartic
|
|
// y = (1/2)((2x)^4) ; [0, 0.5)
|
|
// y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
|
|
@(require_results)
|
|
quartic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
if p < 0.5 {
|
|
return 8 * p * p * p * p
|
|
} else {
|
|
f := p - 1
|
|
return -8 * f * f * f * f + 1
|
|
}
|
|
}
|
|
|
|
// Modeled after the quintic y = x^5
|
|
@(require_results)
|
|
quintic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
return p * p * p * p * p
|
|
}
|
|
|
|
// Modeled after the quintic y = (x - 1)^5 + 1
|
|
@(require_results)
|
|
quintic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
f := p - 1
|
|
return f * f * f * f * f + 1
|
|
}
|
|
|
|
// Modeled after the piecewise quintic
|
|
// y = (1/2)((2x)^5) ; [0, 0.5)
|
|
// y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
|
|
@(require_results)
|
|
quintic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
if p < 0.5 {
|
|
return 16 * p * p * p * p * p
|
|
} else {
|
|
f := (2 * p) - 2
|
|
return 0.5 * f * f * f * f * f + 1
|
|
}
|
|
}
|
|
|
|
// Modeled after quarter-cycle of sine wave
|
|
@(require_results)
|
|
sine_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
return math.sin((p - 1) * PI_2) + 1
|
|
}
|
|
|
|
// Modeled after quarter-cycle of sine wave (different phase)
|
|
@(require_results)
|
|
sine_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
return math.sin(p * PI_2)
|
|
}
|
|
|
|
// Modeled after half sine wave
|
|
@(require_results)
|
|
sine_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
return 0.5 * (1 - math.cos(p * math.PI))
|
|
}
|
|
|
|
// Modeled after shifted quadrant IV of unit circle
|
|
@(require_results)
|
|
circular_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
return 1 - math.sqrt(1 - (p * p))
|
|
}
|
|
|
|
// Modeled after shifted quadrant II of unit circle
|
|
@(require_results)
|
|
circular_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
return math.sqrt((2 - p) * p)
|
|
}
|
|
|
|
// Modeled after the piecewise circular function
|
|
// y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5)
|
|
// y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
|
|
@(require_results)
|
|
circular_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
if p < 0.5 {
|
|
return 0.5 * (1 - math.sqrt(1 - 4 * (p * p)))
|
|
} else {
|
|
return 0.5 * (math.sqrt(-((2 * p) - 3) * ((2 * p) - 1)) + 1)
|
|
}
|
|
}
|
|
|
|
// Modeled after the exponential function y = 2^(10(x - 1))
|
|
@(require_results)
|
|
exponential_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
return p == 0.0 ? p : math.pow(2, 10 * (p - 1))
|
|
}
|
|
|
|
// Modeled after the exponential function y = -2^(-10x) + 1
|
|
@(require_results)
|
|
exponential_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
return p == 1.0 ? p : 1 - math.pow(2, -10 * p)
|
|
}
|
|
|
|
// Modeled after the piecewise exponential
|
|
// y = (1/2)2^(10(2x - 1)) ; [0,0.5)
|
|
// y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
|
|
@(require_results)
|
|
exponential_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
if p == 0.0 || p == 1.0 {
|
|
return p
|
|
}
|
|
|
|
if p < 0.5 {
|
|
return 0.5 * math.pow(2, (20 * p) - 10)
|
|
} else {
|
|
return -0.5 * math.pow(2, (-20 * p) + 10) + 1
|
|
}
|
|
}
|
|
|
|
// Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1))
|
|
@(require_results)
|
|
elastic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
return math.sin(13 * PI_2 * p) * math.pow(2, 10 * (p - 1))
|
|
}
|
|
|
|
// Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1
|
|
@(require_results)
|
|
elastic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
return math.sin(-13 * PI_2 * (p + 1)) * math.pow(2, -10 * p) + 1
|
|
}
|
|
|
|
// Modeled after the piecewise exponentially-damped sine wave:
|
|
// y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
|
|
// y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
|
|
@(require_results)
|
|
elastic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
if p < 0.5 {
|
|
return 0.5 * math.sin(13 * PI_2 * (2 * p)) * math.pow(2, 10 * ((2 * p) - 1))
|
|
} else {
|
|
return 0.5 * (math.sin(-13 * PI_2 * ((2 * p - 1) + 1)) * math.pow(2, -10 * (2 * p - 1)) + 2)
|
|
}
|
|
}
|
|
|
|
// Modeled after the overshooting cubic y = x^3-x*sin(x*pi)
|
|
@(require_results)
|
|
back_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
return p * p * p - p * math.sin(p * math.PI)
|
|
}
|
|
|
|
// Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))
|
|
@(require_results)
|
|
back_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
f := 1 - p
|
|
return 1 - (f * f * f - f * math.sin(f * math.PI))
|
|
}
|
|
|
|
// Modeled after the piecewise overshooting cubic function:
|
|
// y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5)
|
|
// y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]
|
|
@(require_results)
|
|
back_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
if p < 0.5 {
|
|
f := 2 * p
|
|
return 0.5 * (f * f * f - f * math.sin(f * math.PI))
|
|
} else {
|
|
f := (1 - (2*p - 1))
|
|
return 0.5 * (1 - (f * f * f - f * math.sin(f * math.PI))) + 0.5
|
|
}
|
|
}
|
|
|
|
@(require_results)
|
|
bounce_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
return 1 - bounce_out(1 - p)
|
|
}
|
|
|
|
@(require_results)
|
|
bounce_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
if p < 4/11.0 {
|
|
return (121 * p * p)/16.0
|
|
} else if p < 8/11.0 {
|
|
return (363/40.0 * p * p) - (99/10.0 * p) + 17/5.0
|
|
} else if p < 9/10.0 {
|
|
return (4356/361.0 * p * p) - (35442/1805.0 * p) + 16061/1805.0
|
|
} else {
|
|
return (54/5.0 * p * p) - (513/25.0 * p) + 268/25.0
|
|
}
|
|
}
|
|
|
|
@(require_results)
|
|
bounce_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
|
|
if p < 0.5 {
|
|
return 0.5 * bounce_in(p*2)
|
|
} else {
|
|
return 0.5 * bounce_out(p * 2 - 1) + 0.5
|
|
}
|
|
}
|
|
|
|
// additional enum variant
|
|
|
|
Ease :: enum {
|
|
Linear,
|
|
|
|
Quadratic_In,
|
|
Quadratic_Out,
|
|
Quadratic_In_Out,
|
|
|
|
Cubic_In,
|
|
Cubic_Out,
|
|
Cubic_In_Out,
|
|
|
|
Quartic_In,
|
|
Quartic_Out,
|
|
Quartic_In_Out,
|
|
|
|
Quintic_In,
|
|
Quintic_Out,
|
|
Quintic_In_Out,
|
|
|
|
Sine_In,
|
|
Sine_Out,
|
|
Sine_In_Out,
|
|
|
|
Circular_In,
|
|
Circular_Out,
|
|
Circular_In_Out,
|
|
|
|
Exponential_In,
|
|
Exponential_Out,
|
|
Exponential_In_Out,
|
|
|
|
Elastic_In,
|
|
Elastic_Out,
|
|
Elastic_In_Out,
|
|
|
|
Back_In,
|
|
Back_Out,
|
|
Back_In_Out,
|
|
|
|
Bounce_In,
|
|
Bounce_Out,
|
|
Bounce_In_Out,
|
|
}
|
|
|
|
@(require_results)
|
|
ease :: proc "contextless" (type: Ease, p: $T) -> T where intrinsics.type_is_float(T) {
|
|
switch type {
|
|
case .Linear: return p
|
|
|
|
case .Quadratic_In: return quadratic_in(p)
|
|
case .Quadratic_Out: return quadratic_out(p)
|
|
case .Quadratic_In_Out: return quadratic_in_out(p)
|
|
|
|
case .Cubic_In: return cubic_in(p)
|
|
case .Cubic_Out: return cubic_out(p)
|
|
case .Cubic_In_Out: return cubic_in_out(p)
|
|
|
|
case .Quartic_In: return quartic_in(p)
|
|
case .Quartic_Out: return quartic_out(p)
|
|
case .Quartic_In_Out: return quartic_in_out(p)
|
|
|
|
case .Quintic_In: return quintic_in(p)
|
|
case .Quintic_Out: return quintic_out(p)
|
|
case .Quintic_In_Out: return quintic_in_out(p)
|
|
|
|
case .Sine_In: return sine_in(p)
|
|
case .Sine_Out: return sine_out(p)
|
|
case .Sine_In_Out: return sine_in_out(p)
|
|
|
|
case .Circular_In: return circular_in(p)
|
|
case .Circular_Out: return circular_out(p)
|
|
case .Circular_In_Out: return circular_in_out(p)
|
|
|
|
case .Exponential_In: return exponential_in(p)
|
|
case .Exponential_Out: return exponential_out(p)
|
|
case .Exponential_In_Out: return exponential_in_out(p)
|
|
|
|
case .Elastic_In: return elastic_in(p)
|
|
case .Elastic_Out: return elastic_out(p)
|
|
case .Elastic_In_Out: return elastic_in_out(p)
|
|
|
|
case .Back_In: return back_in(p)
|
|
case .Back_Out: return back_out(p)
|
|
case .Back_In_Out: return back_in_out(p)
|
|
|
|
case .Bounce_In: return bounce_in(p)
|
|
case .Bounce_Out: return bounce_out(p)
|
|
case .Bounce_In_Out: return bounce_in_out(p)
|
|
}
|
|
|
|
// in case type was invalid
|
|
return 0
|
|
}
|